• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkScanPriv.h"
9 #include "SkBlitter.h"
10 #include "SkEdge.h"
11 #include "SkEdgeBuilder.h"
12 #include "SkGeometry.h"
13 #include "SkPath.h"
14 #include "SkQuadClipper.h"
15 #include "SkRasterClip.h"
16 #include "SkRectPriv.h"
17 #include "SkRegion.h"
18 #include "SkTemplates.h"
19 #include "SkTSort.h"
20 
21 #define kEDGE_HEAD_Y    SK_MinS32
22 #define kEDGE_TAIL_Y    SK_MaxS32
23 
24 #ifdef SK_DEBUG
validate_sort(const SkEdge * edge)25     static void validate_sort(const SkEdge* edge) {
26         int y = kEDGE_HEAD_Y;
27 
28         while (edge->fFirstY != SK_MaxS32) {
29             edge->validate();
30             SkASSERT(y <= edge->fFirstY);
31 
32             y = edge->fFirstY;
33             edge = edge->fNext;
34         }
35     }
36 #else
37     #define validate_sort(edge)
38 #endif
39 
insert_new_edges(SkEdge * newEdge,int curr_y)40 static void insert_new_edges(SkEdge* newEdge, int curr_y) {
41     if (newEdge->fFirstY != curr_y) {
42         return;
43     }
44     SkEdge* prev = newEdge->fPrev;
45     if (prev->fX <= newEdge->fX) {
46         return;
47     }
48     // find first x pos to insert
49     SkEdge* start = backward_insert_start(prev, newEdge->fX);
50     // insert the lot, fixing up the links as we go
51     do {
52         SkEdge* next = newEdge->fNext;
53         do {
54             if (start->fNext == newEdge) {
55                 goto nextEdge;
56             }
57             SkEdge* after = start->fNext;
58             if (after->fX >= newEdge->fX) {
59                 break;
60             }
61             start = after;
62         } while (true);
63         remove_edge(newEdge);
64         insert_edge_after(newEdge, start);
65 nextEdge:
66         start = newEdge;
67         newEdge = next;
68     } while (newEdge->fFirstY == curr_y);
69 }
70 
71 #ifdef SK_DEBUG
validate_edges_for_y(const SkEdge * edge,int curr_y)72 static void validate_edges_for_y(const SkEdge* edge, int curr_y) {
73     while (edge->fFirstY <= curr_y) {
74         SkASSERT(edge->fPrev && edge->fNext);
75         SkASSERT(edge->fPrev->fNext == edge);
76         SkASSERT(edge->fNext->fPrev == edge);
77         SkASSERT(edge->fFirstY <= edge->fLastY);
78 
79         SkASSERT(edge->fPrev->fX <= edge->fX);
80         edge = edge->fNext;
81     }
82 }
83 #else
84     #define validate_edges_for_y(edge, curr_y)
85 #endif
86 
87 #if defined _WIN32  // disable warning : local variable used without having been initialized
88 #pragma warning ( push )
89 #pragma warning ( disable : 4701 )
90 #endif
91 
92 typedef void (*PrePostProc)(SkBlitter* blitter, int y, bool isStartOfScanline);
93 #define PREPOST_START   true
94 #define PREPOST_END     false
95 
walk_edges(SkEdge * prevHead,SkPath::FillType fillType,SkBlitter * blitter,int start_y,int stop_y,PrePostProc proc,int rightClip)96 static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType,
97                        SkBlitter* blitter, int start_y, int stop_y,
98                        PrePostProc proc, int rightClip) {
99     validate_sort(prevHead->fNext);
100 
101     int curr_y = start_y;
102     // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
103     int windingMask = (fillType & 1) ? 1 : -1;
104 
105     for (;;) {
106         int     w = 0;
107         int     left SK_INIT_TO_AVOID_WARNING;
108         bool    in_interval = false;
109         SkEdge* currE = prevHead->fNext;
110         SkFixed prevX = prevHead->fX;
111 
112         validate_edges_for_y(currE, curr_y);
113 
114         if (proc) {
115             proc(blitter, curr_y, PREPOST_START);    // pre-proc
116         }
117 
118         while (currE->fFirstY <= curr_y) {
119             SkASSERT(currE->fLastY >= curr_y);
120 
121             int x = SkFixedRoundToInt(currE->fX);
122             w += currE->fWinding;
123             if ((w & windingMask) == 0) { // we finished an interval
124                 SkASSERT(in_interval);
125                 int width = x - left;
126                 SkASSERT(width >= 0);
127                 if (width)
128                     blitter->blitH(left, curr_y, width);
129                 in_interval = false;
130             } else if (!in_interval) {
131                 left = x;
132                 in_interval = true;
133             }
134 
135             SkEdge* next = currE->fNext;
136             SkFixed newX;
137 
138             if (currE->fLastY == curr_y) {    // are we done with this edge?
139                 if (currE->fCurveCount < 0) {
140                     if (((SkCubicEdge*)currE)->updateCubic()) {
141                         SkASSERT(currE->fFirstY == curr_y + 1);
142 
143                         newX = currE->fX;
144                         goto NEXT_X;
145                     }
146                 } else if (currE->fCurveCount > 0) {
147                     if (((SkQuadraticEdge*)currE)->updateQuadratic()) {
148                         newX = currE->fX;
149                         goto NEXT_X;
150                     }
151                 }
152                 remove_edge(currE);
153             } else {
154                 SkASSERT(currE->fLastY > curr_y);
155                 newX = currE->fX + currE->fDX;
156                 currE->fX = newX;
157             NEXT_X:
158                 if (newX < prevX) { // ripple currE backwards until it is x-sorted
159                     backward_insert_edge_based_on_x(currE);
160                 } else {
161                     prevX = newX;
162                 }
163             }
164             currE = next;
165             SkASSERT(currE);
166         }
167 
168         // was our right-edge culled away?
169         if (in_interval) {
170             int width = rightClip - left;
171             if (width > 0) {
172                 blitter->blitH(left, curr_y, width);
173             }
174         }
175 
176         if (proc) {
177             proc(blitter, curr_y, PREPOST_END);    // post-proc
178         }
179 
180         curr_y += 1;
181         if (curr_y >= stop_y) {
182             break;
183         }
184         // now currE points to the first edge with a Yint larger than curr_y
185         insert_new_edges(currE, curr_y);
186     }
187 }
188 
189 // return true if we're NOT done with this edge
update_edge(SkEdge * edge,int last_y)190 static bool update_edge(SkEdge* edge, int last_y) {
191     SkASSERT(edge->fLastY >= last_y);
192     if (last_y == edge->fLastY) {
193         if (edge->fCurveCount < 0) {
194             if (((SkCubicEdge*)edge)->updateCubic()) {
195                 SkASSERT(edge->fFirstY == last_y + 1);
196                 return true;
197             }
198         } else if (edge->fCurveCount > 0) {
199             if (((SkQuadraticEdge*)edge)->updateQuadratic()) {
200                 SkASSERT(edge->fFirstY == last_y + 1);
201                 return true;
202             }
203         }
204         return false;
205     }
206     return true;
207 }
208 
walk_convex_edges(SkEdge * prevHead,SkPath::FillType,SkBlitter * blitter,int start_y,int stop_y,PrePostProc proc)209 static void walk_convex_edges(SkEdge* prevHead, SkPath::FillType,
210                               SkBlitter* blitter, int start_y, int stop_y,
211                               PrePostProc proc) {
212     validate_sort(prevHead->fNext);
213 
214     SkEdge* leftE = prevHead->fNext;
215     SkEdge* riteE = leftE->fNext;
216     SkEdge* currE = riteE->fNext;
217 
218 #if 0
219     int local_top = leftE->fFirstY;
220     SkASSERT(local_top == riteE->fFirstY);
221 #else
222     // our edge choppers for curves can result in the initial edges
223     // not lining up, so we take the max.
224     int local_top = SkMax32(leftE->fFirstY, riteE->fFirstY);
225 #endif
226     SkASSERT(local_top >= start_y);
227 
228     for (;;) {
229         SkASSERT(leftE->fFirstY <= stop_y);
230         SkASSERT(riteE->fFirstY <= stop_y);
231 
232         if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX &&
233                                       leftE->fDX > riteE->fDX)) {
234             SkTSwap(leftE, riteE);
235         }
236 
237         int local_bot = SkMin32(leftE->fLastY, riteE->fLastY);
238         local_bot = SkMin32(local_bot, stop_y - 1);
239         SkASSERT(local_top <= local_bot);
240 
241         SkFixed left = leftE->fX;
242         SkFixed dLeft = leftE->fDX;
243         SkFixed rite = riteE->fX;
244         SkFixed dRite = riteE->fDX;
245         int count = local_bot - local_top;
246         SkASSERT(count >= 0);
247         if (0 == (dLeft | dRite)) {
248             int L = SkFixedRoundToInt(left);
249             int R = SkFixedRoundToInt(rite);
250             if (L < R) {
251                 count += 1;
252                 blitter->blitRect(L, local_top, R - L, count);
253             }
254             local_top = local_bot + 1;
255         } else {
256             do {
257                 int L = SkFixedRoundToInt(left);
258                 int R = SkFixedRoundToInt(rite);
259                 if (L < R) {
260                     blitter->blitH(L, local_top, R - L);
261                 }
262                 left += dLeft;
263                 rite += dRite;
264                 local_top += 1;
265             } while (--count >= 0);
266         }
267 
268         leftE->fX = left;
269         riteE->fX = rite;
270 
271         if (!update_edge(leftE, local_bot)) {
272             if (currE->fFirstY >= stop_y) {
273                 break;
274             }
275             leftE = currE;
276             currE = currE->fNext;
277         }
278         if (!update_edge(riteE, local_bot)) {
279             if (currE->fFirstY >= stop_y) {
280                 break;
281             }
282             riteE = currE;
283             currE = currE->fNext;
284         }
285 
286         SkASSERT(leftE);
287         SkASSERT(riteE);
288 
289         // check our bottom clip
290         SkASSERT(local_top == local_bot + 1);
291         if (local_top >= stop_y) {
292             break;
293         }
294     }
295 }
296 
297 ///////////////////////////////////////////////////////////////////////////////
298 
299 // this guy overrides blitH, and will call its proxy blitter with the inverse
300 // of the spans it is given (clipped to the left/right of the cliprect)
301 //
302 // used to implement inverse filltypes on paths
303 //
304 class InverseBlitter : public SkBlitter {
305 public:
setBlitter(SkBlitter * blitter,const SkIRect & clip,int shift)306     void setBlitter(SkBlitter* blitter, const SkIRect& clip, int shift) {
307         fBlitter = blitter;
308         fFirstX = clip.fLeft << shift;
309         fLastX = clip.fRight << shift;
310     }
prepost(int y,bool isStart)311     void prepost(int y, bool isStart) {
312         if (isStart) {
313             fPrevX = fFirstX;
314         } else {
315             int invWidth = fLastX - fPrevX;
316             if (invWidth > 0) {
317                 fBlitter->blitH(fPrevX, y, invWidth);
318             }
319         }
320     }
321 
322     // overrides
blitH(int x,int y,int width)323     void blitH(int x, int y, int width) override {
324         int invWidth = x - fPrevX;
325         if (invWidth > 0) {
326             fBlitter->blitH(fPrevX, y, invWidth);
327         }
328         fPrevX = x + width;
329     }
330 
331     // we do not expect to get called with these entrypoints
blitAntiH(int,int,const SkAlpha[],const int16_t runs[])332     void blitAntiH(int, int, const SkAlpha[], const int16_t runs[]) override {
333         SkDEBUGFAIL("blitAntiH unexpected");
334     }
blitV(int x,int y,int height,SkAlpha alpha)335     void blitV(int x, int y, int height, SkAlpha alpha) override {
336         SkDEBUGFAIL("blitV unexpected");
337     }
blitRect(int x,int y,int width,int height)338     void blitRect(int x, int y, int width, int height) override {
339         SkDEBUGFAIL("blitRect unexpected");
340     }
blitMask(const SkMask &,const SkIRect & clip)341     void blitMask(const SkMask&, const SkIRect& clip) override {
342         SkDEBUGFAIL("blitMask unexpected");
343     }
justAnOpaqueColor(uint32_t * value)344     const SkPixmap* justAnOpaqueColor(uint32_t* value) override {
345         SkDEBUGFAIL("justAnOpaqueColor unexpected");
346         return nullptr;
347     }
348 
349 private:
350     SkBlitter*  fBlitter;
351     int         fFirstX, fLastX, fPrevX;
352 };
353 
PrePostInverseBlitterProc(SkBlitter * blitter,int y,bool isStart)354 static void PrePostInverseBlitterProc(SkBlitter* blitter, int y, bool isStart) {
355     ((InverseBlitter*)blitter)->prepost(y, isStart);
356 }
357 
358 ///////////////////////////////////////////////////////////////////////////////
359 
360 #if defined _WIN32
361 #pragma warning ( pop )
362 #endif
363 
operator <(const SkEdge & a,const SkEdge & b)364 static bool operator<(const SkEdge& a, const SkEdge& b) {
365     int valuea = a.fFirstY;
366     int valueb = b.fFirstY;
367 
368     if (valuea == valueb) {
369         valuea = a.fX;
370         valueb = b.fX;
371     }
372 
373     return valuea < valueb;
374 }
375 
sort_edges(SkEdge * list[],int count,SkEdge ** last)376 static SkEdge* sort_edges(SkEdge* list[], int count, SkEdge** last) {
377     SkTQSort(list, list + count - 1);
378 
379     // now make the edges linked in sorted order
380     for (int i = 1; i < count; i++) {
381         list[i - 1]->fNext = list[i];
382         list[i]->fPrev = list[i - 1];
383     }
384 
385     *last = list[count - 1];
386     return list[0];
387 }
388 
389 // clipRect has not been shifted up
sk_fill_path(const SkPath & path,const SkIRect & clipRect,SkBlitter * blitter,int start_y,int stop_y,int shiftEdgesUp,bool pathContainedInClip)390 void sk_fill_path(const SkPath& path, const SkIRect& clipRect, SkBlitter* blitter,
391                   int start_y, int stop_y, int shiftEdgesUp, bool pathContainedInClip) {
392     SkASSERT(blitter);
393 
394     SkIRect shiftedClip = clipRect;
395     shiftedClip.fLeft = SkLeftShift(shiftedClip.fLeft, shiftEdgesUp);
396     shiftedClip.fRight = SkLeftShift(shiftedClip.fRight, shiftEdgesUp);
397     shiftedClip.fTop = SkLeftShift(shiftedClip.fTop, shiftEdgesUp);
398     shiftedClip.fBottom = SkLeftShift(shiftedClip.fBottom, shiftEdgesUp);
399 
400     SkEdgeBuilder builder;
401     int count = builder.build_edges(path, &shiftedClip, shiftEdgesUp, pathContainedInClip);
402     SkEdge** list = builder.edgeList();
403 
404     if (0 == count) {
405         if (path.isInverseFillType()) {
406             /*
407              *  Since we are in inverse-fill, our caller has already drawn above
408              *  our top (start_y) and will draw below our bottom (stop_y). Thus
409              *  we need to restrict our drawing to the intersection of the clip
410              *  and those two limits.
411              */
412             SkIRect rect = clipRect;
413             if (rect.fTop < start_y) {
414                 rect.fTop = start_y;
415             }
416             if (rect.fBottom > stop_y) {
417                 rect.fBottom = stop_y;
418             }
419             if (!rect.isEmpty()) {
420                 blitter->blitRect(rect.fLeft << shiftEdgesUp,
421                                   rect.fTop << shiftEdgesUp,
422                                   rect.width() << shiftEdgesUp,
423                                   rect.height() << shiftEdgesUp);
424             }
425         }
426         return;
427     }
428 
429     SkEdge headEdge, tailEdge, *last;
430     // this returns the first and last edge after they're sorted into a dlink list
431     SkEdge* edge = sort_edges(list, count, &last);
432 
433     headEdge.fPrev = nullptr;
434     headEdge.fNext = edge;
435     headEdge.fFirstY = kEDGE_HEAD_Y;
436     headEdge.fX = SK_MinS32;
437     edge->fPrev = &headEdge;
438 
439     tailEdge.fPrev = last;
440     tailEdge.fNext = nullptr;
441     tailEdge.fFirstY = kEDGE_TAIL_Y;
442     last->fNext = &tailEdge;
443 
444     // now edge is the head of the sorted linklist
445 
446     start_y = SkLeftShift(start_y, shiftEdgesUp);
447     stop_y = SkLeftShift(stop_y, shiftEdgesUp);
448     if (!pathContainedInClip && start_y < shiftedClip.fTop) {
449         start_y = shiftedClip.fTop;
450     }
451     if (!pathContainedInClip && stop_y > shiftedClip.fBottom) {
452         stop_y = shiftedClip.fBottom;
453     }
454 
455     InverseBlitter  ib;
456     PrePostProc     proc = nullptr;
457 
458     if (path.isInverseFillType()) {
459         ib.setBlitter(blitter, clipRect, shiftEdgesUp);
460         blitter = &ib;
461         proc = PrePostInverseBlitterProc;
462     }
463 
464     // count >= 2 is required as the convex walker does not handle missing right edges
465     if (path.isConvex() && (nullptr == proc) && count >= 2) {
466         walk_convex_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, nullptr);
467     } else {
468         walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc,
469                 shiftedClip.right());
470     }
471 }
472 
sk_blit_above(SkBlitter * blitter,const SkIRect & ir,const SkRegion & clip)473 void sk_blit_above(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
474     const SkIRect& cr = clip.getBounds();
475     SkIRect tmp;
476 
477     tmp.fLeft = cr.fLeft;
478     tmp.fRight = cr.fRight;
479     tmp.fTop = cr.fTop;
480     tmp.fBottom = ir.fTop;
481     if (!tmp.isEmpty()) {
482         blitter->blitRectRegion(tmp, clip);
483     }
484 }
485 
sk_blit_below(SkBlitter * blitter,const SkIRect & ir,const SkRegion & clip)486 void sk_blit_below(SkBlitter* blitter, const SkIRect& ir, const SkRegion& clip) {
487     const SkIRect& cr = clip.getBounds();
488     SkIRect tmp;
489 
490     tmp.fLeft = cr.fLeft;
491     tmp.fRight = cr.fRight;
492     tmp.fTop = ir.fBottom;
493     tmp.fBottom = cr.fBottom;
494     if (!tmp.isEmpty()) {
495         blitter->blitRectRegion(tmp, clip);
496     }
497 }
498 
499 ///////////////////////////////////////////////////////////////////////////////
500 
501 /**
502  *  If the caller is drawing an inverse-fill path, then it pass true for
503  *  skipRejectTest, so we don't abort drawing just because the src bounds (ir)
504  *  is outside of the clip.
505  */
SkScanClipper(SkBlitter * blitter,const SkRegion * clip,const SkIRect & ir,bool skipRejectTest,bool irPreClipped)506 SkScanClipper::SkScanClipper(SkBlitter* blitter, const SkRegion* clip,
507                              const SkIRect& ir, bool skipRejectTest, bool irPreClipped) {
508     fBlitter = nullptr;     // null means blit nothing
509     fClipRect = nullptr;
510 
511     if (clip) {
512         fClipRect = &clip->getBounds();
513         if (!skipRejectTest && !SkIRect::Intersects(*fClipRect, ir)) { // completely clipped out
514             return;
515         }
516 
517         if (clip->isRect()) {
518             if (!irPreClipped && fClipRect->contains(ir)) {
519 #ifdef SK_DEBUG
520                 fRectClipCheckBlitter.init(blitter, *fClipRect);
521                 blitter = &fRectClipCheckBlitter;
522 #endif
523                 fClipRect = nullptr;
524             } else {
525                 // only need a wrapper blitter if we're horizontally clipped
526                 if (irPreClipped ||
527                     fClipRect->fLeft > ir.fLeft || fClipRect->fRight < ir.fRight) {
528                     fRectBlitter.init(blitter, *fClipRect);
529                     blitter = &fRectBlitter;
530                 } else {
531 #ifdef SK_DEBUG
532                     fRectClipCheckBlitter.init(blitter, *fClipRect);
533                     blitter = &fRectClipCheckBlitter;
534 #endif
535                 }
536             }
537         } else {
538             fRgnBlitter.init(blitter, clip);
539             blitter = &fRgnBlitter;
540         }
541     }
542     fBlitter = blitter;
543 }
544 
545 ///////////////////////////////////////////////////////////////////////////////
546 
clip_to_limit(const SkRegion & orig,SkRegion * reduced)547 static bool clip_to_limit(const SkRegion& orig, SkRegion* reduced) {
548     const int32_t limit = 32767;
549 
550     SkIRect limitR;
551     limitR.set(-limit, -limit, limit, limit);
552     if (limitR.contains(orig.getBounds())) {
553         return false;
554     }
555     reduced->op(orig, limitR, SkRegion::kIntersect_Op);
556     return true;
557 }
558 
559 /**
560   * Variants of SkScalarRoundToInt, identical to SkDScalarRoundToInt except when the input fraction
561   * is 0.5. When SK_RASTERIZE_EVEN_ROUNDING is enabled, we must bias the result before rounding to
562   * account for potential FDot6 rounding edge-cases.
563   */
564 #ifdef SK_RASTERIZE_EVEN_ROUNDING
565 static const double kRoundBias = 0.5 / SK_FDot6One;
566 #else
567 static const double kRoundBias = 0.0;
568 #endif
569 
570 /**
571   * Round the value down. This is used to round the top and left of a rectangle,
572   * and corresponds to the way the scan converter treats the top and left edges.
573   */
round_down_to_int(SkScalar x)574 static inline int round_down_to_int(SkScalar x) {
575     double xx = x;
576     xx -= 0.5 + kRoundBias;
577     return sk_double_saturate2int(ceil(xx));
578 }
579 
580 /**
581   * Round the value up. This is used to round the bottom and right of a rectangle,
582   * and corresponds to the way the scan converter treats the bottom and right edges.
583   */
round_up_to_int(SkScalar x)584 static inline int round_up_to_int(SkScalar x) {
585     double xx = x;
586     xx += 0.5 + kRoundBias;
587     return sk_double_saturate2int(floor(xx));
588 }
589 
590 /**
591   *  Variant of SkRect::round() that explicitly performs the rounding step (i.e. floor(x + 0.5))
592   *  using double instead of SkScalar (float). It does this by calling SkDScalarRoundToInt(),
593   *  which may be slower than calling SkScalarRountToInt(), but gives slightly more accurate
594   *  results. Also rounds top and left using double, flooring when the fraction is exactly 0.5f.
595   *
596   *  e.g.
597   *      SkScalar left = 0.5f;
598   *      int ileft = SkScalarRoundToInt(left);
599   *      SkASSERT(0 == ileft);  // <--- fails
600   *      int ileft = round_down_to_int(left);
601   *      SkASSERT(0 == ileft);  // <--- succeeds
602   *      SkScalar right = 0.49999997f;
603   *      int iright = SkScalarRoundToInt(right);
604   *      SkASSERT(0 == iright);  // <--- fails
605   *      iright = SkDScalarRoundToInt(right);
606   *      SkASSERT(0 == iright);  // <--- succeeds
607   *
608   *
609   *  If using SK_RASTERIZE_EVEN_ROUNDING, we need to ensure we account for edges bounded by this
610   *  rect being rounded to FDot6 format before being later rounded to an integer. For example, a
611   *  value like 0.499 can be below 0.5, but round to 0.5 as FDot6, which would finally round to
612   *  the integer 1, instead of just rounding to 0.
613   *
614   *  To handle this, a small bias of half an FDot6 increment is added before actually rounding to
615   *  an integer value. This simulates the rounding of SkScalarRoundToFDot6 without incurring the
616   *  range loss of converting to FDot6 format first, preserving the integer range for the SkIRect.
617   *  Thus, bottom and right are rounded in this manner (biased up), ensuring the rect is large
618   *  enough.
619   */
round_asymmetric_to_int(const SkRect & src,SkIRect * dst)620 static void round_asymmetric_to_int(const SkRect& src, SkIRect* dst) {
621     SkASSERT(dst);
622     dst->set(round_down_to_int(src.fLeft), round_down_to_int(src.fTop),
623              round_up_to_int(src.fRight), round_up_to_int(src.fBottom));
624 }
625 
FillPath(const SkPath & path,const SkRegion & origClip,SkBlitter * blitter)626 void SkScan::FillPath(const SkPath& path, const SkRegion& origClip,
627                       SkBlitter* blitter) {
628     if (origClip.isEmpty()) {
629         return;
630     }
631 
632     // Our edges are fixed-point, and don't like the bounds of the clip to
633     // exceed that. Here we trim the clip just so we don't overflow later on
634     const SkRegion* clipPtr = &origClip;
635     SkRegion finiteClip;
636     if (clip_to_limit(origClip, &finiteClip)) {
637         if (finiteClip.isEmpty()) {
638             return;
639         }
640         clipPtr = &finiteClip;
641     }
642         // don't reference "origClip" any more, just use clipPtr
643 
644 
645     SkRect bounds = path.getBounds();
646     bool irPreClipped = false;
647     if (!SkRectPriv::MakeLargeS32().contains(bounds)) {
648         if (!bounds.intersect(SkRectPriv::MakeLargeS32())) {
649             bounds.setEmpty();
650         }
651         irPreClipped = true;
652     }
653     SkIRect ir;
654     // We deliberately call round_asymmetric_to_int() instead of round(), since we can't afford
655     // to generate a bounds that is tighter than the corresponding SkEdges. The edge code basically
656     // converts the floats to fixed, and then "rounds". If we called round() instead of
657     // round_asymmetric_to_int() here, we could generate the wrong ir for values like 0.4999997.
658     round_asymmetric_to_int(bounds, &ir);
659     if (ir.isEmpty()) {
660         if (path.isInverseFillType()) {
661             blitter->blitRegion(*clipPtr);
662         }
663         return;
664     }
665 
666     SkScanClipper clipper(blitter, clipPtr, ir, path.isInverseFillType(), irPreClipped);
667 
668     blitter = clipper.getBlitter();
669     if (blitter) {
670         // we have to keep our calls to blitter in sorted order, so we
671         // must blit the above section first, then the middle, then the bottom.
672         if (path.isInverseFillType()) {
673             sk_blit_above(blitter, ir, *clipPtr);
674         }
675         SkASSERT(clipper.getClipRect() == nullptr ||
676                 *clipper.getClipRect() == clipPtr->getBounds());
677         sk_fill_path(path, clipPtr->getBounds(), blitter, ir.fTop, ir.fBottom,
678                      0, clipper.getClipRect() == nullptr);
679         if (path.isInverseFillType()) {
680             sk_blit_below(blitter, ir, *clipPtr);
681         }
682     } else {
683         // what does it mean to not have a blitter if path.isInverseFillType???
684     }
685 }
686 
FillPath(const SkPath & path,const SkIRect & ir,SkBlitter * blitter)687 void SkScan::FillPath(const SkPath& path, const SkIRect& ir,
688                       SkBlitter* blitter) {
689     SkRegion rgn(ir);
690     FillPath(path, rgn, blitter);
691 }
692 
693 ///////////////////////////////////////////////////////////////////////////////
694 
build_tri_edges(SkEdge edge[],const SkPoint pts[],const SkIRect * clipRect,SkEdge * list[])695 static int build_tri_edges(SkEdge edge[], const SkPoint pts[],
696                            const SkIRect* clipRect, SkEdge* list[]) {
697     SkEdge** start = list;
698 
699     if (edge->setLine(pts[0], pts[1], clipRect, 0)) {
700         *list++ = edge;
701         edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
702     }
703     if (edge->setLine(pts[1], pts[2], clipRect, 0)) {
704         *list++ = edge;
705         edge = (SkEdge*)((char*)edge + sizeof(SkEdge));
706     }
707     if (edge->setLine(pts[2], pts[0], clipRect, 0)) {
708         *list++ = edge;
709     }
710     return (int)(list - start);
711 }
712 
713 
sk_fill_triangle(const SkPoint pts[],const SkIRect * clipRect,SkBlitter * blitter,const SkIRect & ir)714 static void sk_fill_triangle(const SkPoint pts[], const SkIRect* clipRect,
715                              SkBlitter* blitter, const SkIRect& ir) {
716     SkASSERT(pts && blitter);
717 
718     SkEdge edgeStorage[3];
719     SkEdge* list[3];
720 
721     int count = build_tri_edges(edgeStorage, pts, clipRect, list);
722     if (count < 2) {
723         return;
724     }
725 
726     SkEdge headEdge, tailEdge, *last;
727 
728     // this returns the first and last edge after they're sorted into a dlink list
729     SkEdge* edge = sort_edges(list, count, &last);
730 
731     headEdge.fPrev = nullptr;
732     headEdge.fNext = edge;
733     headEdge.fFirstY = kEDGE_HEAD_Y;
734     headEdge.fX = SK_MinS32;
735     edge->fPrev = &headEdge;
736 
737     tailEdge.fPrev = last;
738     tailEdge.fNext = nullptr;
739     tailEdge.fFirstY = kEDGE_TAIL_Y;
740     last->fNext = &tailEdge;
741 
742     // now edge is the head of the sorted linklist
743     int stop_y = ir.fBottom;
744     if (clipRect && stop_y > clipRect->fBottom) {
745         stop_y = clipRect->fBottom;
746     }
747     int start_y = ir.fTop;
748     if (clipRect && start_y < clipRect->fTop) {
749         start_y = clipRect->fTop;
750     }
751     walk_convex_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, start_y, stop_y, nullptr);
752 //    walk_edges(&headEdge, SkPath::kEvenOdd_FillType, blitter, start_y, stop_y, nullptr);
753 }
754 
FillTriangle(const SkPoint pts[],const SkRasterClip & clip,SkBlitter * blitter)755 void SkScan::FillTriangle(const SkPoint pts[], const SkRasterClip& clip,
756                           SkBlitter* blitter) {
757     if (clip.isEmpty()) {
758         return;
759     }
760 
761     SkRect  r;
762     r.set(pts, 3);
763     // If r is too large (larger than can easily fit in SkFixed) then we need perform geometric
764     // clipping. This is a bit of work, so we just call the general FillPath() to handle it.
765     // Use FixedMax/2 as the limit so we can subtract two edges and still store that in Fixed.
766     const SkScalar limit = SK_MaxS16 >> 1;
767     if (!SkRect::MakeLTRB(-limit, -limit, limit, limit).contains(r)) {
768         SkPath path;
769         path.addPoly(pts, 3, false);
770         FillPath(path, clip, blitter);
771         return;
772     }
773 
774     SkIRect ir = r.round();
775     if (ir.isEmpty() || !SkIRect::Intersects(ir, clip.getBounds())) {
776         return;
777     }
778 
779     SkAAClipBlitterWrapper wrap;
780     const SkRegion* clipRgn;
781     if (clip.isBW()) {
782         clipRgn = &clip.bwRgn();
783     } else {
784         wrap.init(clip, blitter);
785         clipRgn = &wrap.getRgn();
786         blitter = wrap.getBlitter();
787     }
788 
789     SkScanClipper clipper(blitter, clipRgn, ir);
790     blitter = clipper.getBlitter();
791     if (blitter) {
792         sk_fill_triangle(pts, clipper.getClipRect(), blitter, ir);
793     }
794 }
795