1 /*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 /**************************************************************************************************
9 *** This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify.
10 **************************************************************************************************/
11 #include "GrCircleBlurFragmentProcessor.h"
12 #if SK_SUPPORT_GPU
13
14 #include "GrProxyProvider.h"
15
16 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
17 // kernel values.
make_unnormalized_half_kernel(float * halfKernel,int halfKernelSize,float sigma)18 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
19 const float invSigma = 1.f / sigma;
20 const float b = -0.5f * invSigma * invSigma;
21 float tot = 0.0f;
22 // Compute half kernel values at half pixel steps out from the center.
23 float t = 0.5f;
24 for (int i = 0; i < halfKernelSize; ++i) {
25 float value = expf(t * t * b);
26 tot += value;
27 halfKernel[i] = value;
28 t += 1.f;
29 }
30 return tot;
31 }
32
33 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
34 // of discrete steps. The half kernel is normalized to sum to 0.5.
make_half_kernel_and_summed_table(float * halfKernel,float * summedHalfKernel,int halfKernelSize,float sigma)35 static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
36 int halfKernelSize, float sigma) {
37 // The half kernel should sum to 0.5 not 1.0.
38 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
39 float sum = 0.f;
40 for (int i = 0; i < halfKernelSize; ++i) {
41 halfKernel[i] /= tot;
42 sum += halfKernel[i];
43 summedHalfKernel[i] = sum;
44 }
45 }
46
47 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
48 // origin with radius circleR.
apply_kernel_in_y(float * results,int numSteps,float firstX,float circleR,int halfKernelSize,const float * summedHalfKernelTable)49 void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
50 int halfKernelSize, const float* summedHalfKernelTable) {
51 float x = firstX;
52 for (int i = 0; i < numSteps; ++i, x += 1.f) {
53 if (x < -circleR || x > circleR) {
54 results[i] = 0;
55 continue;
56 }
57 float y = sqrtf(circleR * circleR - x * x);
58 // In the column at x we exit the circle at +y and -y
59 // The summed table entry j is actually reflects an offset of j + 0.5.
60 y -= 0.5f;
61 int yInt = SkScalarFloorToInt(y);
62 SkASSERT(yInt >= -1);
63 if (y < 0) {
64 results[i] = (y + 0.5f) * summedHalfKernelTable[0];
65 } else if (yInt >= halfKernelSize - 1) {
66 results[i] = 0.5f;
67 } else {
68 float yFrac = y - yInt;
69 results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
70 yFrac * summedHalfKernelTable[yInt + 1];
71 }
72 }
73 }
74
75 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
76 // This relies on having a half kernel computed for the Gaussian and a table of applications of
77 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
78 // halfKernel) passed in as yKernelEvaluations.
eval_at(float evalX,float circleR,const float * halfKernel,int halfKernelSize,const float * yKernelEvaluations)79 static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
80 const float* yKernelEvaluations) {
81 float acc = 0;
82
83 float x = evalX - halfKernelSize;
84 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
85 if (x < -circleR || x > circleR) {
86 continue;
87 }
88 float verticalEval = yKernelEvaluations[i];
89 acc += verticalEval * halfKernel[halfKernelSize - i - 1];
90 }
91 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
92 if (x < -circleR || x > circleR) {
93 continue;
94 }
95 float verticalEval = yKernelEvaluations[i + halfKernelSize];
96 acc += verticalEval * halfKernel[i];
97 }
98 // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
99 // the x axis).
100 return SkUnitScalarClampToByte(2.f * acc);
101 }
102
103 // This function creates a profile of a blurred circle. It does this by computing a kernel for
104 // half the Gaussian and a matching summed area table. The summed area table is used to compute
105 // an array of vertical applications of the half kernel to the circle along the x axis. The
106 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
107 // the size of the profile being computed. Then for each of the n profile entries we walk out k
108 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
109 // kernel entry and sum these values to compute the profile entry.
create_circle_profile(float sigma,float circleR,int profileTextureWidth)110 static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
111 const int numSteps = profileTextureWidth;
112 uint8_t* weights = new uint8_t[numSteps];
113
114 // The full kernel is 6 sigmas wide.
115 int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
116 // round up to next multiple of 2 and then divide by 2
117 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
118
119 // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
120 int numYSteps = numSteps + 2 * halfKernelSize;
121
122 SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
123 float* halfKernel = bulkAlloc.get();
124 float* summedKernel = bulkAlloc.get() + halfKernelSize;
125 float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
126 make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
127
128 float firstX = -halfKernelSize + 0.5f;
129 apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
130
131 for (int i = 0; i < numSteps - 1; ++i) {
132 float evalX = i + 0.5f;
133 weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
134 }
135 // Ensure the tail of the Gaussian goes to zero.
136 weights[numSteps - 1] = 0;
137 return weights;
138 }
139
create_half_plane_profile(int profileWidth)140 static uint8_t* create_half_plane_profile(int profileWidth) {
141 SkASSERT(!(profileWidth & 0x1));
142 // The full kernel is 6 sigmas wide.
143 float sigma = profileWidth / 6.f;
144 int halfKernelSize = profileWidth / 2;
145
146 SkAutoTArray<float> halfKernel(halfKernelSize);
147 uint8_t* profile = new uint8_t[profileWidth];
148
149 // The half kernel should sum to 0.5.
150 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
151 float sum = 0.f;
152 // Populate the profile from the right edge to the middle.
153 for (int i = 0; i < halfKernelSize; ++i) {
154 halfKernel[halfKernelSize - i - 1] /= tot;
155 sum += halfKernel[halfKernelSize - i - 1];
156 profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
157 }
158 // Populate the profile from the middle to the left edge (by flipping the half kernel and
159 // continuing the summation).
160 for (int i = 0; i < halfKernelSize; ++i) {
161 sum += halfKernel[i];
162 profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
163 }
164 // Ensure tail goes to 0.
165 profile[profileWidth - 1] = 0;
166 return profile;
167 }
168
create_profile_texture(GrProxyProvider * proxyProvider,const SkRect & circle,float sigma,float * solidRadius,float * textureRadius)169 static sk_sp<GrTextureProxy> create_profile_texture(GrProxyProvider* proxyProvider,
170 const SkRect& circle, float sigma,
171 float* solidRadius, float* textureRadius) {
172 float circleR = circle.width() / 2.0f;
173 if (circleR < SK_ScalarNearlyZero) {
174 return nullptr;
175 }
176 // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
177 // profile texture (binned by powers of 2).
178 SkScalar sigmaToCircleRRatio = sigma / circleR;
179 // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
180 // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
181 // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
182 // implemented this latter optimization.
183 sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
184 SkFixed sigmaToCircleRRatioFixed;
185 static const SkScalar kHalfPlaneThreshold = 0.1f;
186 bool useHalfPlaneApprox = false;
187 if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
188 useHalfPlaneApprox = true;
189 sigmaToCircleRRatioFixed = 0;
190 *solidRadius = circleR - 3 * sigma;
191 *textureRadius = 6 * sigma;
192 } else {
193 // Convert to fixed point for the key.
194 sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
195 // We shave off some bits to reduce the number of unique entries. We could probably
196 // shave off more than we do.
197 sigmaToCircleRRatioFixed &= ~0xff;
198 sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
199 sigma = circleR * sigmaToCircleRRatio;
200 *solidRadius = 0;
201 *textureRadius = circleR + 3 * sigma;
202 }
203
204 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
205 GrUniqueKey key;
206 GrUniqueKey::Builder builder(&key, kDomain, 1);
207 builder[0] = sigmaToCircleRRatioFixed;
208 builder.finish();
209
210 sk_sp<GrTextureProxy> blurProfile =
211 proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin);
212 if (!blurProfile) {
213 static constexpr int kProfileTextureWidth = 512;
214 GrSurfaceDesc texDesc;
215 texDesc.fOrigin = kTopLeft_GrSurfaceOrigin;
216 texDesc.fWidth = kProfileTextureWidth;
217 texDesc.fHeight = 1;
218 texDesc.fConfig = kAlpha_8_GrPixelConfig;
219
220 std::unique_ptr<uint8_t[]> profile(nullptr);
221 if (useHalfPlaneApprox) {
222 profile.reset(create_half_plane_profile(kProfileTextureWidth));
223 } else {
224 // Rescale params to the size of the texture we're creating.
225 SkScalar scale = kProfileTextureWidth / *textureRadius;
226 profile.reset(
227 create_circle_profile(sigma * scale, circleR * scale, kProfileTextureWidth));
228 }
229
230 blurProfile =
231 proxyProvider->createTextureProxy(texDesc, SkBudgeted::kYes, profile.get(), 0);
232 if (!blurProfile) {
233 return nullptr;
234 }
235
236 SkASSERT(blurProfile->origin() == kTopLeft_GrSurfaceOrigin);
237 proxyProvider->assignUniqueKeyToProxy(key, blurProfile.get());
238 }
239
240 return blurProfile;
241 }
242
Make(GrProxyProvider * proxyProvider,const SkRect & circle,float sigma)243 std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
244 GrProxyProvider* proxyProvider, const SkRect& circle, float sigma) {
245 float solidRadius;
246 float textureRadius;
247 sk_sp<GrTextureProxy> profile(
248 create_profile_texture(proxyProvider, circle, sigma, &solidRadius, &textureRadius));
249 if (!profile) {
250 return nullptr;
251 }
252 return std::unique_ptr<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(
253 circle, textureRadius, solidRadius, std::move(profile)));
254 }
255 #include "glsl/GrGLSLFragmentProcessor.h"
256 #include "glsl/GrGLSLFragmentShaderBuilder.h"
257 #include "glsl/GrGLSLProgramBuilder.h"
258 #include "GrTexture.h"
259 #include "SkSLCPP.h"
260 #include "SkSLUtil.h"
261 class GrGLSLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor {
262 public:
GrGLSLCircleBlurFragmentProcessor()263 GrGLSLCircleBlurFragmentProcessor() {}
emitCode(EmitArgs & args)264 void emitCode(EmitArgs& args) override {
265 GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
266 const GrCircleBlurFragmentProcessor& _outer =
267 args.fFp.cast<GrCircleBlurFragmentProcessor>();
268 (void)_outer;
269 auto circleRect = _outer.circleRect();
270 (void)circleRect;
271 auto textureRadius = _outer.textureRadius();
272 (void)textureRadius;
273 auto solidRadius = _outer.solidRadius();
274 (void)solidRadius;
275 fCircleDataVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType,
276 kDefault_GrSLPrecision, "circleData");
277 fragBuilder->codeAppendf(
278 "half2 vec = half2(half((sk_FragCoord.x - float(%s.x)) * float(%s.w)), "
279 "half((sk_FragCoord.y - float(%s.y)) * float(%s.w)));\nhalf dist = "
280 "float(length(vec)) + (0.5 - float(%s.z)) * float(%s.w);\n%s = %s * texture(%s, "
281 "float2(half2(dist, 0.5))).%s.w;\n",
282 args.fUniformHandler->getUniformCStr(fCircleDataVar),
283 args.fUniformHandler->getUniformCStr(fCircleDataVar),
284 args.fUniformHandler->getUniformCStr(fCircleDataVar),
285 args.fUniformHandler->getUniformCStr(fCircleDataVar),
286 args.fUniformHandler->getUniformCStr(fCircleDataVar),
287 args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fOutputColor,
288 args.fInputColor ? args.fInputColor : "half4(1)",
289 fragBuilder->getProgramBuilder()->samplerVariable(args.fTexSamplers[0]).c_str(),
290 fragBuilder->getProgramBuilder()->samplerSwizzle(args.fTexSamplers[0]).c_str());
291 }
292
293 private:
onSetData(const GrGLSLProgramDataManager & data,const GrFragmentProcessor & _proc)294 void onSetData(const GrGLSLProgramDataManager& data,
295 const GrFragmentProcessor& _proc) override {
296 const GrCircleBlurFragmentProcessor& _outer = _proc.cast<GrCircleBlurFragmentProcessor>();
297 auto circleRect = _outer.circleRect();
298 (void)circleRect;
299 auto textureRadius = _outer.textureRadius();
300 (void)textureRadius;
301 auto solidRadius = _outer.solidRadius();
302 (void)solidRadius;
303 GrSurfaceProxy& blurProfileSamplerProxy = *_outer.textureSampler(0).proxy();
304 GrTexture& blurProfileSampler = *blurProfileSamplerProxy.priv().peekTexture();
305 (void)blurProfileSampler;
306 UniformHandle& circleData = fCircleDataVar;
307 (void)circleData;
308
309 data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
310 1.f / textureRadius);
311 }
312 UniformHandle fCircleDataVar;
313 };
onCreateGLSLInstance() const314 GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
315 return new GrGLSLCircleBlurFragmentProcessor();
316 }
onGetGLSLProcessorKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b) const317 void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps,
318 GrProcessorKeyBuilder* b) const {}
onIsEqual(const GrFragmentProcessor & other) const319 bool GrCircleBlurFragmentProcessor::onIsEqual(const GrFragmentProcessor& other) const {
320 const GrCircleBlurFragmentProcessor& that = other.cast<GrCircleBlurFragmentProcessor>();
321 (void)that;
322 if (fCircleRect != that.fCircleRect) return false;
323 if (fTextureRadius != that.fTextureRadius) return false;
324 if (fSolidRadius != that.fSolidRadius) return false;
325 if (fBlurProfileSampler != that.fBlurProfileSampler) return false;
326 return true;
327 }
GrCircleBlurFragmentProcessor(const GrCircleBlurFragmentProcessor & src)328 GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(
329 const GrCircleBlurFragmentProcessor& src)
330 : INHERITED(kGrCircleBlurFragmentProcessor_ClassID, src.optimizationFlags())
331 , fCircleRect(src.fCircleRect)
332 , fTextureRadius(src.fTextureRadius)
333 , fSolidRadius(src.fSolidRadius)
334 , fBlurProfileSampler(src.fBlurProfileSampler) {
335 this->addTextureSampler(&fBlurProfileSampler);
336 }
clone() const337 std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::clone() const {
338 return std::unique_ptr<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(*this));
339 }
340 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);
341 #if GR_TEST_UTILS
TestCreate(GrProcessorTestData * testData)342 std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(
343 GrProcessorTestData* testData) {
344 SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
345 SkScalar sigma = testData->fRandom->nextRangeF(1.f, 10.f);
346 SkRect circle = SkRect::MakeWH(wh, wh);
347 return GrCircleBlurFragmentProcessor::Make(testData->proxyProvider(), circle, sigma);
348 }
349 #endif
350 #endif
351