1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8
9 #include "SkEdge.h"
10 #include "SkFDot6.h"
11 #include "SkMathPriv.h"
12
13 /*
14 In setLine, setQuadratic, setCubic, the first thing we do is to convert
15 the points into FDot6. This is modulated by the shift parameter, which
16 will either be 0, or something like 2 for antialiasing.
17
18 In the float case, we want to turn the float into .6 by saying pt * 64,
19 or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
20
21 In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
22 or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
23 */
24
SkFDot6ToFixedDiv2(SkFDot6 value)25 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
26 // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
27 // away data in value, so just perform a modify up-shift
28 return SkLeftShift(value, 16 - 6 - 1);
29 }
30
31 /////////////////////////////////////////////////////////////////////////
32
setLine(const SkPoint & p0,const SkPoint & p1,const SkIRect * clip,int shift)33 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
34 int shift) {
35 SkFDot6 x0, y0, x1, y1;
36
37 {
38 #ifdef SK_RASTERIZE_EVEN_ROUNDING
39 x0 = SkScalarRoundToFDot6(p0.fX, shift);
40 y0 = SkScalarRoundToFDot6(p0.fY, shift);
41 x1 = SkScalarRoundToFDot6(p1.fX, shift);
42 y1 = SkScalarRoundToFDot6(p1.fY, shift);
43 #else
44 float scale = float(1 << (shift + 6));
45 x0 = int(p0.fX * scale);
46 y0 = int(p0.fY * scale);
47 x1 = int(p1.fX * scale);
48 y1 = int(p1.fY * scale);
49 #endif
50 }
51
52 int winding = 1;
53
54 if (y0 > y1) {
55 SkTSwap(x0, x1);
56 SkTSwap(y0, y1);
57 winding = -1;
58 }
59
60 int top = SkFDot6Round(y0);
61 int bot = SkFDot6Round(y1);
62
63 // are we a zero-height line?
64 if (top == bot) {
65 return 0;
66 }
67 // are we completely above or below the clip?
68 if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
69 return 0;
70 }
71
72 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
73 const SkFDot6 dy = SkEdge_Compute_DY(top, y0);
74
75 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
76 fDX = slope;
77 fFirstY = top;
78 fLastY = bot - 1;
79 fCurveCount = 0;
80 fWinding = SkToS8(winding);
81 fCurveShift = 0;
82
83 if (clip) {
84 this->chopLineWithClip(*clip);
85 }
86 return 1;
87 }
88
89 // called from a curve subclass
updateLine(SkFixed x0,SkFixed y0,SkFixed x1,SkFixed y1)90 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
91 {
92 SkASSERT(fWinding == 1 || fWinding == -1);
93 SkASSERT(fCurveCount != 0);
94 // SkASSERT(fCurveShift != 0);
95
96 y0 >>= 10;
97 y1 >>= 10;
98
99 SkASSERT(y0 <= y1);
100
101 int top = SkFDot6Round(y0);
102 int bot = SkFDot6Round(y1);
103
104 // SkASSERT(top >= fFirstY);
105
106 // are we a zero-height line?
107 if (top == bot)
108 return 0;
109
110 x0 >>= 10;
111 x1 >>= 10;
112
113 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
114 const SkFDot6 dy = SkEdge_Compute_DY(top, y0);
115
116 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
117 fDX = slope;
118 fFirstY = top;
119 fLastY = bot - 1;
120
121 return 1;
122 }
123
chopLineWithClip(const SkIRect & clip)124 void SkEdge::chopLineWithClip(const SkIRect& clip)
125 {
126 int top = fFirstY;
127
128 SkASSERT(top < clip.fBottom);
129
130 // clip the line to the top
131 if (top < clip.fTop)
132 {
133 SkASSERT(fLastY >= clip.fTop);
134 fX += fDX * (clip.fTop - top);
135 fFirstY = clip.fTop;
136 }
137 }
138
139 ///////////////////////////////////////////////////////////////////////////////
140
141 /* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
142 Note that this limits the number of lines we use to approximate a curve.
143 If we need to increase this, we need to store fCurveCount in something
144 larger than int8_t.
145 */
146 #define MAX_COEFF_SHIFT 6
147
cheap_distance(SkFDot6 dx,SkFDot6 dy)148 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
149 {
150 dx = SkAbs32(dx);
151 dy = SkAbs32(dy);
152 // return max + min/2
153 if (dx > dy)
154 dx += dy >> 1;
155 else
156 dx = dy + (dx >> 1);
157 return dx;
158 }
159
diff_to_shift(SkFDot6 dx,SkFDot6 dy,int shiftAA=2)160 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2)
161 {
162 // cheap calc of distance from center of p0-p2 to the center of the curve
163 SkFDot6 dist = cheap_distance(dx, dy);
164
165 // shift down dist (it is currently in dot6)
166 // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...)
167 // this is chosen by heuristic: make it as big as possible (to minimize segments)
168 // ... but small enough so that our curves still look smooth
169 // When shift > 0, we're using AA and everything is scaled up so we can
170 // lower the accuracy.
171 #ifdef SK_SUPPORT_LEGACY_QUAD_SHIFT
172 dist = (dist + (1 << 4)) >> 5;
173 #else
174 dist = (dist + (1 << 4)) >> (3 + shiftAA);
175 #endif
176
177 // each subdivision (shift value) cuts this dist (error) by 1/4
178 return (32 - SkCLZ(dist)) >> 1;
179 }
180
setQuadraticWithoutUpdate(const SkPoint pts[3],int shift)181 bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) {
182 SkFDot6 x0, y0, x1, y1, x2, y2;
183
184 {
185 #ifdef SK_RASTERIZE_EVEN_ROUNDING
186 x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
187 y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
188 x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
189 y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
190 x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
191 y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
192 #else
193 float scale = float(1 << (shift + 6));
194 x0 = int(pts[0].fX * scale);
195 y0 = int(pts[0].fY * scale);
196 x1 = int(pts[1].fX * scale);
197 y1 = int(pts[1].fY * scale);
198 x2 = int(pts[2].fX * scale);
199 y2 = int(pts[2].fY * scale);
200 #endif
201 }
202
203 int winding = 1;
204 if (y0 > y2)
205 {
206 SkTSwap(x0, x2);
207 SkTSwap(y0, y2);
208 winding = -1;
209 }
210 SkASSERT(y0 <= y1 && y1 <= y2);
211
212 int top = SkFDot6Round(y0);
213 int bot = SkFDot6Round(y2);
214
215 // are we a zero-height quad (line)?
216 if (top == bot)
217 return 0;
218
219 // compute number of steps needed (1 << shift)
220 {
221 SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
222 SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
223 // This is a little confusing:
224 // before this line, shift is the scale up factor for AA;
225 // after this line, shift is the fCurveShift.
226 shift = diff_to_shift(dx, dy, shift);
227 SkASSERT(shift >= 0);
228 }
229 // need at least 1 subdivision for our bias trick
230 if (shift == 0) {
231 shift = 1;
232 } else if (shift > MAX_COEFF_SHIFT) {
233 shift = MAX_COEFF_SHIFT;
234 }
235
236 fWinding = SkToS8(winding);
237 //fCubicDShift only set for cubics
238 fCurveCount = SkToS8(1 << shift);
239
240 /*
241 * We want to reformulate into polynomial form, to make it clear how we
242 * should forward-difference.
243 *
244 * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
245 *
246 * A = p0 - 2p1 + p2
247 * B = 2(p1 - p0)
248 * C = p0
249 *
250 * Our caller must have constrained our inputs (p0..p2) to all fit into
251 * 16.16. However, as seen above, we sometimes compute values that can be
252 * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
253 * A and B at 1/2 of their actual value, and just apply a 2x scale during
254 * application in updateQuadratic(). Hence we store (shift - 1) in
255 * fCurveShift.
256 */
257
258 fCurveShift = SkToU8(shift - 1);
259
260 SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value
261 SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value
262
263 fQx = SkFDot6ToFixed(x0);
264 fQDx = B + (A >> shift); // biased by shift
265 fQDDx = A >> (shift - 1); // biased by shift
266
267 A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value
268 B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value
269
270 fQy = SkFDot6ToFixed(y0);
271 fQDy = B + (A >> shift); // biased by shift
272 fQDDy = A >> (shift - 1); // biased by shift
273
274 fQLastX = SkFDot6ToFixed(x2);
275 fQLastY = SkFDot6ToFixed(y2);
276
277 return true;
278 }
279
setQuadratic(const SkPoint pts[3],int shift)280 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) {
281 if (!setQuadraticWithoutUpdate(pts, shift)) {
282 return 0;
283 }
284 return this->updateQuadratic();
285 }
286
updateQuadratic()287 int SkQuadraticEdge::updateQuadratic()
288 {
289 int success;
290 int count = fCurveCount;
291 SkFixed oldx = fQx;
292 SkFixed oldy = fQy;
293 SkFixed dx = fQDx;
294 SkFixed dy = fQDy;
295 SkFixed newx, newy;
296 int shift = fCurveShift;
297
298 SkASSERT(count > 0);
299
300 do {
301 if (--count > 0)
302 {
303 newx = oldx + (dx >> shift);
304 dx += fQDDx;
305 newy = oldy + (dy >> shift);
306 dy += fQDDy;
307 }
308 else // last segment
309 {
310 newx = fQLastX;
311 newy = fQLastY;
312 }
313 success = this->updateLine(oldx, oldy, newx, newy);
314 oldx = newx;
315 oldy = newy;
316 } while (count > 0 && !success);
317
318 fQx = newx;
319 fQy = newy;
320 fQDx = dx;
321 fQDy = dy;
322 fCurveCount = SkToS8(count);
323 return success;
324 }
325
326 /////////////////////////////////////////////////////////////////////////
327
SkFDot6UpShift(SkFDot6 x,int upShift)328 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
329 SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
330 return SkLeftShift(x, upShift);
331 }
332
333 /* f(1/3) = (8a + 12b + 6c + d) / 27
334 f(2/3) = (a + 6b + 12c + 8d) / 27
335
336 f(1/3)-b = (8a - 15b + 6c + d) / 27
337 f(2/3)-c = (a + 6b - 15c + 8d) / 27
338
339 use 16/512 to approximate 1/27
340 */
cubic_delta_from_line(SkFDot6 a,SkFDot6 b,SkFDot6 c,SkFDot6 d)341 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
342 {
343 // since our parameters may be negative, we don't use << to avoid ASAN warnings
344 SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9;
345 SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9;
346
347 return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
348 }
349
setCubicWithoutUpdate(const SkPoint pts[4],int shift,bool sortY)350 bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) {
351 SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
352
353 {
354 #ifdef SK_RASTERIZE_EVEN_ROUNDING
355 x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
356 y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
357 x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
358 y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
359 x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
360 y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
361 x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
362 y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
363 #else
364 float scale = float(1 << (shift + 6));
365 x0 = int(pts[0].fX * scale);
366 y0 = int(pts[0].fY * scale);
367 x1 = int(pts[1].fX * scale);
368 y1 = int(pts[1].fY * scale);
369 x2 = int(pts[2].fX * scale);
370 y2 = int(pts[2].fY * scale);
371 x3 = int(pts[3].fX * scale);
372 y3 = int(pts[3].fY * scale);
373 #endif
374 }
375
376 int winding = 1;
377 if (sortY && y0 > y3)
378 {
379 SkTSwap(x0, x3);
380 SkTSwap(x1, x2);
381 SkTSwap(y0, y3);
382 SkTSwap(y1, y2);
383 winding = -1;
384 }
385
386 int top = SkFDot6Round(y0);
387 int bot = SkFDot6Round(y3);
388
389 // are we a zero-height cubic (line)?
390 if (sortY && top == bot)
391 return 0;
392
393 // compute number of steps needed (1 << shift)
394 {
395 // Can't use (center of curve - center of baseline), since center-of-curve
396 // need not be the max delta from the baseline (it could even be coincident)
397 // so we try just looking at the two off-curve points
398 SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
399 SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
400 // add 1 (by observation)
401 shift = diff_to_shift(dx, dy) + 1;
402 }
403 // need at least 1 subdivision for our bias trick
404 SkASSERT(shift > 0);
405 if (shift > MAX_COEFF_SHIFT) {
406 shift = MAX_COEFF_SHIFT;
407 }
408
409 /* Since our in coming data is initially shifted down by 10 (or 8 in
410 antialias). That means the most we can shift up is 8. However, we
411 compute coefficients with a 3*, so the safest upshift is really 6
412 */
413 int upShift = 6; // largest safe value
414 int downShift = shift + upShift - 10;
415 if (downShift < 0) {
416 downShift = 0;
417 upShift = 10 - shift;
418 }
419
420 fWinding = SkToS8(winding);
421 fCurveCount = SkToS8(SkLeftShift(-1, shift));
422 fCurveShift = SkToU8(shift);
423 fCubicDShift = SkToU8(downShift);
424
425 SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
426 SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
427 SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
428
429 fCx = SkFDot6ToFixed(x0);
430 fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift
431 fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
432 fCDDDx = 3*D >> (shift - 1); // biased by 2*shift
433
434 B = SkFDot6UpShift(3 * (y1 - y0), upShift);
435 C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
436 D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
437
438 fCy = SkFDot6ToFixed(y0);
439 fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift
440 fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
441 fCDDDy = 3*D >> (shift - 1); // biased by 2*shift
442
443 fCLastX = SkFDot6ToFixed(x3);
444 fCLastY = SkFDot6ToFixed(y3);
445
446 return true;
447 }
448
setCubic(const SkPoint pts[4],int shift)449 int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
450 if (!this->setCubicWithoutUpdate(pts, shift)) {
451 return 0;
452 }
453 return this->updateCubic();
454 }
455
updateCubic()456 int SkCubicEdge::updateCubic()
457 {
458 int success;
459 int count = fCurveCount;
460 SkFixed oldx = fCx;
461 SkFixed oldy = fCy;
462 SkFixed newx, newy;
463 const int ddshift = fCurveShift;
464 const int dshift = fCubicDShift;
465
466 SkASSERT(count < 0);
467
468 do {
469 if (++count < 0)
470 {
471 newx = oldx + (fCDx >> dshift);
472 fCDx += fCDDx >> ddshift;
473 fCDDx += fCDDDx;
474
475 newy = oldy + (fCDy >> dshift);
476 fCDy += fCDDy >> ddshift;
477 fCDDy += fCDDDy;
478 }
479 else // last segment
480 {
481 // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
482 newx = fCLastX;
483 newy = fCLastY;
484 }
485
486 // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
487 // doesn't always achieve that, so we have to explicitly pin it here.
488 if (newy < oldy) {
489 newy = oldy;
490 }
491
492 success = this->updateLine(oldx, oldy, newx, newy);
493 oldx = newx;
494 oldy = newy;
495 } while (count < 0 && !success);
496
497 fCx = newx;
498 fCy = newy;
499 fCurveCount = SkToS8(count);
500 return success;
501 }
502