1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkScanPriv.h"
9 #include "SkBlitter.h"
10 #include "SkEdge.h"
11 #include "SkEdgeBuilder.h"
12 #include "SkGeometry.h"
13 #include "SkPath.h"
14 #include "SkQuadClipper.h"
15 #include "SkRasterClip.h"
16 #include "SkRectPriv.h"
17 #include "SkRegion.h"
18 #include "SkTemplates.h"
19 #include "SkTSort.h"
20
21 #define kEDGE_HEAD_Y SK_MinS32
22 #define kEDGE_TAIL_Y SK_MaxS32
23
24 #ifdef SK_DEBUG
validate_sort(const SkEdge * edge)25 static void validate_sort(const SkEdge* edge) {
26 int y = kEDGE_HEAD_Y;
27
28 while (edge->fFirstY != SK_MaxS32) {
29 edge->validate();
30 SkASSERT(y <= edge->fFirstY);
31
32 y = edge->fFirstY;
33 edge = edge->fNext;
34 }
35 }
36 #else
37 #define validate_sort(edge)
38 #endif
39
insert_new_edges(SkEdge * newEdge,int curr_y)40 static void insert_new_edges(SkEdge* newEdge, int curr_y) {
41 if (newEdge->fFirstY != curr_y) {
42 return;
43 }
44 SkEdge* prev = newEdge->fPrev;
45 if (prev->fX <= newEdge->fX) {
46 return;
47 }
48 // find first x pos to insert
49 SkEdge* start = backward_insert_start(prev, newEdge->fX);
50 // insert the lot, fixing up the links as we go
51 do {
52 SkEdge* next = newEdge->fNext;
53 do {
54 if (start->fNext == newEdge) {
55 goto nextEdge;
56 }
57 SkEdge* after = start->fNext;
58 if (after->fX >= newEdge->fX) {
59 break;
60 }
61 start = after;
62 } while (true);
63 remove_edge(newEdge);
64 insert_edge_after(newEdge, start);
65 nextEdge:
66 start = newEdge;
67 newEdge = next;
68 } while (newEdge->fFirstY == curr_y);
69 }
70
71 #ifdef SK_DEBUG
validate_edges_for_y(const SkEdge * edge,int curr_y)72 static void validate_edges_for_y(const SkEdge* edge, int curr_y) {
73 while (edge->fFirstY <= curr_y) {
74 SkASSERT(edge->fPrev && edge->fNext);
75 SkASSERT(edge->fPrev->fNext == edge);
76 SkASSERT(edge->fNext->fPrev == edge);
77 SkASSERT(edge->fFirstY <= edge->fLastY);
78
79 SkASSERT(edge->fPrev->fX <= edge->fX);
80 edge = edge->fNext;
81 }
82 }
83 #else
84 #define validate_edges_for_y(edge, curr_y)
85 #endif
86
87 #if defined _WIN32 // disable warning : local variable used without having been initialized
88 #pragma warning ( push )
89 #pragma warning ( disable : 4701 )
90 #endif
91
92 typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline);
93 #define PREPOST_START true
94 #define PREPOST_END false
95
walk_edges(SkEdge * prevHead,SkPath::FillType fillType,SkBlitter * blitter,int start_y,int stop_y,PrePostProc proc,int rightClip)96 static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType,
97 SkBlitter* blitter, int start_y, int stop_y,
98 PrePostProc proc, int rightClip) {
99 validate_sort(prevHead->fNext);
100
101 int curr_y = start_y;
102 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
103 int windingMask = (fillType & 1) ? 1 : -1;
104
105 for (;;) {
106 int w = 0;
107 int left SK_INIT_TO_AVOID_WARNING;
108 bool in_interval = false;
109 SkEdge* currE = prevHead->fNext;
110 SkFixed prevX = prevHead->fX;
111
112 validate_edges_for_y(currE, curr_y);
113
114 if (proc) {
115 proc(blitter, curr_y, PREPOST_START); // pre-proc
116 }
117
118 while (currE->fFirstY <= curr_y) {
119 SkASSERT(currE->fLastY >= curr_y);
120
121 int x = SkFixedRoundToInt(currE->fX);
122 w += currE->fWinding;
123 if ((w & windingMask) == 0) { // we finished an interval
124 SkASSERT(in_interval);
125 int width = x - left;
126 SkASSERT(width >= 0);
127 if (width)
128 blitter->blitH(left, curr_y, width);
129 in_interval = false;
130 } else if (!in_interval) {
131 left = x;
132 in_interval = true;
133 }
134
135 SkEdge* next = currE->fNext;
136 SkFixed newX;
137
138 if (currE->fLastY == curr_y) { // are we done with this edge?
139 if (currE->fCurveCount < 0) {
140 if (((SkCubicEdge*)currE)->updateCubic()) {
141 SkASSERT(currE->fFirstY == curr_y + 1);
142
143 newX = currE->fX;
144 goto NEXT_X;
145 }
146 } else if (currE->fCurveCount > 0) {
147 if (((SkQuadraticEdge*)currE)->updateQuadratic()) {
148 newX = currE->fX;
149 goto NEXT_X;
150 }
151 }
152 remove_edge(currE);
153 } else {
154 SkASSERT(currE->fLastY > curr_y);
155 newX = currE->fX + currE->fDX;
156 currE->fX = newX;
157 NEXT_X:
158 if (newX < prevX) { // ripple currE backwards until it is x-sorted
159 backward_insert_edge_based_on_x(currE);
160 } else {
161 prevX = newX;
162 }
163 }
164 currE = next;
165 SkASSERT(currE);
166 }
167
168 // was our right-edge culled away?
169 if (in_interval) {
170 int width = rightClip - left;
171 if (width > 0) {
172 blitter->blitH(left, curr_y, width);
173 }
174 }
175
176 if (proc) {
177 proc(blitter, curr_y, PREPOST_END); // post-proc
178 }
179
180 curr_y += 1;
181 if (curr_y >= stop_y) {
182 break;
183 }
184 // now currE points to the first edge with a Yint larger than curr_y
185 insert_new_edges(currE, curr_y);
186 }
187 }
188
189 // return true if we're NOT done with this edge
update_edge(SkEdge * edge,int last_y)190 static bool update_edge(SkEdge* edge, int last_y) {
191 SkASSERT(edge->fLastY >= last_y);
192 if (last_y == edge->fLastY) {
193 if (edge->fCurveCount < 0) {
194 if (((SkCubicEdge*)edge)->updateCubic()) {
195 SkASSERT(edge->fFirstY == last_y + 1);
196 return true;
197 }
198 } else if (edge->fCurveCount > 0) {
199 if (((SkQuadraticEdge*)edge)->updateQuadratic()) {
200 SkASSERT(edge->fFirstY == last_y + 1);
201 return true;
202 }
203 }
204 return false;
205 }
206 return true;
207 }
208
walk_convex_edges(SkEdge * prevHead,SkPath::FillType,SkBlitter * blitter,int start_y,int stop_y,PrePostProc proc)209 static void walk_convex_edges(SkEdge* prevHead, SkPath::FillType,
210 SkBlitter* blitter, int start_y, int stop_y,
211 PrePostProc proc) {
212 validate_sort(prevHead->fNext);
213
214 SkEdge* leftE = prevHead->fNext;
215 SkEdge* riteE = leftE->fNext;
216 SkEdge* currE = riteE->fNext;
217
218 #if 0
219 int local_top = leftE->fFirstY;
220 SkASSERT(local_top == riteE->fFirstY);
221 #else
222 // our edge choppers for curves can result in the initial edges
223 // not lining up, so we take the max.
224 int local_top = SkMax32(leftE->fFirstY, riteE->fFirstY);
225 #endif
226 SkASSERT(local_top >= start_y);
227
228 for (;;) {
229 SkASSERT(leftE->fFirstY <= stop_y);
230 SkASSERT(riteE->fFirstY <= stop_y);
231
232 if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX &&
233 leftE->fDX > riteE->fDX)) {
234 SkTSwap(leftE, riteE);
235 }
236
237 int local_bot = SkMin32(leftE->fLastY, riteE->fLastY);
238 local_bot = SkMin32(local_bot, stop_y - 1);
239 SkASSERT(local_top <= local_bot);
240
241 SkFixed left = leftE->fX;
242 SkFixed dLeft = leftE->fDX;
243 SkFixed rite = riteE->fX;
244 SkFixed dRite = riteE->fDX;
245 int count = local_bot - local_top;
246 SkASSERT(count >= 0);
247 if (0 == (dLeft | dRite)) {
248 int L = SkFixedRoundToInt(left);
249 int R = SkFixedRoundToInt(rite);
250 if (L < R) {
251 count += 1;
252 blitter->blitRect(L, local_top, R - L, count);
253 }
254 local_top = local_bot + 1;
255 } else {
256 do {
257 int L = SkFixedRoundToInt(left);
258 int R = SkFixedRoundToInt(rite);
259 if (L < R) {
260 blitter->blitH(L, local_top, R - L);
261 }
262 left += dLeft;
263 rite += dRite;
264 local_top += 1;
265 } while (--count >= 0);
266 }
267
268 leftE->fX = left;
269 riteE->fX = rite;
270
271 if (!update_edge(leftE, local_bot)) {
272 if (currE->fFirstY >= stop_y) {
273 break;
274 }
275 leftE = currE;
276 currE = currE->fNext;
277 }
278 if (!update_edge(riteE, local_bot)) {
279 if (currE->fFirstY >= stop_y) {
280 break;
281 }
282 riteE = currE;
283 currE = currE->fNext;
284 }
285
286 SkASSERT(leftE);
287 SkASSERT(riteE);
288
289 // check our bottom clip
290 SkASSERT(local_top == local_bot + 1);
291 if (local_top >= stop_y) {
292 break;
293 }
294 }
295 }
296
297 ///////////////////////////////////////////////////////////////////////////////
298
299 // this guy overrides blitH, and will call its proxy blitter with the inverse
300 // of the spans it is given (clipped to the left/right of the cliprect)
301 //
302 // used to implement inverse filltypes on paths
303 //
304 class InverseBlitter : public SkBlitter {
305 public:
setBlitter(SkBlitter * blitter,const SkIRect & clip,int shift)306 void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) {
307 fBlitter = blitter;
308 fFirstX = clip.fLeft << shift;
309 fLastX = clip.fRight << shift;
310 }
prepost(int y,bool isStart)311 void prepost(int y, bool isStart) {
312 if (isStart) {
313 fPrevX = fFirstX;
314 } else {
315 int invWidth = fLastX - fPrevX;
316 if (invWidth > 0) {
317 fBlitter->blitH(fPrevX, y, invWidth);
318 }
319 }
320 }
321
322 // overrides
blitH(int x,int y,int width)323 void blitH(int x, int y, int width) override {
324 int invWidth = x - fPrevX;
325 if (invWidth > 0) {
326 fBlitter->blitH(fPrevX, y, invWidth);
327 }
328 fPrevX = x + width;
329 }
330
331 // we do not expect to get called with these entrypoints
blitAntiH(int,int,const SkAlpha[],const int16_t runs[])332 void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) override {
333 SkDEBUGFAIL("blitAntiH unexpected");
334 }
blitV(int x,int y,int height,SkAlpha alpha)335 void blitV(int x, int y, int height, SkAlpha alpha) override {
336 SkDEBUGFAIL("blitV unexpected");
337 }
blitRect(int x,int y,int width,int height)338 void blitRect(int x, int y, int width, int height) override {
339 SkDEBUGFAIL("blitRect unexpected");
340 }
blitMask(const SkMask &,const SkIRect & clip)341 void blitMask(const SkMask&, const SkIRect& clip) override {
342 SkDEBUGFAIL("blitMask unexpected");
343 }
justAnOpaqueColor(uint32_t * value)344 const SkPixmap* justAnOpaqueColor(uint32_t* value) override {
345 SkDEBUGFAIL("justAnOpaqueColor unexpected");
346 return nullptr;
347 }
348
349 private:
350 SkBlitter* fBlitter;
351 int fFirstX, fLastX, fPrevX;
352 };
353
PrePostInverseBlitterProc(SkBlitter * blitter,int y,bool isStart)354 static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) {
355 ((InverseBlitter*)blitter)->prepost(y, isStart);
356 }
357
358 ///////////////////////////////////////////////////////////////////////////////
359
360 #if defined _WIN32
361 #pragma warning ( pop )
362 #endif
363
operator <(const SkEdge & a,const SkEdge & b)364 static bool operator<(const SkEdge& a, const SkEdge& b) {
365 int valuea = a.fFirstY;
366 int valueb = b.fFirstY;
367
368 if (valuea == valueb) {
369 valuea = a.fX;
370 valueb = b.fX;
371 }
372
373 return valuea < valueb;
374 }
375
sort_edges(SkEdge * list[],int count,SkEdge ** last)376 static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) {
377 SkTQSort(list, list + count - 1);
378
379 // now make the edges linked in sorted order
380 for (int i = 1; i < count; i++) {
381 list[i - 1]->fNext = list[i];
382 list[i]->fPrev = list[i - 1];
383 }
384
385 *last = list[count - 1];
386 return list[0];
387 }
388
389 // clipRect has not been shifted up
sk_fill_path(const SkPath & path,const SkIRect & clipRect,SkBlitter * blitter,int start_y,int stop_y,int shiftEdgesUp,bool pathContainedInClip)390 void sk_fill_path(const SkPath& path, const SkIRect& clipRect, SkBlitter* blitter,
391 int start_y, int stop_y, int shiftEdgesUp, bool pathContainedInClip) {
392 SkASSERT(blitter);
393
394 SkIRect shiftedClip = clipRect;
395 shiftedClip.fLeft = SkLeftShift(shiftedClip.fLeft, shiftEdgesUp);
396 shiftedClip.fRight = SkLeftShift(shiftedClip.fRight, shiftEdgesUp);
397 shiftedClip.fTop = SkLeftShift(shiftedClip.fTop, shiftEdgesUp);
398 shiftedClip.fBottom = SkLeftShift(shiftedClip.fBottom, shiftEdgesUp);
399
400 SkEdgeBuilder builder;
401 int count = builder.build_edges(path, &shiftedClip, shiftEdgesUp, pathContainedInClip);
402 SkEdge** list = builder.edgeList();
403
404 if (0 == count) {
405 if (path.isInverseFillType()) {
406 /*
407 * Since we are in inverse-fill, our caller has already drawn above
408 * our top (start_y) and will draw below our bottom (stop_y). Thus
409 * we need to restrict our drawing to the intersection of the clip
410 * and those two limits.
411 */
412 SkIRect rect = clipRect;
413 if (rect.fTop < start_y) {
414 rect.fTop = start_y;
415 }
416 if (rect.fBottom > stop_y) {
417 rect.fBottom = stop_y;
418 }
419 if (!rect.isEmpty()) {
420 blitter->blitRect(rect.fLeft << shiftEdgesUp,
421 rect.fTop << shiftEdgesUp,
422 rect.width() << shiftEdgesUp,
423 rect.height() << shiftEdgesUp);
424 }
425 }
426 return;
427 }
428
429 SkEdge headEdge, tailEdge, *last;
430 // this returns the first and last edge after they're sorted into a dlink list
431 SkEdge* edge = sort_edges(list, count, &last);
432
433 headEdge.fPrev = nullptr;
434 headEdge.fNext = edge;
435 headEdge.fFirstY = kEDGE_HEAD_Y;
436 headEdge.fX = SK_MinS32;
437 edge->fPrev = &headEdge;
438
439 tailEdge.fPrev = last;
440 tailEdge.fNext = nullptr;
441 tailEdge.fFirstY = kEDGE_TAIL_Y;
442 last->fNext = &tailEdge;
443
444 // now edge is the head of the sorted linklist
445
446 start_y = SkLeftShift(start_y, shiftEdgesUp);
447 stop_y = SkLeftShift(stop_y, shiftEdgesUp);
448 if (!pathContainedInClip && start_y < shiftedClip.fTop) {
449 start_y = shiftedClip.fTop;
450 }
451 if (!pathContainedInClip && stop_y > shiftedClip.fBottom) {
452 stop_y = shiftedClip.fBottom;
453 }
454
455 InverseBlitter ib;
456 PrePostProc proc = nullptr;
457
458 if (path.isInverseFillType()) {
459 ib.setBlitter(blitter, clipRect, shiftEdgesUp);
460 blitter = &ib;
461 proc = PrePostInverseBlitterProc;
462 }
463
464 // count >= 2 is required as the convex walker does not handle missing right edges
465 if (path.isConvex() && (nullptr == proc) && count >= 2) {
466 walk_convex_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, nullptr);
467 } else {
468 walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc,
469 shiftedClip.right());
470 }
471 }
472
sk_blit_above(SkBlitter * blitter,const SkIRect & ir,const SkRegion & clip)473 void sk_blit_above(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
474 const SkIRect& cr = clip.getBounds();
475 SkIRect tmp;
476
477 tmp.fLeft = cr.fLeft;
478 tmp.fRight = cr.fRight;
479 tmp.fTop = cr.fTop;
480 tmp.fBottom = ir.fTop;
481 if (!tmp.isEmpty()) {
482 blitter->blitRectRegion(tmp, clip);
483 }
484 }
485
sk_blit_below(SkBlitter * blitter,const SkIRect & ir,const SkRegion & clip)486 void sk_blit_below(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
487 const SkIRect& cr = clip.getBounds();
488 SkIRect tmp;
489
490 tmp.fLeft = cr.fLeft;
491 tmp.fRight = cr.fRight;
492 tmp.fTop = ir.fBottom;
493 tmp.fBottom = cr.fBottom;
494 if (!tmp.isEmpty()) {
495 blitter->blitRectRegion(tmp, clip);
496 }
497 }
498
499 ///////////////////////////////////////////////////////////////////////////////
500
501 /**
502 * If the caller is drawing an inverse-fill path, then it pass true for
503 * skipRejectTest, so we don't abort drawing just because the src bounds (ir)
504 * is outside of the clip.
505 */
SkScanClipper(SkBlitter * blitter,const SkRegion * clip,const SkIRect & ir,bool skipRejectTest,bool irPreClipped)506 SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip,
507 const SkIRect& ir, bool skipRejectTest, bool irPreClipped) {
508 fBlitter = nullptr; // null means blit nothing
509 fClipRect = nullptr;
510
511 if (clip) {
512 fClipRect = &clip->getBounds();
513 if (!skipRejectTest && !SkIRect::Intersects(*fClipRect, ir)) { // completely clipped out
514 return;
515 }
516
517 if (clip->isRect()) {
518 if (!irPreClipped && fClipRect->contains(ir)) {
519 #ifdef SK_DEBUG
520 fRectClipCheckBlitter.init(blitter, *fClipRect);
521 blitter = &fRectClipCheckBlitter;
522 #endif
523 fClipRect = nullptr;
524 } else {
525 // only need a wrapper blitter if we're horizontally clipped
526 if (irPreClipped ||
527 fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight) {
528 fRectBlitter.init(blitter, *fClipRect);
529 blitter = &fRectBlitter;
530 } else {
531 #ifdef SK_DEBUG
532 fRectClipCheckBlitter.init(blitter, *fClipRect);
533 blitter = &fRectClipCheckBlitter;
534 #endif
535 }
536 }
537 } else {
538 fRgnBlitter.init(blitter, clip);
539 blitter = &fRgnBlitter;
540 }
541 }
542 fBlitter = blitter;
543 }
544
545 ///////////////////////////////////////////////////////////////////////////////
546
clip_to_limit(const SkRegion & orig,SkRegion * reduced)547 static bool clip_to_limit(const SkRegion& orig, SkRegion* reduced) {
548 const int32_t limit = 32767;
549
550 SkIRect limitR;
551 limitR.set(-limit, -limit, limit, limit);
552 if (limitR.contains(orig.getBounds())) {
553 return false;
554 }
555 reduced->op(orig, limitR, SkRegion::kIntersect_Op);
556 return true;
557 }
558
559 /**
560 * Variants of SkScalarRoundToInt, identical to SkDScalarRoundToInt except when the input fraction
561 * is 0.5. When SK_RASTERIZE_EVEN_ROUNDING is enabled, we must bias the result before rounding to
562 * account for potential FDot6 rounding edge-cases.
563 */
564 #ifdef SK_RASTERIZE_EVEN_ROUNDING
565 static const double kRoundBias = 0.5 / SK_FDot6One;
566 #else
567 static const double kRoundBias = 0.0;
568 #endif
569
570 /**
571 * Round the value down. This is used to round the top and left of a rectangle,
572 * and corresponds to the way the scan converter treats the top and left edges.
573 */
round_down_to_int(SkScalar x)574 static inline int round_down_to_int(SkScalar x) {
575 double xx = x;
576 xx -= 0.5 + kRoundBias;
577 return sk_double_saturate2int(ceil(xx));
578 }
579
580 /**
581 * Round the value up. This is used to round the bottom and right of a rectangle,
582 * and corresponds to the way the scan converter treats the bottom and right edges.
583 */
round_up_to_int(SkScalar x)584 static inline int round_up_to_int(SkScalar x) {
585 double xx = x;
586 xx += 0.5 + kRoundBias;
587 return sk_double_saturate2int(floor(xx));
588 }
589
590 /**
591 * Variant of SkRect::round() that explicitly performs the rounding step (i.e. floor(x + 0.5))
592 * using double instead of SkScalar (float). It does this by calling SkDScalarRoundToInt(),
593 * which may be slower than calling SkScalarRountToInt(), but gives slightly more accurate
594 * results. Also rounds top and left using double, flooring when the fraction is exactly 0.5f.
595 *
596 * e.g.
597 * SkScalar left = 0.5f;
598 * int ileft = SkScalarRoundToInt(left);
599 * SkASSERT(0 == ileft); // <--- fails
600 * int ileft = round_down_to_int(left);
601 * SkASSERT(0 == ileft); // <--- succeeds
602 * SkScalar right = 0.49999997f;
603 * int iright = SkScalarRoundToInt(right);
604 * SkASSERT(0 == iright); // <--- fails
605 * iright = SkDScalarRoundToInt(right);
606 * SkASSERT(0 == iright); // <--- succeeds
607 *
608 *
609 * If using SK_RASTERIZE_EVEN_ROUNDING, we need to ensure we account for edges bounded by this
610 * rect being rounded to FDot6 format before being later rounded to an integer. For example, a
611 * value like 0.499 can be below 0.5, but round to 0.5 as FDot6, which would finally round to
612 * the integer 1, instead of just rounding to 0.
613 *
614 * To handle this, a small bias of half an FDot6 increment is added before actually rounding to
615 * an integer value. This simulates the rounding of SkScalarRoundToFDot6 without incurring the
616 * range loss of converting to FDot6 format first, preserving the integer range for the SkIRect.
617 * Thus, bottom and right are rounded in this manner (biased up), ensuring the rect is large
618 * enough.
619 */
round_asymmetric_to_int(const SkRect & src,SkIRect * dst)620 static void round_asymmetric_to_int(const SkRect& src, SkIRect* dst) {
621 SkASSERT(dst);
622 dst->set(round_down_to_int(src.fLeft), round_down_to_int(src.fTop),
623 round_up_to_int(src.fRight), round_up_to_int(src.fBottom));
624 }
625
FillPath(const SkPath & path,const SkRegion & origClip,SkBlitter * blitter)626 void SkScan::FillPath(const SkPath& path, const SkRegion& origClip,
627 SkBlitter* blitter) {
628 if (origClip.isEmpty()) {
629 return;
630 }
631
632 // Our edges are fixed-point, and don't like the bounds of the clip to
633 // exceed that. Here we trim the clip just so we don't overflow later on
634 const SkRegion* clipPtr = &origClip;
635 SkRegion finiteClip;
636 if (clip_to_limit(origClip, &finiteClip)) {
637 if (finiteClip.isEmpty()) {
638 return;
639 }
640 clipPtr = &finiteClip;
641 }
642 // don't reference "origClip" any more, just use clipPtr
643
644
645 SkRect bounds = path.getBounds();
646 bool irPreClipped = false;
647 if (!SkRectPriv::MakeLargeS32().contains(bounds)) {
648 if (!bounds.intersect(SkRectPriv::MakeLargeS32())) {
649 bounds.setEmpty();
650 }
651 irPreClipped = true;
652 }
653 SkIRect ir;
654 // We deliberately call round_asymmetric_to_int() instead of round(), since we can't afford
655 // to generate a bounds that is tighter than the corresponding SkEdges. The edge code basically
656 // converts the floats to fixed, and then "rounds". If we called round() instead of
657 // round_asymmetric_to_int() here, we could generate the wrong ir for values like 0.4999997.
658 round_asymmetric_to_int(bounds, &ir);
659 if (ir.isEmpty()) {
660 if (path.isInverseFillType()) {
661 blitter->blitRegion(*clipPtr);
662 }
663 return;
664 }
665
666 SkScanClipper clipper(blitter, clipPtr, ir, path.isInverseFillType(), irPreClipped);
667
668 blitter = clipper.getBlitter();
669 if (blitter) {
670 // we have to keep our calls to blitter in sorted order, so we
671 // must blit the above section first, then the middle, then the bottom.
672 if (path.isInverseFillType()) {
673 sk_blit_above(blitter, ir, *clipPtr);
674 }
675 SkASSERT(clipper.getClipRect() == nullptr ||
676 *clipper.getClipRect() == clipPtr->getBounds());
677 sk_fill_path(path, clipPtr->getBounds(), blitter, ir.fTop, ir.fBottom,
678 0, clipper.getClipRect() == nullptr);
679 if (path.isInverseFillType()) {
680 sk_blit_below(blitter, ir, *clipPtr);
681 }
682 } else {
683 // what does it mean to not have a blitter if path.isInverseFillType???
684 }
685 }
686
FillPath(const SkPath & path,const SkIRect & ir,SkBlitter * blitter)687 void SkScan::FillPath(const SkPath& path, const SkIRect& ir,
688 SkBlitter* blitter) {
689 SkRegion rgn(ir);
690 FillPath(path, rgn, blitter);
691 }
692
693 ///////////////////////////////////////////////////////////////////////////////
694
build_tri_edges(SkEdge edge[],const SkPoint pts[],const SkIRect * clipRect,SkEdge * list[])695 static int build_tri_edges(SkEdge edge[], const SkPoint pts[],
696 const SkIRect* clipRect, SkEdge* list[]) {
697 SkEdge** start = list;
698
699 if (edge->setLine(pts[0], pts[1], clipRect, 0)) {
700 *list++ = edge;
701 edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
702 }
703 if (edge->setLine(pts[1], pts[2], clipRect, 0)) {
704 *list++ = edge;
705 edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
706 }
707 if (edge->setLine(pts[2], pts[0], clipRect, 0)) {
708 *list++ = edge;
709 }
710 return (int)(list - start);
711 }
712
713
sk_fill_triangle(const SkPoint pts[],const SkIRect * clipRect,SkBlitter * blitter,const SkIRect & ir)714 static void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect,
715 SkBlitter* blitter, const SkIRect& ir) {
716 SkASSERT(pts && blitter);
717
718 SkEdge edgeStorage[3];
719 SkEdge* list[3];
720
721 int count = build_tri_edges(edgeStorage, pts, clipRect, list);
722 if (count < 2) {
723 return;
724 }
725
726 SkEdge headEdge, tailEdge, *last;
727
728 // this returns the first and last edge after they're sorted into a dlink list
729 SkEdge* edge = sort_edges(list, count, &last);
730
731 headEdge.fPrev = nullptr;
732 headEdge.fNext = edge;
733 headEdge.fFirstY = kEDGE_HEAD_Y;
734 headEdge.fX = SK_MinS32;
735 edge->fPrev = &headEdge;
736
737 tailEdge.fPrev = last;
738 tailEdge.fNext = nullptr;
739 tailEdge.fFirstY = kEDGE_TAIL_Y;
740 last->fNext = &tailEdge;
741
742 // now edge is the head of the sorted linklist
743 int stop_y = ir.fBottom;
744 if (clipRect && stop_y > clipRect->fBottom) {
745 stop_y = clipRect->fBottom;
746 }
747 int start_y = ir.fTop;
748 if (clipRect && start_y < clipRect->fTop) {
749 start_y = clipRect->fTop;
750 }
751 walk_convex_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, start_y, stop_y, nullptr);
752 // walk_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, start_y, stop_y, nullptr);
753 }
754
FillTriangle(const SkPoint pts[],const SkRasterClip & clip,SkBlitter * blitter)755 void SkScan::FillTriangle(const SkPoint pts[], const SkRasterClip& clip,
756 SkBlitter* blitter) {
757 if (clip.isEmpty()) {
758 return;
759 }
760
761 SkRect r;
762 r.set(pts, 3);
763 // If r is too large (larger than can easily fit in SkFixed) then we need perform geometric
764 // clipping. This is a bit of work, so we just call the general FillPath() to handle it.
765 // Use FixedMax/2 as the limit so we can subtract two edges and still store that in Fixed.
766 const SkScalar limit = SK_MaxS16 >> 1;
767 if (!SkRect::MakeLTRB(-limit, -limit, limit, limit).contains(r)) {
768 SkPath path;
769 path.addPoly(pts, 3, false);
770 FillPath(path, clip, blitter);
771 return;
772 }
773
774 SkIRect ir = r.round();
775 if (ir.isEmpty() || !SkIRect::Intersects(ir, clip.getBounds())) {
776 return;
777 }
778
779 SkAAClipBlitterWrapper wrap;
780 const SkRegion* clipRgn;
781 if (clip.isBW()) {
782 clipRgn = &clip.bwRgn();
783 } else {
784 wrap.init(clip, blitter);
785 clipRgn = &wrap.getRgn();
786 blitter = wrap.getBlitter();
787 }
788
789 SkScanClipper clipper(blitter, clipRgn, ir);
790 blitter = clipper.getBlitter();
791 if (blitter) {
792 sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir);
793 }
794 }
795