• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrXferProcessor_DEFINED
9 #define GrXferProcessor_DEFINED
10 
11 #include "GrBlend.h"
12 #include "GrColor.h"
13 #include "GrNonAtomicRef.h"
14 #include "GrProcessor.h"
15 #include "GrProcessorAnalysis.h"
16 #include "GrTypes.h"
17 
18 class GrGLSLXferProcessor;
19 class GrProcessorSet;
20 class GrShaderCaps;
21 
22 /**
23  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
24  * required after a pixel has been written, before it can be safely read again.
25  */
26 enum GrXferBarrierType {
27     kNone_GrXferBarrierType = 0, //<! No barrier is required
28     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
29     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
30 };
31 /** Should be able to treat kNone as false in boolean expressions */
32 GR_STATIC_ASSERT(SkToBool(kNone_GrXferBarrierType) == false);
33 
34 /**
35  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
36  * color, and for applying any coverage. It does this by emitting fragment shader code and
37  * controlling the fixed-function blend state. When dual-source blending is available, it may also
38  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
39  *
40  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
41  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
42  * provides shader code that blends the src and dst colors, and the base class applies coverage.
43  *
44  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
45  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
46  *
47  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
48  * GrXPFactory once we have finalized the state of our draw.
49  */
50 class GrXferProcessor : public GrProcessor, public GrNonAtomicRef<GrXferProcessor> {
51 public:
52     /**
53      * A texture that contains the dst pixel values and an integer coord offset from device space
54      * to the space of the texture. Depending on GPU capabilities a DstTexture may be used by a
55      * GrXferProcessor for blending in the fragment shader.
56      */
57     class DstProxy {
58     public:
DstProxy()59         DstProxy() { fOffset.set(0, 0); }
60 
DstProxy(const DstProxy & other)61         DstProxy(const DstProxy& other) {
62             *this = other;
63         }
64 
DstProxy(sk_sp<GrTextureProxy> proxy,const SkIPoint & offset)65         DstProxy(sk_sp<GrTextureProxy> proxy, const SkIPoint& offset)
66             : fProxy(std::move(proxy)) {
67             if (fProxy) {
68                 fOffset = offset;
69             } else {
70                 fOffset.set(0, 0);
71             }
72         }
73 
74         DstProxy& operator=(const DstProxy& other) {
75             fProxy = other.fProxy;
76             fOffset = other.fOffset;
77             return *this;
78         }
79 
80         bool operator==(const DstProxy& that) const {
81             return fProxy == that.fProxy && fOffset == that.fOffset;
82         }
83         bool operator!=(const DstProxy& that) const { return !(*this == that); }
84 
offset()85         const SkIPoint& offset() const { return fOffset; }
86 
setOffset(const SkIPoint & offset)87         void setOffset(const SkIPoint& offset) { fOffset = offset; }
setOffset(int ox,int oy)88         void setOffset(int ox, int oy) { fOffset.set(ox, oy); }
89 
proxy()90         GrTextureProxy* proxy() const { return fProxy.get(); }
91 
setProxy(sk_sp<GrTextureProxy> proxy)92         void setProxy(sk_sp<GrTextureProxy> proxy) {
93             fProxy = std::move(proxy);
94             if (!fProxy) {
95                 fOffset = {0, 0};
96             }
97         }
98 
instantiate(GrResourceProvider * resourceProvider)99         bool instantiate(GrResourceProvider* resourceProvider) {
100             return SkToBool(fProxy->instantiate(resourceProvider));
101         }
102 
103     private:
104         sk_sp<GrTextureProxy> fProxy;
105         SkIPoint              fOffset;
106     };
107 
108     /**
109      * Sets a unique key on the GrProcessorKeyBuilder calls onGetGLSLProcessorKey(...) to get the
110      * specific subclass's key.
111      */
112     void getGLSLProcessorKey(const GrShaderCaps&,
113                              GrProcessorKeyBuilder*,
114                              const GrSurfaceOrigin* originIfDstTexture) const;
115 
116     /** Returns a new instance of the appropriate *GL* implementation class
117         for the given GrXferProcessor; caller is responsible for deleting
118         the object. */
119     virtual GrGLSLXferProcessor* createGLSLInstance() const = 0;
120 
121     /**
122      * Returns the barrier type, if any, that this XP will require. Note that the possibility
123      * that a kTexture type barrier is required is handled by the GrPipeline and need not be
124      * considered by subclass overrides of this function.
125      */
xferBarrierType(const GrCaps & caps)126     virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
127         return kNone_GrXferBarrierType;
128     }
129 
130     struct BlendInfo {
resetBlendInfo131         void reset() {
132             fEquation = kAdd_GrBlendEquation;
133             fSrcBlend = kOne_GrBlendCoeff;
134             fDstBlend = kZero_GrBlendCoeff;
135             fBlendConstant = 0;
136             fWriteColor = true;
137         }
138 
139         SkDEBUGCODE(SkString dump() const;)
140 
141         GrBlendEquation fEquation;
142         GrBlendCoeff    fSrcBlend;
143         GrBlendCoeff    fDstBlend;
144         GrColor         fBlendConstant;
145         bool            fWriteColor;
146     };
147 
148     void getBlendInfo(BlendInfo* blendInfo) const;
149 
willReadDstColor()150     bool willReadDstColor() const { return fWillReadDstColor; }
151 
152     /**
153      * If we are performing a dst read, returns whether the base class will use mixed samples to
154      * antialias the shader's final output. If not doing a dst read, the subclass is responsible
155      * for antialiasing and this returns false.
156      */
dstReadUsesMixedSamples()157     bool dstReadUsesMixedSamples() const { return fDstReadUsesMixedSamples; }
158 
159     /**
160      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
161      * source blending.
162      */
163     bool hasSecondaryOutput() const;
164 
isLCD()165     bool isLCD() const { return fIsLCD; }
166 
167     /** Returns true if this and other processor conservatively draw identically. It can only return
168         true when the two processor are of the same subclass (i.e. they return the same object from
169         from getFactory()).
170 
171         A return value of true from isEqual() should not be used to test whether the processor would
172         generate the same shader code. To test for identical code generation use getGLSLProcessorKey
173       */
174 
isEqual(const GrXferProcessor & that)175     bool isEqual(const GrXferProcessor& that) const {
176         if (this->classID() != that.classID()) {
177             return false;
178         }
179         if (this->fWillReadDstColor != that.fWillReadDstColor) {
180             return false;
181         }
182         if (this->fDstReadUsesMixedSamples != that.fDstReadUsesMixedSamples) {
183             return false;
184         }
185         if (fIsLCD != that.fIsLCD) {
186             return false;
187         }
188         return this->onIsEqual(that);
189     }
190 
191 protected:
192     GrXferProcessor(ClassID classID);
193     GrXferProcessor(ClassID classID, bool willReadDstColor, bool hasMixedSamples,
194                     GrProcessorAnalysisCoverage);
195 
196 private:
197     /**
198      * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
199      * processor's GL backend implementation.
200      */
201     virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
202 
203     /**
204      * If we are not performing a dst read, returns whether the subclass will set a secondary
205      * output. When using dst reads, the base class controls the secondary output and this method
206      * will not be called.
207      */
onHasSecondaryOutput()208     virtual bool onHasSecondaryOutput() const { return false; }
209 
210     /**
211      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
212      * subclass. When using dst reads, the base class controls the fixed-function blend state and
213      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
214      */
onGetBlendInfo(BlendInfo *)215     virtual void onGetBlendInfo(BlendInfo*) const {}
216 
217     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
218 
219     bool fWillReadDstColor;
220     bool fDstReadUsesMixedSamples;
221     bool fIsLCD;
222 
223     typedef GrProcessor INHERITED;
224 };
225 
226 /**
227  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
228  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
229  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
230  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
231  * the draw.
232  *
233  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
234  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
235  * blend with the destination color.
236  *
237  * GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
238  * and expect the pointers to always be valid and for the factories to be reusable and thread safe.
239  * Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
240  */
241 
242 // In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
243 // GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
244 // since these objects have no need for destructors. However, GCC and clang throw a warning when a
245 // class has virtual functions and a non-virtual destructor. We suppress that warning here and
246 // for the subclasses.
247 #if defined(__GNUC__)
248 #pragma GCC diagnostic push
249 #pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
250 #endif
251 #if defined(__clang__)
252 #pragma clang diagnostic push
253 #pragma clang diagnostic ignored "-Wnon-virtual-dtor"
254 #endif
255 class GrXPFactory {
256 public:
257     typedef GrXferProcessor::DstProxy DstProxy;
258 
259     enum class AnalysisProperties : unsigned {
260         kNone = 0x0,
261         /**
262          * The fragment shader will require the destination color.
263          */
264         kReadsDstInShader = 0x1,
265         /**
266          * The op may apply coverage as alpha and still blend correctly.
267          */
268         kCompatibleWithAlphaAsCoverage = 0x2,
269         /**
270          * The color input to the GrXferProcessor will be ignored.
271          */
272         kIgnoresInputColor = 0x4,
273         /**
274          * If set overlapping stencil and cover operations can be replaced by a combined stencil
275          * followed by a combined cover.
276          */
277         kCanCombineOverlappedStencilAndCover = 0x8,
278         /**
279          * The destination color will be provided to the fragment processor using a texture. This is
280          * additional information about the implementation of kReadsDstInShader.
281          */
282         kRequiresDstTexture = 0x10,
283         /**
284          * If set overlapping draws may not be combined because a barrier must be inserted between
285          * them.
286          */
287         kRequiresBarrierBetweenOverlappingDraws = 0x20,
288     };
289     GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties);
290 
291     static sk_sp<const GrXferProcessor> MakeXferProcessor(const GrXPFactory*,
292                                                           const GrProcessorAnalysisColor&,
293                                                           GrProcessorAnalysisCoverage,
294                                                           bool hasMixedSamples,
295                                                           const GrCaps& caps,
296                                                           GrPixelConfigIsClamped dstIsClamped);
297 
298     static AnalysisProperties GetAnalysisProperties(const GrXPFactory*,
299                                                     const GrProcessorAnalysisColor&,
300                                                     const GrProcessorAnalysisCoverage&,
301                                                     const GrCaps&,
302                                                     GrPixelConfigIsClamped);
303 
304 protected:
GrXPFactory()305     constexpr GrXPFactory() {}
306 
307 private:
308     virtual sk_sp<const GrXferProcessor> makeXferProcessor(const GrProcessorAnalysisColor&,
309                                                            GrProcessorAnalysisCoverage,
310                                                            bool hasMixedSamples,
311                                                            const GrCaps&,
312                                                            GrPixelConfigIsClamped) const = 0;
313 
314     /**
315      * Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
316      * inferred by the base class based on kReadsDstInShader and the caps.
317      */
318     virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor&,
319                                                   const GrProcessorAnalysisCoverage&,
320                                                   const GrCaps&,
321                                                   GrPixelConfigIsClamped) const = 0;
322 };
323 #if defined(__GNUC__)
324 #pragma GCC diagnostic pop
325 #endif
326 #if defined(__clang__)
327 #pragma clang diagnostic pop
328 #endif
329 
330 GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties);
331 
332 #endif
333