• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrPathUtils.h"
9 
10 #include "GrTypes.h"
11 #include "SkMathPriv.h"
12 #include "SkPointPriv.h"
13 
14 static const SkScalar gMinCurveTol = 0.0001f;
15 
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const SkRect & pathBounds)16 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
17                                           const SkMatrix& viewM,
18                                           const SkRect& pathBounds) {
19     // In order to tesselate the path we get a bound on how much the matrix can
20     // scale when mapping to screen coordinates.
21     SkScalar stretch = viewM.getMaxScale();
22 
23     if (stretch < 0) {
24         // take worst case mapRadius amoung four corners.
25         // (less than perfect)
26         for (int i = 0; i < 4; ++i) {
27             SkMatrix mat;
28             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
29                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
30             mat.postConcat(viewM);
31             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
32         }
33     }
34     SkScalar srcTol = devTol / stretch;
35     if (srcTol < gMinCurveTol) {
36         srcTol = gMinCurveTol;
37     }
38     return srcTol;
39 }
40 
quadraticPointCount(const SkPoint points[],SkScalar tol)41 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
42     // You should have called scaleToleranceToSrc, which guarantees this
43     SkASSERT(tol >= gMinCurveTol);
44 
45     SkScalar d = SkPointPriv::DistanceToLineSegmentBetween(points[1], points[0], points[2]);
46     if (!SkScalarIsFinite(d)) {
47         return kMaxPointsPerCurve;
48     } else if (d <= tol) {
49         return 1;
50     } else {
51         // Each time we subdivide, d should be cut in 4. So we need to
52         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
53         // points.
54         // 2^(log4(x)) = sqrt(x);
55         SkScalar divSqrt = SkScalarSqrt(d / tol);
56         if (((SkScalar)SK_MaxS32) <= divSqrt) {
57             return kMaxPointsPerCurve;
58         } else {
59             int temp = SkScalarCeilToInt(divSqrt);
60             int pow2 = GrNextPow2(temp);
61             // Because of NaNs & INFs we can wind up with a degenerate temp
62             // such that pow2 comes out negative. Also, our point generator
63             // will always output at least one pt.
64             if (pow2 < 1) {
65                 pow2 = 1;
66             }
67             return SkTMin(pow2, kMaxPointsPerCurve);
68         }
69     }
70 }
71 
generateQuadraticPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)72 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
73                                               const SkPoint& p1,
74                                               const SkPoint& p2,
75                                               SkScalar tolSqd,
76                                               SkPoint** points,
77                                               uint32_t pointsLeft) {
78     if (pointsLeft < 2 ||
79         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
80         (*points)[0] = p2;
81         *points += 1;
82         return 1;
83     }
84 
85     SkPoint q[] = {
86         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
87         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
88     };
89     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
90 
91     pointsLeft >>= 1;
92     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
93     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
94     return a + b;
95 }
96 
cubicPointCount(const SkPoint points[],SkScalar tol)97 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
98                                            SkScalar tol) {
99     // You should have called scaleToleranceToSrc, which guarantees this
100     SkASSERT(tol >= gMinCurveTol);
101 
102     SkScalar d = SkTMax(
103         SkPointPriv::DistanceToLineSegmentBetweenSqd(points[1], points[0], points[3]),
104         SkPointPriv::DistanceToLineSegmentBetweenSqd(points[2], points[0], points[3]));
105     d = SkScalarSqrt(d);
106     if (!SkScalarIsFinite(d)) {
107         return kMaxPointsPerCurve;
108     } else if (d <= tol) {
109         return 1;
110     } else {
111         SkScalar divSqrt = SkScalarSqrt(d / tol);
112         if (((SkScalar)SK_MaxS32) <= divSqrt) {
113             return kMaxPointsPerCurve;
114         } else {
115             int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
116             int pow2 = GrNextPow2(temp);
117             // Because of NaNs & INFs we can wind up with a degenerate temp
118             // such that pow2 comes out negative. Also, our point generator
119             // will always output at least one pt.
120             if (pow2 < 1) {
121                 pow2 = 1;
122             }
123             return SkTMin(pow2, kMaxPointsPerCurve);
124         }
125     }
126 }
127 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)128 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
129                                           const SkPoint& p1,
130                                           const SkPoint& p2,
131                                           const SkPoint& p3,
132                                           SkScalar tolSqd,
133                                           SkPoint** points,
134                                           uint32_t pointsLeft) {
135     if (pointsLeft < 2 ||
136         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
137          SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
138         (*points)[0] = p3;
139         *points += 1;
140         return 1;
141     }
142     SkPoint q[] = {
143         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
144         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
145         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
146     };
147     SkPoint r[] = {
148         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
149         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
150     };
151     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
152     pointsLeft >>= 1;
153     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
154     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
155     return a + b;
156 }
157 
worstCasePointCount(const SkPath & path,int * subpaths,SkScalar tol)158 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, SkScalar tol) {
159     // You should have called scaleToleranceToSrc, which guarantees this
160     SkASSERT(tol >= gMinCurveTol);
161 
162     int pointCount = 0;
163     *subpaths = 1;
164 
165     bool first = true;
166 
167     SkPath::Iter iter(path, false);
168     SkPath::Verb verb;
169 
170     SkPoint pts[4];
171     while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
172 
173         switch (verb) {
174             case SkPath::kLine_Verb:
175                 pointCount += 1;
176                 break;
177             case SkPath::kConic_Verb: {
178                 SkScalar weight = iter.conicWeight();
179                 SkAutoConicToQuads converter;
180                 const SkPoint* quadPts = converter.computeQuads(pts, weight, tol);
181                 for (int i = 0; i < converter.countQuads(); ++i) {
182                     pointCount += quadraticPointCount(quadPts + 2*i, tol);
183                 }
184             }
185             case SkPath::kQuad_Verb:
186                 pointCount += quadraticPointCount(pts, tol);
187                 break;
188             case SkPath::kCubic_Verb:
189                 pointCount += cubicPointCount(pts, tol);
190                 break;
191             case SkPath::kMove_Verb:
192                 pointCount += 1;
193                 if (!first) {
194                     ++(*subpaths);
195                 }
196                 break;
197             default:
198                 break;
199         }
200         first = false;
201     }
202     return pointCount;
203 }
204 
set(const SkPoint qPts[3])205 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
206     SkMatrix m;
207     // We want M such that M * xy_pt = uv_pt
208     // We know M * control_pts = [0  1/2 1]
209     //                           [0  0   1]
210     //                           [1  1   1]
211     // And control_pts = [x0 x1 x2]
212     //                   [y0 y1 y2]
213     //                   [1  1  1 ]
214     // We invert the control pt matrix and post concat to both sides to get M.
215     // Using the known form of the control point matrix and the result, we can
216     // optimize and improve precision.
217 
218     double x0 = qPts[0].fX;
219     double y0 = qPts[0].fY;
220     double x1 = qPts[1].fX;
221     double y1 = qPts[1].fY;
222     double x2 = qPts[2].fX;
223     double y2 = qPts[2].fY;
224     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
225 
226     if (!sk_float_isfinite(det)
227         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
228         // The quad is degenerate. Hopefully this is rare. Find the pts that are
229         // farthest apart to compute a line (unless it is really a pt).
230         SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
231         int maxEdge = 0;
232         SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
233         if (d > maxD) {
234             maxD = d;
235             maxEdge = 1;
236         }
237         d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
238         if (d > maxD) {
239             maxD = d;
240             maxEdge = 2;
241         }
242         // We could have a tolerance here, not sure if it would improve anything
243         if (maxD > 0) {
244             // Set the matrix to give (u = 0, v = distance_to_line)
245             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
246             // when looking from the point 0 down the line we want positive
247             // distances to be to the left. This matches the non-degenerate
248             // case.
249             SkPointPriv::SetOrthog(&lineVec, lineVec, SkPointPriv::kLeft_Side);
250             // first row
251             fM[0] = 0;
252             fM[1] = 0;
253             fM[2] = 0;
254             // second row
255             fM[3] = lineVec.fX;
256             fM[4] = lineVec.fY;
257             fM[5] = -lineVec.dot(qPts[maxEdge]);
258         } else {
259             // It's a point. It should cover zero area. Just set the matrix such
260             // that (u, v) will always be far away from the quad.
261             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
262             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
263         }
264     } else {
265         double scale = 1.0/det;
266 
267         // compute adjugate matrix
268         double a2, a3, a4, a5, a6, a7, a8;
269         a2 = x1*y2-x2*y1;
270 
271         a3 = y2-y0;
272         a4 = x0-x2;
273         a5 = x2*y0-x0*y2;
274 
275         a6 = y0-y1;
276         a7 = x1-x0;
277         a8 = x0*y1-x1*y0;
278 
279         // this performs the uv_pts*adjugate(control_pts) multiply,
280         // then does the scale by 1/det afterwards to improve precision
281         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
282         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
283         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
284 
285         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
286         m[SkMatrix::kMScaleY] = (float)(a7*scale);
287         m[SkMatrix::kMTransY] = (float)(a8*scale);
288 
289         // kMPersp0 & kMPersp1 should algebraically be zero
290         m[SkMatrix::kMPersp0] = 0.0f;
291         m[SkMatrix::kMPersp1] = 0.0f;
292         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
293 
294         // It may not be normalized to have 1.0 in the bottom right
295         float m33 = m.get(SkMatrix::kMPersp2);
296         if (1.f != m33) {
297             m33 = 1.f / m33;
298             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
299             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
300             fM[2] = m33 * m.get(SkMatrix::kMTransX);
301             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
302             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
303             fM[5] = m33 * m.get(SkMatrix::kMTransY);
304         } else {
305             fM[0] = m.get(SkMatrix::kMScaleX);
306             fM[1] = m.get(SkMatrix::kMSkewX);
307             fM[2] = m.get(SkMatrix::kMTransX);
308             fM[3] = m.get(SkMatrix::kMSkewY);
309             fM[4] = m.get(SkMatrix::kMScaleY);
310             fM[5] = m.get(SkMatrix::kMTransY);
311         }
312     }
313 }
314 
315 ////////////////////////////////////////////////////////////////////////////////
316 
317 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
318 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
319 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
getConicKLM(const SkPoint p[3],const SkScalar weight,SkMatrix * out)320 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
321     SkMatrix& klm = *out;
322     const SkScalar w2 = 2.f * weight;
323     klm[0] = p[2].fY - p[0].fY;
324     klm[1] = p[0].fX - p[2].fX;
325     klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
326 
327     klm[3] = w2 * (p[1].fY - p[0].fY);
328     klm[4] = w2 * (p[0].fX - p[1].fX);
329     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
330 
331     klm[6] = w2 * (p[2].fY - p[1].fY);
332     klm[7] = w2 * (p[1].fX - p[2].fX);
333     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
334 
335     // scale the max absolute value of coeffs to 10
336     SkScalar scale = 0.f;
337     for (int i = 0; i < 9; ++i) {
338        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
339     }
340     SkASSERT(scale > 0.f);
341     scale = 10.f / scale;
342     for (int i = 0; i < 9; ++i) {
343         klm[i] *= scale;
344     }
345 }
346 
347 ////////////////////////////////////////////////////////////////////////////////
348 
349 namespace {
350 
351 // a is the first control point of the cubic.
352 // ab is the vector from a to the second control point.
353 // dc is the vector from the fourth to the third control point.
354 // d is the fourth control point.
355 // p is the candidate quadratic control point.
356 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPathPriv::FirstDirection dir,const SkPoint p)357 bool is_point_within_cubic_tangents(const SkPoint& a,
358                                     const SkVector& ab,
359                                     const SkVector& dc,
360                                     const SkPoint& d,
361                                     SkPathPriv::FirstDirection dir,
362                                     const SkPoint p) {
363     SkVector ap = p - a;
364     SkScalar apXab = ap.cross(ab);
365     if (SkPathPriv::kCW_FirstDirection == dir) {
366         if (apXab > 0) {
367             return false;
368         }
369     } else {
370         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
371         if (apXab < 0) {
372             return false;
373         }
374     }
375 
376     SkVector dp = p - d;
377     SkScalar dpXdc = dp.cross(dc);
378     if (SkPathPriv::kCW_FirstDirection == dir) {
379         if (dpXdc < 0) {
380             return false;
381         }
382     } else {
383         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
384         if (dpXdc > 0) {
385             return false;
386         }
387     }
388     return true;
389 }
390 
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,bool constrainWithinTangents,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads,int sublevel=0)391 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
392                                        SkScalar toleranceSqd,
393                                        bool constrainWithinTangents,
394                                        SkPathPriv::FirstDirection dir,
395                                        SkTArray<SkPoint, true>* quads,
396                                        int sublevel = 0) {
397 
398     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
399     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
400 
401     SkVector ab = p[1] - p[0];
402     SkVector dc = p[2] - p[3];
403 
404     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
405         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
406             SkPoint* degQuad = quads->push_back_n(3);
407             degQuad[0] = p[0];
408             degQuad[1] = p[0];
409             degQuad[2] = p[3];
410             return;
411         }
412         ab = p[2] - p[0];
413     }
414     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
415         dc = p[1] - p[3];
416     }
417 
418     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
419     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
420     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
421     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
422     // control points are very close to the baseline vector. If so then we just pick quadratic
423     // points on the control polygon.
424 
425     if (constrainWithinTangents) {
426         SkVector da = p[0] - p[3];
427         bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
428                        SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
429         if (!doQuads) {
430             SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
431             if (invDALengthSqd > SK_ScalarNearlyZero) {
432                 invDALengthSqd = SkScalarInvert(invDALengthSqd);
433                 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
434                 // same goes for point c using vector cd.
435                 SkScalar detABSqd = ab.cross(da);
436                 detABSqd = SkScalarSquare(detABSqd);
437                 SkScalar detDCSqd = dc.cross(da);
438                 detDCSqd = SkScalarSquare(detDCSqd);
439                 if (detABSqd * invDALengthSqd < toleranceSqd &&
440                     detDCSqd * invDALengthSqd < toleranceSqd)
441                 {
442                     doQuads = true;
443                 }
444             }
445         }
446         if (doQuads) {
447             SkPoint b = p[0] + ab;
448             SkPoint c = p[3] + dc;
449             SkPoint mid = b + c;
450             mid.scale(SK_ScalarHalf);
451             // Insert two quadratics to cover the case when ab points away from d and/or dc
452             // points away from a.
453             if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
454                 SkPoint* qpts = quads->push_back_n(6);
455                 qpts[0] = p[0];
456                 qpts[1] = b;
457                 qpts[2] = mid;
458                 qpts[3] = mid;
459                 qpts[4] = c;
460                 qpts[5] = p[3];
461             } else {
462                 SkPoint* qpts = quads->push_back_n(3);
463                 qpts[0] = p[0];
464                 qpts[1] = mid;
465                 qpts[2] = p[3];
466             }
467             return;
468         }
469     }
470 
471     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
472     static const int kMaxSubdivs = 10;
473 
474     ab.scale(kLengthScale);
475     dc.scale(kLengthScale);
476 
477     // e0 and e1 are extrapolations along vectors ab and dc.
478     SkVector c0 = p[0];
479     c0 += ab;
480     SkVector c1 = p[3];
481     c1 += dc;
482 
483     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
484     if (dSqd < toleranceSqd) {
485         SkPoint cAvg = c0;
486         cAvg += c1;
487         cAvg.scale(SK_ScalarHalf);
488 
489         bool subdivide = false;
490 
491         if (constrainWithinTangents &&
492             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
493             // choose a new cAvg that is the intersection of the two tangent lines.
494             SkPointPriv::SetOrthog(&ab, ab);
495             SkScalar z0 = -ab.dot(p[0]);
496             SkPointPriv::SetOrthog(&dc, dc);
497             SkScalar z1 = -dc.dot(p[3]);
498             cAvg.fX = ab.fY * z1 - z0 * dc.fY;
499             cAvg.fY = z0 * dc.fX - ab.fX * z1;
500             SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
501             z = SkScalarInvert(z);
502             cAvg.fX *= z;
503             cAvg.fY *= z;
504             if (sublevel <= kMaxSubdivs) {
505                 SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
506                 SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
507                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
508                 // the distances and tolerance can't be negative.
509                 // (d0 + d1)^2 > toleranceSqd
510                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
511                 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
512                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
513             }
514         }
515         if (!subdivide) {
516             SkPoint* pts = quads->push_back_n(3);
517             pts[0] = p[0];
518             pts[1] = cAvg;
519             pts[2] = p[3];
520             return;
521         }
522     }
523     SkPoint choppedPts[7];
524     SkChopCubicAtHalf(p, choppedPts);
525     convert_noninflect_cubic_to_quads(choppedPts + 0,
526                                       toleranceSqd,
527                                       constrainWithinTangents,
528                                       dir,
529                                       quads,
530                                       sublevel + 1);
531     convert_noninflect_cubic_to_quads(choppedPts + 3,
532                                       toleranceSqd,
533                                       constrainWithinTangents,
534                                       dir,
535                                       quads,
536                                       sublevel + 1);
537 }
538 }
539 
convertCubicToQuads(const SkPoint p[4],SkScalar tolScale,SkTArray<SkPoint,true> * quads)540 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
541                                       SkScalar tolScale,
542                                       SkTArray<SkPoint, true>* quads) {
543     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
544         return;
545     }
546     SkPoint chopped[10];
547     int count = SkChopCubicAtInflections(p, chopped);
548 
549     const SkScalar tolSqd = SkScalarSquare(tolScale);
550 
551     for (int i = 0; i < count; ++i) {
552         SkPoint* cubic = chopped + 3*i;
553         // The direction param is ignored if the third param is false.
554         convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
555                                           SkPathPriv::kCCW_FirstDirection, quads);
556     }
557 }
558 
convertCubicToQuadsConstrainToTangents(const SkPoint p[4],SkScalar tolScale,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads)559 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
560                                                          SkScalar tolScale,
561                                                          SkPathPriv::FirstDirection dir,
562                                                          SkTArray<SkPoint, true>* quads) {
563     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
564         return;
565     }
566     SkPoint chopped[10];
567     int count = SkChopCubicAtInflections(p, chopped);
568 
569     const SkScalar tolSqd = SkScalarSquare(tolScale);
570 
571     for (int i = 0; i < count; ++i) {
572         SkPoint* cubic = chopped + 3*i;
573         convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
574     }
575 }
576 
577 ////////////////////////////////////////////////////////////////////////////////
578 
579 using ExcludedTerm = GrPathUtils::ExcludedTerm;
580 
calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4],SkMatrix * out)581 ExcludedTerm GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4],
582                                                                     SkMatrix* out) {
583     GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
584 
585     // First convert the bezier coordinates p[0..3] to power basis coefficients X,Y(,W=[0 0 0 1]).
586     // M3 is the matrix that does this conversion. The homogeneous equation for the cubic becomes:
587     //
588     //                                     | X   Y   0 |
589     // C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | .   .   0 |
590     //                                     | .   .   0 |
591     //                                     | .   .   1 |
592     //
593     const Sk4f M3[3] = {Sk4f(-1, 3, -3, 1),
594                         Sk4f(3, -6, 3, 0),
595                         Sk4f(-3, 3, 0, 0)};
596     // 4th col of M3 =  Sk4f(1, 0, 0, 0)};
597     Sk4f X(p[3].x(), 0, 0, 0);
598     Sk4f Y(p[3].y(), 0, 0, 0);
599     for (int i = 2; i >= 0; --i) {
600         X += M3[i] * p[i].x();
601         Y += M3[i] * p[i].y();
602     }
603 
604     // The matrix is 3x4. In order to invert it, we first need to make it square by throwing out one
605     // of the middle two rows. We toss the row that leaves us with the largest absolute determinant.
606     // Since the right column will be [0 0 1], the respective determinants reduce to x0*y2 - y0*x2
607     // and x0*y1 - y0*x1.
608     SkScalar dets[4];
609     Sk4f D = SkNx_shuffle<0,0,2,1>(X) * SkNx_shuffle<2,1,0,0>(Y);
610     D -= SkNx_shuffle<2,3,0,1>(D);
611     D.store(dets);
612     ExcludedTerm skipTerm = SkScalarAbs(dets[0]) > SkScalarAbs(dets[1]) ?
613                             ExcludedTerm::kQuadraticTerm : ExcludedTerm::kLinearTerm;
614     SkScalar det = dets[ExcludedTerm::kQuadraticTerm == skipTerm ? 0 : 1];
615     if (0 == det) {
616         return ExcludedTerm::kNonInvertible;
617     }
618     SkScalar rdet = 1 / det;
619 
620     // Compute the inverse-transpose of the power basis matrix with the 'skipRow'th row removed.
621     // Since W=[0 0 0 1], it follows that our corresponding solution will be equal to:
622     //
623     //             |  y1  -x1   x1*y2 - y1*x2 |
624     //     1/det * | -y0   x0  -x0*y2 + y0*x2 |
625     //             |   0    0             det |
626     //
627     SkScalar x[4], y[4], z[4];
628     X.store(x);
629     Y.store(y);
630     (X * SkNx_shuffle<3,3,3,3>(Y) - Y * SkNx_shuffle<3,3,3,3>(X)).store(z);
631 
632     int middleRow = ExcludedTerm::kQuadraticTerm == skipTerm ? 2 : 1;
633     out->setAll( y[middleRow] * rdet, -x[middleRow] * rdet,  z[middleRow] * rdet,
634                         -y[0] * rdet,          x[0] * rdet,         -z[0] * rdet,
635                                    0,                    0,                    1);
636 
637     return skipTerm;
638 }
639 
calc_serp_kcoeffs(SkScalar tl,SkScalar sl,SkScalar tm,SkScalar sm,ExcludedTerm skipTerm,SkScalar outCoeffs[3])640 inline static void calc_serp_kcoeffs(SkScalar tl, SkScalar sl, SkScalar tm, SkScalar sm,
641                                      ExcludedTerm skipTerm, SkScalar outCoeffs[3]) {
642     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
643     outCoeffs[0] = 0;
644     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sm : -tl*sm - tm*sl;
645     outCoeffs[2] = tl*tm;
646 }
647 
calc_serp_lmcoeffs(SkScalar t,SkScalar s,ExcludedTerm skipTerm,SkScalar outCoeffs[3])648 inline static void calc_serp_lmcoeffs(SkScalar t, SkScalar s, ExcludedTerm skipTerm,
649                                       SkScalar outCoeffs[3]) {
650     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
651     outCoeffs[0] = -s*s*s;
652     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? 3*s*s*t : -3*s*t*t;
653     outCoeffs[2] = t*t*t;
654 }
655 
calc_loop_kcoeffs(SkScalar td,SkScalar sd,SkScalar te,SkScalar se,SkScalar tdse,SkScalar tesd,ExcludedTerm skipTerm,SkScalar outCoeffs[3])656 inline static void calc_loop_kcoeffs(SkScalar td, SkScalar sd, SkScalar te, SkScalar se,
657                                      SkScalar tdse, SkScalar tesd, ExcludedTerm skipTerm,
658                                      SkScalar outCoeffs[3]) {
659     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
660     outCoeffs[0] = 0;
661     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? sd*se : -tdse - tesd;
662     outCoeffs[2] = td*te;
663 }
664 
calc_loop_lmcoeffs(SkScalar t2,SkScalar s2,SkScalar t1,SkScalar s1,SkScalar t2s1,SkScalar t1s2,ExcludedTerm skipTerm,SkScalar outCoeffs[3])665 inline static void calc_loop_lmcoeffs(SkScalar t2, SkScalar s2, SkScalar t1, SkScalar s1,
666                                       SkScalar t2s1, SkScalar t1s2, ExcludedTerm skipTerm,
667                                       SkScalar outCoeffs[3]) {
668     SkASSERT(ExcludedTerm::kQuadraticTerm == skipTerm || ExcludedTerm::kLinearTerm == skipTerm);
669     outCoeffs[0] = -s2*s2*s1;
670     outCoeffs[1] = (ExcludedTerm::kLinearTerm == skipTerm) ? s2 * (2*t2s1 + t1s2)
671                                                            : -t2 * (t2s1 + 2*t1s2);
672     outCoeffs[2] = t2*t2*t1;
673 }
674 
675 // For the case when a cubic bezier is actually a quadratic. We duplicate k in l so that the
676 // implicit becomes:
677 //
678 //     k^3 - l*m == k^3 - l*k == k * (k^2 - l)
679 //
680 // In the quadratic case we can simply assign fixed values at each control point:
681 //
682 //     | ..K.. |     | pts[0]  pts[1]  pts[2]  pts[3] |      | 0   1/3  2/3  1 |
683 //     | ..L.. |  *  |   .       .       .       .    |  ==  | 0     0  1/3  1 |
684 //     | ..K.. |     |   1       1       1       1    |      | 0   1/3  2/3  1 |
685 //
calc_quadratic_klm(const SkPoint pts[4],double d3,SkMatrix * klm)686 static void calc_quadratic_klm(const SkPoint pts[4], double d3, SkMatrix* klm) {
687     SkMatrix klmAtPts;
688     klmAtPts.setAll(0,  1.f/3,  1,
689                     0,      0,  1,
690                     0,  1.f/3,  1);
691 
692     SkMatrix inversePts;
693     inversePts.setAll(pts[0].x(),  pts[1].x(),  pts[3].x(),
694                       pts[0].y(),  pts[1].y(),  pts[3].y(),
695                                1,           1,           1);
696     SkAssertResult(inversePts.invert(&inversePts));
697 
698     klm->setConcat(klmAtPts, inversePts);
699 
700     // If d3 > 0 we need to flip the orientation of our curve
701     // This is done by negating the k and l values
702     if (d3 > 0) {
703         klm->postScale(-1, -1);
704     }
705 }
706 
707 // For the case when a cubic bezier is actually a line. We set K=0, L=1, M=-line, which results in
708 // the following implicit:
709 //
710 //     k^3 - l*m == 0^3 - 1*(-line) == -(-line) == line
711 //
calc_line_klm(const SkPoint pts[4],SkMatrix * klm)712 static void calc_line_klm(const SkPoint pts[4], SkMatrix* klm) {
713     SkScalar ny = pts[0].x() - pts[3].x();
714     SkScalar nx = pts[3].y() - pts[0].y();
715     SkScalar k = nx * pts[0].x() + ny * pts[0].y();
716     klm->setAll(  0,   0, 0,
717                   0,   0, 1,
718                 -nx, -ny, k);
719 }
720 
getCubicKLM(const SkPoint src[4],SkMatrix * klm,double tt[2],double ss[2])721 SkCubicType GrPathUtils::getCubicKLM(const SkPoint src[4], SkMatrix* klm, double tt[2],
722                                      double ss[2]) {
723     double d[4];
724     SkCubicType type = SkClassifyCubic(src, tt, ss, d);
725 
726     if (SkCubicType::kLineOrPoint == type) {
727         calc_line_klm(src, klm);
728         return SkCubicType::kLineOrPoint;
729     }
730 
731     if (SkCubicType::kQuadratic == type) {
732         calc_quadratic_klm(src, d[3], klm);
733         return SkCubicType::kQuadratic;
734     }
735 
736     SkMatrix CIT;
737     ExcludedTerm skipTerm = calcCubicInverseTransposePowerBasisMatrix(src, &CIT);
738     if (ExcludedTerm::kNonInvertible == skipTerm) {
739         // This could technically also happen if the curve were quadratic, but SkClassifyCubic
740         // should have detected that case already with tolerance.
741         calc_line_klm(src, klm);
742         return SkCubicType::kLineOrPoint;
743     }
744 
745     const SkScalar t0 = static_cast<SkScalar>(tt[0]), t1 = static_cast<SkScalar>(tt[1]),
746                    s0 = static_cast<SkScalar>(ss[0]), s1 = static_cast<SkScalar>(ss[1]);
747 
748     SkMatrix klmCoeffs;
749     switch (type) {
750         case SkCubicType::kCuspAtInfinity:
751             SkASSERT(1 == t1 && 0 == s1); // Infinity.
752             // fallthru.
753         case SkCubicType::kLocalCusp:
754         case SkCubicType::kSerpentine:
755             calc_serp_kcoeffs(t0, s0, t1, s1, skipTerm, &klmCoeffs[0]);
756             calc_serp_lmcoeffs(t0, s0, skipTerm, &klmCoeffs[3]);
757             calc_serp_lmcoeffs(t1, s1, skipTerm, &klmCoeffs[6]);
758             break;
759         case SkCubicType::kLoop: {
760             const SkScalar tdse = t0 * s1;
761             const SkScalar tesd = t1 * s0;
762             calc_loop_kcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[0]);
763             calc_loop_lmcoeffs(t0, s0, t1, s1, tdse, tesd, skipTerm, &klmCoeffs[3]);
764             calc_loop_lmcoeffs(t1, s1, t0, s0, tesd, tdse, skipTerm, &klmCoeffs[6]);
765             break;
766         }
767         default:
768             SK_ABORT("Unexpected cubic type.");
769             break;
770     }
771 
772     klm->setConcat(klmCoeffs, CIT);
773     return type;
774 }
775 
chopCubicAtLoopIntersection(const SkPoint src[4],SkPoint dst[10],SkMatrix * klm,int * loopIndex)776 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
777                                              int* loopIndex) {
778     SkSTArray<2, SkScalar> chops;
779     *loopIndex = -1;
780 
781     double t[2], s[2];
782     if (SkCubicType::kLoop == GrPathUtils::getCubicKLM(src, klm, t, s)) {
783         SkScalar t0 = static_cast<SkScalar>(t[0] / s[0]);
784         SkScalar t1 = static_cast<SkScalar>(t[1] / s[1]);
785         SkASSERT(t0 <= t1); // Technically t0 != t1 in a loop, but there may be FP error.
786 
787         if (t0 < 1 && t1 > 0) {
788             *loopIndex = 0;
789             if (t0 > 0) {
790                 chops.push_back(t0);
791                 *loopIndex = 1;
792             }
793             if (t1 < 1) {
794                 chops.push_back(t1);
795                 *loopIndex = chops.count() - 1;
796             }
797         }
798     }
799 
800     SkChopCubicAt(src, dst, chops.begin(), chops.count());
801     return chops.count() + 1;
802 }
803