• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 /**************************************************************************************************
9  *** This file was autogenerated from GrCircleBlurFragmentProcessor.fp; do not modify.
10  **************************************************************************************************/
11 #include "GrCircleBlurFragmentProcessor.h"
12 #if SK_SUPPORT_GPU
13 
14 #include "GrProxyProvider.h"
15 
16 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
17 // kernel values.
make_unnormalized_half_kernel(float * halfKernel,int halfKernelSize,float sigma)18 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
19     const float invSigma = 1.f / sigma;
20     const float b = -0.5f * invSigma * invSigma;
21     float tot = 0.0f;
22     // Compute half kernel values at half pixel steps out from the center.
23     float t = 0.5f;
24     for (int i = 0; i < halfKernelSize; ++i) {
25         float value = expf(t * t * b);
26         tot += value;
27         halfKernel[i] = value;
28         t += 1.f;
29     }
30     return tot;
31 }
32 
33 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
34 // of discrete steps. The half kernel is normalized to sum to 0.5.
make_half_kernel_and_summed_table(float * halfKernel,float * summedHalfKernel,int halfKernelSize,float sigma)35 static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel,
36                                               int halfKernelSize, float sigma) {
37     // The half kernel should sum to 0.5 not 1.0.
38     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
39     float sum = 0.f;
40     for (int i = 0; i < halfKernelSize; ++i) {
41         halfKernel[i] /= tot;
42         sum += halfKernel[i];
43         summedHalfKernel[i] = sum;
44     }
45 }
46 
47 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
48 // origin with radius circleR.
apply_kernel_in_y(float * results,int numSteps,float firstX,float circleR,int halfKernelSize,const float * summedHalfKernelTable)49 void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR,
50                        int halfKernelSize, const float* summedHalfKernelTable) {
51     float x = firstX;
52     for (int i = 0; i < numSteps; ++i, x += 1.f) {
53         if (x < -circleR || x > circleR) {
54             results[i] = 0;
55             continue;
56         }
57         float y = sqrtf(circleR * circleR - x * x);
58         // In the column at x we exit the circle at +y and -y
59         // The summed table entry j is actually reflects an offset of j + 0.5.
60         y -= 0.5f;
61         int yInt = SkScalarFloorToInt(y);
62         SkASSERT(yInt >= -1);
63         if (y < 0) {
64             results[i] = (y + 0.5f) * summedHalfKernelTable[0];
65         } else if (yInt >= halfKernelSize - 1) {
66             results[i] = 0.5f;
67         } else {
68             float yFrac = y - yInt;
69             results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
70                          yFrac * summedHalfKernelTable[yInt + 1];
71         }
72     }
73 }
74 
75 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
76 // This relies on having a half kernel computed for the Gaussian and a table of applications of
77 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
78 // halfKernel) passed in as yKernelEvaluations.
eval_at(float evalX,float circleR,const float * halfKernel,int halfKernelSize,const float * yKernelEvaluations)79 static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize,
80                        const float* yKernelEvaluations) {
81     float acc = 0;
82 
83     float x = evalX - halfKernelSize;
84     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
85         if (x < -circleR || x > circleR) {
86             continue;
87         }
88         float verticalEval = yKernelEvaluations[i];
89         acc += verticalEval * halfKernel[halfKernelSize - i - 1];
90     }
91     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
92         if (x < -circleR || x > circleR) {
93             continue;
94         }
95         float verticalEval = yKernelEvaluations[i + halfKernelSize];
96         acc += verticalEval * halfKernel[i];
97     }
98     // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
99     // the x axis).
100     return SkUnitScalarClampToByte(2.f * acc);
101 }
102 
103 // This function creates a profile of a blurred circle. It does this by computing a kernel for
104 // half the Gaussian and a matching summed area table. The summed area table is used to compute
105 // an array of vertical applications of the half kernel to the circle along the x axis. The
106 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
107 // the size of the profile being computed. Then for each of the n profile entries we walk out k
108 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
109 // kernel entry and sum these values to compute the profile entry.
create_circle_profile(float sigma,float circleR,int profileTextureWidth)110 static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) {
111     const int numSteps = profileTextureWidth;
112     uint8_t* weights = new uint8_t[numSteps];
113 
114     // The full kernel is 6 sigmas wide.
115     int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
116     // round up to next multiple of 2 and then divide by 2
117     halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
118 
119     // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
120     int numYSteps = numSteps + 2 * halfKernelSize;
121 
122     SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
123     float* halfKernel = bulkAlloc.get();
124     float* summedKernel = bulkAlloc.get() + halfKernelSize;
125     float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
126     make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
127 
128     float firstX = -halfKernelSize + 0.5f;
129     apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
130 
131     for (int i = 0; i < numSteps - 1; ++i) {
132         float evalX = i + 0.5f;
133         weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
134     }
135     // Ensure the tail of the Gaussian goes to zero.
136     weights[numSteps - 1] = 0;
137     return weights;
138 }
139 
create_half_plane_profile(int profileWidth)140 static uint8_t* create_half_plane_profile(int profileWidth) {
141     SkASSERT(!(profileWidth & 0x1));
142     // The full kernel is 6 sigmas wide.
143     float sigma = profileWidth / 6.f;
144     int halfKernelSize = profileWidth / 2;
145 
146     SkAutoTArray<float> halfKernel(halfKernelSize);
147     uint8_t* profile = new uint8_t[profileWidth];
148 
149     // The half kernel should sum to 0.5.
150     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
151     float sum = 0.f;
152     // Populate the profile from the right edge to the middle.
153     for (int i = 0; i < halfKernelSize; ++i) {
154         halfKernel[halfKernelSize - i - 1] /= tot;
155         sum += halfKernel[halfKernelSize - i - 1];
156         profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
157     }
158     // Populate the profile from the middle to the left edge (by flipping the half kernel and
159     // continuing the summation).
160     for (int i = 0; i < halfKernelSize; ++i) {
161         sum += halfKernel[i];
162         profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
163     }
164     // Ensure tail goes to 0.
165     profile[profileWidth - 1] = 0;
166     return profile;
167 }
168 
create_profile_texture(GrProxyProvider * proxyProvider,const SkRect & circle,float sigma,float * solidRadius,float * textureRadius)169 static sk_sp<GrTextureProxy> create_profile_texture(GrProxyProvider* proxyProvider,
170                                                     const SkRect& circle, float sigma,
171                                                     float* solidRadius, float* textureRadius) {
172     float circleR = circle.width() / 2.0f;
173     if (circleR < SK_ScalarNearlyZero) {
174         return nullptr;
175     }
176     // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
177     // profile texture (binned by powers of 2).
178     SkScalar sigmaToCircleRRatio = sigma / circleR;
179     // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
180     // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
181     // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
182     // implemented this latter optimization.
183     sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f);
184     SkFixed sigmaToCircleRRatioFixed;
185     static const SkScalar kHalfPlaneThreshold = 0.1f;
186     bool useHalfPlaneApprox = false;
187     if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
188         useHalfPlaneApprox = true;
189         sigmaToCircleRRatioFixed = 0;
190         *solidRadius = circleR - 3 * sigma;
191         *textureRadius = 6 * sigma;
192     } else {
193         // Convert to fixed point for the key.
194         sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
195         // We shave off some bits to reduce the number of unique entries. We could probably
196         // shave off more than we do.
197         sigmaToCircleRRatioFixed &= ~0xff;
198         sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
199         sigma = circleR * sigmaToCircleRRatio;
200         *solidRadius = 0;
201         *textureRadius = circleR + 3 * sigma;
202     }
203 
204     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
205     GrUniqueKey key;
206     GrUniqueKey::Builder builder(&key, kDomain, 1);
207     builder[0] = sigmaToCircleRRatioFixed;
208     builder.finish();
209 
210     sk_sp<GrTextureProxy> blurProfile =
211             proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin);
212     if (!blurProfile) {
213         static constexpr int kProfileTextureWidth = 512;
214         GrSurfaceDesc texDesc;
215         texDesc.fOrigin = kTopLeft_GrSurfaceOrigin;
216         texDesc.fWidth = kProfileTextureWidth;
217         texDesc.fHeight = 1;
218         texDesc.fConfig = kAlpha_8_GrPixelConfig;
219 
220         std::unique_ptr<uint8_t[]> profile(nullptr);
221         if (useHalfPlaneApprox) {
222             profile.reset(create_half_plane_profile(kProfileTextureWidth));
223         } else {
224             // Rescale params to the size of the texture we're creating.
225             SkScalar scale = kProfileTextureWidth / *textureRadius;
226             profile.reset(
227                     create_circle_profile(sigma * scale, circleR * scale, kProfileTextureWidth));
228         }
229 
230         blurProfile =
231                 proxyProvider->createTextureProxy(texDesc, SkBudgeted::kYes, profile.get(), 0);
232         if (!blurProfile) {
233             return nullptr;
234         }
235 
236         SkASSERT(blurProfile->origin() == kTopLeft_GrSurfaceOrigin);
237         proxyProvider->assignUniqueKeyToProxy(key, blurProfile.get());
238     }
239 
240     return blurProfile;
241 }
242 
Make(GrProxyProvider * proxyProvider,const SkRect & circle,float sigma)243 std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make(
244         GrProxyProvider* proxyProvider, const SkRect& circle, float sigma) {
245     float solidRadius;
246     float textureRadius;
247     sk_sp<GrTextureProxy> profile(
248             create_profile_texture(proxyProvider, circle, sigma, &solidRadius, &textureRadius));
249     if (!profile) {
250         return nullptr;
251     }
252     return std::unique_ptr<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(
253             circle, textureRadius, solidRadius, std::move(profile)));
254 }
255 #include "glsl/GrGLSLFragmentProcessor.h"
256 #include "glsl/GrGLSLFragmentShaderBuilder.h"
257 #include "glsl/GrGLSLProgramBuilder.h"
258 #include "GrTexture.h"
259 #include "SkSLCPP.h"
260 #include "SkSLUtil.h"
261 class GrGLSLCircleBlurFragmentProcessor : public GrGLSLFragmentProcessor {
262 public:
GrGLSLCircleBlurFragmentProcessor()263     GrGLSLCircleBlurFragmentProcessor() {}
emitCode(EmitArgs & args)264     void emitCode(EmitArgs& args) override {
265         GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
266         const GrCircleBlurFragmentProcessor& _outer =
267                 args.fFp.cast<GrCircleBlurFragmentProcessor>();
268         (void)_outer;
269         auto circleRect = _outer.circleRect();
270         (void)circleRect;
271         auto textureRadius = _outer.textureRadius();
272         (void)textureRadius;
273         auto solidRadius = _outer.solidRadius();
274         (void)solidRadius;
275         fCircleDataVar = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType,
276                                                           kDefault_GrSLPrecision, "circleData");
277         fragBuilder->codeAppendf(
278                 "half2 vec = half2(half((sk_FragCoord.x - float(%s.x)) * float(%s.w)), "
279                 "half((sk_FragCoord.y - float(%s.y)) * float(%s.w)));\nhalf dist = "
280                 "float(length(vec)) + (0.5 - float(%s.z)) * float(%s.w);\n%s = %s * texture(%s, "
281                 "float2(half2(dist, 0.5))).%s.w;\n",
282                 args.fUniformHandler->getUniformCStr(fCircleDataVar),
283                 args.fUniformHandler->getUniformCStr(fCircleDataVar),
284                 args.fUniformHandler->getUniformCStr(fCircleDataVar),
285                 args.fUniformHandler->getUniformCStr(fCircleDataVar),
286                 args.fUniformHandler->getUniformCStr(fCircleDataVar),
287                 args.fUniformHandler->getUniformCStr(fCircleDataVar), args.fOutputColor,
288                 args.fInputColor ? args.fInputColor : "half4(1)",
289                 fragBuilder->getProgramBuilder()->samplerVariable(args.fTexSamplers[0]).c_str(),
290                 fragBuilder->getProgramBuilder()->samplerSwizzle(args.fTexSamplers[0]).c_str());
291     }
292 
293 private:
onSetData(const GrGLSLProgramDataManager & data,const GrFragmentProcessor & _proc)294     void onSetData(const GrGLSLProgramDataManager& data,
295                    const GrFragmentProcessor& _proc) override {
296         const GrCircleBlurFragmentProcessor& _outer = _proc.cast<GrCircleBlurFragmentProcessor>();
297         auto circleRect = _outer.circleRect();
298         (void)circleRect;
299         auto textureRadius = _outer.textureRadius();
300         (void)textureRadius;
301         auto solidRadius = _outer.solidRadius();
302         (void)solidRadius;
303         GrSurfaceProxy& blurProfileSamplerProxy = *_outer.textureSampler(0).proxy();
304         GrTexture& blurProfileSampler = *blurProfileSamplerProxy.priv().peekTexture();
305         (void)blurProfileSampler;
306         UniformHandle& circleData = fCircleDataVar;
307         (void)circleData;
308 
309         data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius,
310                    1.f / textureRadius);
311     }
312     UniformHandle fCircleDataVar;
313 };
onCreateGLSLInstance() const314 GrGLSLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLSLInstance() const {
315     return new GrGLSLCircleBlurFragmentProcessor();
316 }
onGetGLSLProcessorKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b) const317 void GrCircleBlurFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps,
318                                                           GrProcessorKeyBuilder* b) const {}
onIsEqual(const GrFragmentProcessor & other) const319 bool GrCircleBlurFragmentProcessor::onIsEqual(const GrFragmentProcessor& other) const {
320     const GrCircleBlurFragmentProcessor& that = other.cast<GrCircleBlurFragmentProcessor>();
321     (void)that;
322     if (fCircleRect != that.fCircleRect) return false;
323     if (fTextureRadius != that.fTextureRadius) return false;
324     if (fSolidRadius != that.fSolidRadius) return false;
325     if (fBlurProfileSampler != that.fBlurProfileSampler) return false;
326     return true;
327 }
GrCircleBlurFragmentProcessor(const GrCircleBlurFragmentProcessor & src)328 GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(
329         const GrCircleBlurFragmentProcessor& src)
330         : INHERITED(kGrCircleBlurFragmentProcessor_ClassID, src.optimizationFlags())
331         , fCircleRect(src.fCircleRect)
332         , fTextureRadius(src.fTextureRadius)
333         , fSolidRadius(src.fSolidRadius)
334         , fBlurProfileSampler(src.fBlurProfileSampler) {
335     this->addTextureSampler(&fBlurProfileSampler);
336 }
clone() const337 std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::clone() const {
338     return std::unique_ptr<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor(*this));
339 }
340 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor);
341 #if GR_TEST_UTILS
TestCreate(GrProcessorTestData * testData)342 std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::TestCreate(
343         GrProcessorTestData* testData) {
344     SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f);
345     SkScalar sigma = testData->fRandom->nextRangeF(1.f, 10.f);
346     SkRect circle = SkRect::MakeWH(wh, wh);
347     return GrCircleBlurFragmentProcessor::Make(testData->proxyProvider(), circle, sigma);
348 }
349 #endif
350 #endif
351