• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrCCGeometry.h"
9 
10 #include "GrTypes.h"
11 #include "GrPathUtils.h"
12 #include <algorithm>
13 #include <cmath>
14 #include <cstdlib>
15 
16 // We convert between SkPoint and Sk2f freely throughout this file.
17 GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
18 GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
19 GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));
20 
beginPath()21 void GrCCGeometry::beginPath() {
22     SkASSERT(!fBuildingContour);
23     fVerbs.push_back(Verb::kBeginPath);
24 }
25 
beginContour(const SkPoint & devPt)26 void GrCCGeometry::beginContour(const SkPoint& devPt) {
27     SkASSERT(!fBuildingContour);
28 
29     fCurrFanPoint = fCurrAnchorPoint = devPt;
30 
31     // Store the current verb count in the fTriangles field for now. When we close the contour we
32     // will use this value to calculate the actual number of triangles in its fan.
33     fCurrContourTallies = {fVerbs.count(), 0, 0};
34 
35     fPoints.push_back(devPt);
36     fVerbs.push_back(Verb::kBeginContour);
37 
38     SkDEBUGCODE(fBuildingContour = true);
39 }
40 
lineTo(const SkPoint & devPt)41 void GrCCGeometry::lineTo(const SkPoint& devPt) {
42     SkASSERT(fBuildingContour);
43     SkASSERT(fCurrFanPoint == fPoints.back());
44     fCurrFanPoint = devPt;
45     fPoints.push_back(devPt);
46     fVerbs.push_back(Verb::kLineTo);
47 }
48 
normalize(const Sk2f & n)49 static inline Sk2f normalize(const Sk2f& n) {
50     Sk2f nn = n*n;
51     return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
52 }
53 
dot(const Sk2f & a,const Sk2f & b)54 static inline float dot(const Sk2f& a, const Sk2f& b) {
55     float product[2];
56     (a * b).store(product);
57     return product[0] + product[1];
58 }
59 
are_collinear(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2)60 static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
61     static constexpr float kFlatnessTolerance = 4; // 1/4 of a pixel.
62 
63     // Area (times 2) of the triangle.
64     Sk2f a = (p0 - p1) * SkNx_shuffle<1,0>(p1 - p2);
65     a = (a - SkNx_shuffle<1,0>(a)).abs();
66 
67     // Bounding box of the triangle.
68     Sk2f bbox0 = Sk2f::Min(Sk2f::Min(p0, p1), p2);
69     Sk2f bbox1 = Sk2f::Max(Sk2f::Max(p0, p1), p2);
70 
71     // The triangle is linear if its area is within a fraction of the largest bounding box
72     // dimension, or else if its area is within a fraction of a pixel.
73     return (a * (kFlatnessTolerance/2) < Sk2f::Max(bbox1 - bbox0, 1)).anyTrue();
74 }
75 
76 // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
is_convex_curve_monotonic(const Sk2f & startPt,const Sk2f & startTan,const Sk2f & endPt,const Sk2f & endTan)77 static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& startTan,
78                                              const Sk2f& endPt, const Sk2f& endTan) {
79     Sk2f v = endPt - startPt;
80     float dot0 = dot(startTan, v);
81     float dot1 = dot(endTan, v);
82 
83     // A small, negative tolerance handles floating-point error in the case when one tangent
84     // approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
85     float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
86     return dot0 >= tolerance && dot1 >= tolerance;
87 }
88 
lerp(const Sk2f & a,const Sk2f & b,const Sk2f & t)89 static inline Sk2f lerp(const Sk2f& a, const Sk2f& b, const Sk2f& t) {
90     return SkNx_fma(t, b - a, a);
91 }
92 
quadraticTo(const SkPoint & devP0,const SkPoint & devP1)93 void GrCCGeometry::quadraticTo(const SkPoint& devP0, const SkPoint& devP1) {
94     SkASSERT(fBuildingContour);
95     SkASSERT(fCurrFanPoint == fPoints.back());
96 
97     Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
98     Sk2f p1 = Sk2f::Load(&devP0);
99     Sk2f p2 = Sk2f::Load(&devP1);
100     fCurrFanPoint = devP1;
101 
102     this->appendMonotonicQuadratics(p0, p1, p2);
103 }
104 
appendMonotonicQuadratics(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2)105 inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
106                                                     const Sk2f& p2) {
107     Sk2f tan0 = p1 - p0;
108     Sk2f tan1 = p2 - p1;
109 
110     // This should almost always be this case for well-behaved curves in the real world.
111     if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
112         this->appendSingleMonotonicQuadratic(p0, p1, p2);
113         return;
114     }
115 
116     // Chop the curve into two segments with equal curvature. To do this we find the T value whose
117     // tangent is perpendicular to the vector that bisects tan0 and -tan1.
118     Sk2f n = normalize(tan0) - normalize(tan1);
119 
120     // This tangent can be found where (dQ(t) dot n) = 0:
121     //
122     //   0 = (dQ(t) dot n) = | 2*t  1 | * | p0 - 2*p1 + p2 | * | n |
123     //                                    | -2*p0 + 2*p1   |   | . |
124     //
125     //                     = | 2*t  1 | * | tan1 - tan0 | * | n |
126     //                                    | 2*tan0      |   | . |
127     //
128     //                     = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
129     //
130     //   t = (tan0 dot n) / ((tan0 - tan1) dot n)
131     Sk2f dQ1n = (tan0 - tan1) * n;
132     Sk2f dQ0n = tan0 * n;
133     Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
134     t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.
135 
136     Sk2f p01 = SkNx_fma(t, tan0, p0);
137     Sk2f p12 = SkNx_fma(t, tan1, p1);
138     Sk2f p012 = lerp(p01, p12, t);
139 
140     this->appendSingleMonotonicQuadratic(p0, p01, p012);
141     this->appendSingleMonotonicQuadratic(p012, p12, p2);
142 }
143 
appendSingleMonotonicQuadratic(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2)144 inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
145                                                          const Sk2f& p2) {
146     SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
147 
148     // Don't send curves to the GPU if we know they are nearly flat (or just very small).
149     if (are_collinear(p0, p1, p2)) {
150         p2.store(&fPoints.push_back());
151         fVerbs.push_back(Verb::kLineTo);
152         return;
153     }
154 
155     p1.store(&fPoints.push_back());
156     p2.store(&fPoints.push_back());
157     fVerbs.push_back(Verb::kMonotonicQuadraticTo);
158     ++fCurrContourTallies.fQuadratics;
159 }
160 
161 using ExcludedTerm = GrPathUtils::ExcludedTerm;
162 
163 // Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
164 //
165 // More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
166 // be the two points on the curve at which a square box with radius "padRadius" will have a corner
167 // that touches the inflection point's tangent line.
168 //
169 // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
170 // for both in SIMD.
calc_inflect_homogeneous_padding(float padRadius,const Sk2f & t,const Sk2f & s,const SkMatrix & CIT,ExcludedTerm skipTerm)171 static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
172                                                     const SkMatrix& CIT, ExcludedTerm skipTerm) {
173     SkASSERT(padRadius >= 0);
174 
175     Sk2f Clx = s*s*s;
176     Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
177 
178     Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
179     Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
180 
181     float ret[2];
182     Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
183     (bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
184 
185     ret[0] = cbrtf(ret[0]);
186     ret[1] = cbrtf(ret[1]);
187     return Sk2f::Load(ret);
188 }
189 
swap_if_greater(float & a,float & b)190 static inline void swap_if_greater(float& a, float& b) {
191     if (a > b) {
192         std::swap(a, b);
193     }
194 }
195 
196 // Calculates all parameter values for a loop at which points a square box with radius "padRadius"
197 // will have a corner that touches a tangent line from the intersection.
198 //
199 // T2 must contain the lesser parameter value of the loop intersection in its first component, and
200 // the greater in its second.
201 //
202 // roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
203 // around the first tangent. roots[1] will be filled with the padding points for the second tangent.
calc_loop_intersect_padding_pts(float padRadius,const Sk2f & T2,const SkMatrix & CIT,ExcludedTerm skipTerm,SkSTArray<3,float,true> roots[2])204 static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
205                                                   const SkMatrix& CIT, ExcludedTerm skipTerm,
206                                                   SkSTArray<3, float, true> roots[2]) {
207     SkASSERT(padRadius >= 0);
208     SkASSERT(T2[0] <= T2[1]);
209     SkASSERT(roots[0].empty());
210     SkASSERT(roots[1].empty());
211 
212     Sk2f T1 = SkNx_shuffle<1,0>(T2);
213     Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
214     Sk2f Lx = Cl * CIT[3] + CIT[0];
215     Sk2f Ly = Cl * CIT[4] + CIT[1];
216 
217     Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
218     Sk2f q = (1.f/3) * (T2 - T1);
219 
220     Sk2f qqq = q*q*q;
221     Sk2f discr = qqq*bloat*2 + bloat*bloat;
222 
223     float numRoots[2], D[2];
224     (discr < 0).thenElse(3, 1).store(numRoots);
225     (T2 - q).store(D);
226 
227     // Values for calculating one root.
228     float R[2], QQ[2];
229     if ((discr >= 0).anyTrue()) {
230         Sk2f r = qqq + bloat;
231         Sk2f s = r.abs() + discr.sqrt();
232         (r > 0).thenElse(-s, s).store(R);
233         (q*q).store(QQ);
234     }
235 
236     // Values for calculating three roots.
237     float P[2], cosTheta3[2];
238     if ((discr < 0).anyTrue()) {
239         (q.abs() * -2).store(P);
240         ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
241     }
242 
243     for (int i = 0; i < 2; ++i) {
244         if (1 == numRoots[i]) {
245             float A = cbrtf(R[i]);
246             float B = A != 0 ? QQ[i]/A : 0;
247             roots[i].push_back(A + B + D[i]);
248             continue;
249         }
250 
251         static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
252         float theta = std::acos(cosTheta3[i]) * (1.f/3);
253         roots[i].push_back(P[i] * std::cos(theta) + D[i]);
254         roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
255         roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
256 
257         // Sort the three roots.
258         swap_if_greater(roots[i][0], roots[i][1]);
259         swap_if_greater(roots[i][1], roots[i][2]);
260         swap_if_greater(roots[i][0], roots[i][1]);
261     }
262 }
263 
first_unless_nearly_zero(const Sk2f & a,const Sk2f & b)264 static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
265     Sk2f aa = a*a;
266     aa += SkNx_shuffle<1,0>(aa);
267     SkASSERT(aa[0] == aa[1]);
268 
269     Sk2f bb = b*b;
270     bb += SkNx_shuffle<1,0>(bb);
271     SkASSERT(bb[0] == bb[1]);
272 
273     return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
274 }
275 
is_cubic_nearly_quadratic(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,Sk2f & tan0,Sk2f & tan3,Sk2f & c)276 static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
277                                              const Sk2f& p3, Sk2f& tan0, Sk2f& tan3, Sk2f& c) {
278     tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
279     tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
280 
281     Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
282     Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan3, p3);
283     c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
284 
285     return ((c1 - c2).abs() <= 1).allTrue();
286 }
287 
cubicTo(const SkPoint & devP1,const SkPoint & devP2,const SkPoint & devP3,float inflectPad,float loopIntersectPad)288 void GrCCGeometry::cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
289                            float inflectPad, float loopIntersectPad) {
290     SkASSERT(fBuildingContour);
291     SkASSERT(fCurrFanPoint == fPoints.back());
292 
293     SkPoint devPts[4] = {fCurrFanPoint, devP1, devP2, devP3};
294     Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
295     Sk2f p1 = Sk2f::Load(&devP1);
296     Sk2f p2 = Sk2f::Load(&devP2);
297     Sk2f p3 = Sk2f::Load(&devP3);
298     fCurrFanPoint = devP3;
299 
300     // Don't crunch on the curve and inflate geometry if it is nearly flat (or just very small).
301     if (are_collinear(p0, p1, p2) &&
302         are_collinear(p1, p2, p3) &&
303         are_collinear(p0, (p1 + p2) * .5f, p3)) {
304         p3.store(&fPoints.push_back());
305         fVerbs.push_back(Verb::kLineTo);
306         return;
307     }
308 
309     // Also detect near-quadratics ahead of time.
310     Sk2f tan0, tan3, c;
311     if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan3, c)) {
312         this->appendMonotonicQuadratics(p0, c, p3);
313         return;
314     }
315 
316     double tt[2], ss[2];
317     fCurrCubicType = SkClassifyCubic(devPts, tt, ss);
318     SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.
319 
320     SkMatrix CIT;
321     ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(devPts, &CIT);
322     SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
323     SkASSERT(0 == CIT[6]);
324     SkASSERT(0 == CIT[7]);
325     SkASSERT(1 == CIT[8]);
326 
327     // Each cubic has five different sections (not always inside t=[0..1]):
328     //
329     //   1. The section before the first inflection or loop intersection point, with padding.
330     //   2. The section that passes through the first inflection/intersection (aka the K,L
331     //      intersection point or T=tt[0]/ss[0]).
332     //   3. The section between the two inflections/intersections, with padding.
333     //   4. The section that passes through the second inflection/intersection (aka the K,M
334     //      intersection point or T=tt[1]/ss[1]).
335     //   5. The section after the second inflection/intersection, with padding.
336     //
337     // Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
338     //
339     // Sections 2 & 4 must be approximated. For loop intersections we render them with
340     // quadratic(s), and when passing through an inflection point we use a plain old flat line.
341     //
342     // We find T0..T3 below to be the dividing points between these five sections.
343     float T0, T1, T2, T3;
344     if (SkCubicType::kLoop != fCurrCubicType) {
345         Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
346         Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
347         Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
348 
349         float T[2];
350         ((t - pad) / s).store(T);
351         T0 = T[0];
352         T2 = T[1];
353 
354         ((t + pad) / s).store(T);
355         T1 = T[0];
356         T3 = T[1];
357     } else {
358         const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
359         SkSTArray<3, float, true> roots[2];
360         calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
361         T0 = roots[0].front();
362         if (1 == roots[0].count() || 1 == roots[1].count()) {
363             // The loop is tighter than our desired padding. Collapse the middle section to a point
364             // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
365             // whole thing with quadratics.
366             T1 = T2 = (T[0] + T[1]) * .5f;
367         } else {
368             T1 = roots[0][1];
369             T2 = roots[1][1];
370         }
371         T3 = roots[1].back();
372     }
373 
374     // Guarantee that T0..T3 are monotonic.
375     if (T0 > T3) {
376         // This is not a mathematically valid scenario. The only reason it would happen is if
377         // padding is very small and we have encountered FP rounding error.
378         T0 = T1 = T2 = T3 = (T0 + T3) / 2;
379     } else if (T1 > T2) {
380         // This just means padding before the middle section overlaps the padding after it. We
381         // collapse the middle section to a single point that splits the difference between the
382         // overlap in padding.
383         T1 = T2 = (T1 + T2) / 2;
384     }
385     // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
386     // encountered FP rounding error.
387     T1 = std::max(T0, std::min(T1, T3));
388     T2 = std::max(T0, std::min(T2, T3));
389 
390     // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
391     if (T1 >= 1) {
392         // Only sections 1 & 2 can be in 0..1.
393         this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
394                         &GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
395         return;
396     }
397 
398     if (T2 <= 0) {
399         // Only sections 4 & 5 can be in 0..1.
400         this->chopCubic<&GrCCGeometry::appendCubicApproximation,
401                         &GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
402         return;
403     }
404 
405     Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
406 
407     if (T1 > 0) {
408         Sk2f T1T1 = Sk2f(T1);
409         Sk2f ab1 = lerp(p0, p1, T1T1);
410         Sk2f bc1 = lerp(p1, p2, T1T1);
411         Sk2f cd1 = lerp(p2, p3, T1T1);
412         Sk2f abc1 = lerp(ab1, bc1, T1T1);
413         Sk2f bcd1 = lerp(bc1, cd1, T1T1);
414         Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
415 
416         // Sections 1 & 2.
417         this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
418                         &GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
419 
420         if (T2 >= 1) {
421             // The rest of the curve is Section 3 (middle section).
422             this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
423             return;
424         }
425 
426         // Now calculate the first two bezier points of the middle section. The final two will come
427         // from when we chop the other side, as that is numerically more stable.
428         midp0 = abcd1;
429         midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
430     } else if (T2 >= 1) {
431         // The entire cubic is Section 3 (middle section).
432         this->appendMonotonicCubics(p0, p1, p2, p3);
433         return;
434     }
435 
436     SkASSERT(T2 > 0 && T2 < 1);
437 
438     Sk2f T2T2 = Sk2f(T2);
439     Sk2f ab2 = lerp(p0, p1, T2T2);
440     Sk2f bc2 = lerp(p1, p2, T2T2);
441     Sk2f cd2 = lerp(p2, p3, T2T2);
442     Sk2f abc2 = lerp(ab2, bc2, T2T2);
443     Sk2f bcd2 = lerp(bc2, cd2, T2T2);
444     Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
445 
446     if (T1 <= 0) {
447         // The curve begins at Section 3 (middle section).
448         this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
449     } else if (T2 > T1) {
450         // Section 3 (middle section).
451         Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
452         this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
453     }
454 
455     // Sections 4 & 5.
456     this->chopCubic<&GrCCGeometry::appendCubicApproximation,
457                     &GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
458 }
459 
460 template<GrCCGeometry::AppendCubicFn AppendLeftRight>
chopCubicAtMidTangent(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,const Sk2f & tan0,const Sk2f & tan3,int maxFutureSubdivisions)461 inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
462                                                 const Sk2f& p3, const Sk2f& tan0,
463                                                 const Sk2f& tan3, int maxFutureSubdivisions) {
464     // Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan3.
465     Sk2f n = normalize(tan0) - normalize(tan3);
466 
467     float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
468     float b = 6 * dot(p0 - p1*2 + p2, n);
469     float c = 3 * dot(p1 - p0, n);
470 
471     float discr = b*b - 4*a*c;
472     if (discr < 0) {
473         // If this is the case then the cubic must be nearly flat.
474         (this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
475         return;
476     }
477 
478     float q = -.5f * (b + copysignf(std::sqrt(discr), b));
479     float m = .5f*q*a;
480     float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
481 
482     this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
483 }
484 
485 template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
chopCubic(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,float T,int maxFutureSubdivisions)486 inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
487                                     const Sk2f& p3, float T, int maxFutureSubdivisions) {
488     if (T >= 1) {
489         (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
490         return;
491     }
492 
493     if (T <= 0) {
494         (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
495         return;
496     }
497 
498     Sk2f TT = T;
499     Sk2f ab = lerp(p0, p1, TT);
500     Sk2f bc = lerp(p1, p2, TT);
501     Sk2f cd = lerp(p2, p3, TT);
502     Sk2f abc = lerp(ab, bc, TT);
503     Sk2f bcd = lerp(bc, cd, TT);
504     Sk2f abcd = lerp(abc, bcd, TT);
505     (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
506     (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
507 }
508 
appendMonotonicCubics(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,int maxSubdivisions)509 void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
510                                          const Sk2f& p3, int maxSubdivisions) {
511     SkASSERT(maxSubdivisions >= 0);
512     if ((p0 == p3).allTrue()) {
513         return;
514     }
515 
516     if (maxSubdivisions) {
517         Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
518         Sk2f tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
519 
520         if (!is_convex_curve_monotonic(p0, tan0, p3, tan3)) {
521             this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
522                                                                               tan0, tan3,
523                                                                               maxSubdivisions - 1);
524             return;
525         }
526     }
527 
528     SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
529 
530     // Don't send curves to the GPU if we know they are nearly flat (or just very small).
531     // Since the cubic segment is known to be convex at this point, our flatness check is simple.
532     if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
533         p3.store(&fPoints.push_back());
534         fVerbs.push_back(Verb::kLineTo);
535         return;
536     }
537 
538     p1.store(&fPoints.push_back());
539     p2.store(&fPoints.push_back());
540     p3.store(&fPoints.push_back());
541     fVerbs.push_back(Verb::kMonotonicCubicTo);
542     ++fCurrContourTallies.fCubics;
543 }
544 
appendCubicApproximation(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,int maxSubdivisions)545 void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
546                                             const Sk2f& p3, int maxSubdivisions) {
547     SkASSERT(maxSubdivisions >= 0);
548     if ((p0 == p3).allTrue()) {
549         return;
550     }
551 
552     if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
553         // This section passes through an inflection point, so we can get away with a flat line.
554         // This can cause some curves to feel slightly more flat when inspected rigorously back and
555         // forth against another renderer, but for now this seems acceptable given the simplicity.
556         SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
557         p3.store(&fPoints.push_back());
558         fVerbs.push_back(Verb::kLineTo);
559         return;
560     }
561 
562     Sk2f tan0, tan3, c;
563     if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan3, c) && maxSubdivisions) {
564         this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
565                                                                              tan0, tan3,
566                                                                              maxSubdivisions - 1);
567         return;
568     }
569 
570     if (maxSubdivisions) {
571         this->appendMonotonicQuadratics(p0, c, p3);
572     } else {
573         this->appendSingleMonotonicQuadratic(p0, c, p3);
574     }
575 }
576 
endContour()577 GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
578     SkASSERT(fBuildingContour);
579     SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
580 
581     // The fTriangles field currently contains this contour's starting verb index. We can now
582     // use it to calculate the size of the contour's fan.
583     int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
584     if (fCurrFanPoint == fCurrAnchorPoint) {
585         --fanSize;
586         fVerbs.push_back(Verb::kEndClosedContour);
587     } else {
588         fVerbs.push_back(Verb::kEndOpenContour);
589     }
590 
591     fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);
592 
593     SkDEBUGCODE(fBuildingContour = false);
594     return fCurrContourTallies;
595 }
596