1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrCCGeometry.h"
9
10 #include "GrTypes.h"
11 #include "GrPathUtils.h"
12 #include <algorithm>
13 #include <cmath>
14 #include <cstdlib>
15
16 // We convert between SkPoint and Sk2f freely throughout this file.
17 GR_STATIC_ASSERT(SK_SCALAR_IS_FLOAT);
18 GR_STATIC_ASSERT(2 * sizeof(float) == sizeof(SkPoint));
19 GR_STATIC_ASSERT(0 == offsetof(SkPoint, fX));
20
beginPath()21 void GrCCGeometry::beginPath() {
22 SkASSERT(!fBuildingContour);
23 fVerbs.push_back(Verb::kBeginPath);
24 }
25
beginContour(const SkPoint & devPt)26 void GrCCGeometry::beginContour(const SkPoint& devPt) {
27 SkASSERT(!fBuildingContour);
28
29 fCurrFanPoint = fCurrAnchorPoint = devPt;
30
31 // Store the current verb count in the fTriangles field for now. When we close the contour we
32 // will use this value to calculate the actual number of triangles in its fan.
33 fCurrContourTallies = {fVerbs.count(), 0, 0};
34
35 fPoints.push_back(devPt);
36 fVerbs.push_back(Verb::kBeginContour);
37
38 SkDEBUGCODE(fBuildingContour = true);
39 }
40
lineTo(const SkPoint & devPt)41 void GrCCGeometry::lineTo(const SkPoint& devPt) {
42 SkASSERT(fBuildingContour);
43 SkASSERT(fCurrFanPoint == fPoints.back());
44 fCurrFanPoint = devPt;
45 fPoints.push_back(devPt);
46 fVerbs.push_back(Verb::kLineTo);
47 }
48
normalize(const Sk2f & n)49 static inline Sk2f normalize(const Sk2f& n) {
50 Sk2f nn = n*n;
51 return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt();
52 }
53
dot(const Sk2f & a,const Sk2f & b)54 static inline float dot(const Sk2f& a, const Sk2f& b) {
55 float product[2];
56 (a * b).store(product);
57 return product[0] + product[1];
58 }
59
are_collinear(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2)60 static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) {
61 static constexpr float kFlatnessTolerance = 4; // 1/4 of a pixel.
62
63 // Area (times 2) of the triangle.
64 Sk2f a = (p0 - p1) * SkNx_shuffle<1,0>(p1 - p2);
65 a = (a - SkNx_shuffle<1,0>(a)).abs();
66
67 // Bounding box of the triangle.
68 Sk2f bbox0 = Sk2f::Min(Sk2f::Min(p0, p1), p2);
69 Sk2f bbox1 = Sk2f::Max(Sk2f::Max(p0, p1), p2);
70
71 // The triangle is linear if its area is within a fraction of the largest bounding box
72 // dimension, or else if its area is within a fraction of a pixel.
73 return (a * (kFlatnessTolerance/2) < Sk2f::Max(bbox1 - bbox0, 1)).anyTrue();
74 }
75
76 // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt].
is_convex_curve_monotonic(const Sk2f & startPt,const Sk2f & startTan,const Sk2f & endPt,const Sk2f & endTan)77 static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& startTan,
78 const Sk2f& endPt, const Sk2f& endTan) {
79 Sk2f v = endPt - startPt;
80 float dot0 = dot(startTan, v);
81 float dot1 = dot(endTan, v);
82
83 // A small, negative tolerance handles floating-point error in the case when one tangent
84 // approaches 0 length, meaning the (convex) curve segment is effectively a flat line.
85 float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero;
86 return dot0 >= tolerance && dot1 >= tolerance;
87 }
88
lerp(const Sk2f & a,const Sk2f & b,const Sk2f & t)89 static inline Sk2f lerp(const Sk2f& a, const Sk2f& b, const Sk2f& t) {
90 return SkNx_fma(t, b - a, a);
91 }
92
quadraticTo(const SkPoint & devP0,const SkPoint & devP1)93 void GrCCGeometry::quadraticTo(const SkPoint& devP0, const SkPoint& devP1) {
94 SkASSERT(fBuildingContour);
95 SkASSERT(fCurrFanPoint == fPoints.back());
96
97 Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
98 Sk2f p1 = Sk2f::Load(&devP0);
99 Sk2f p2 = Sk2f::Load(&devP1);
100 fCurrFanPoint = devP1;
101
102 this->appendMonotonicQuadratics(p0, p1, p2);
103 }
104
appendMonotonicQuadratics(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2)105 inline void GrCCGeometry::appendMonotonicQuadratics(const Sk2f& p0, const Sk2f& p1,
106 const Sk2f& p2) {
107 Sk2f tan0 = p1 - p0;
108 Sk2f tan1 = p2 - p1;
109
110 // This should almost always be this case for well-behaved curves in the real world.
111 if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) {
112 this->appendSingleMonotonicQuadratic(p0, p1, p2);
113 return;
114 }
115
116 // Chop the curve into two segments with equal curvature. To do this we find the T value whose
117 // tangent is perpendicular to the vector that bisects tan0 and -tan1.
118 Sk2f n = normalize(tan0) - normalize(tan1);
119
120 // This tangent can be found where (dQ(t) dot n) = 0:
121 //
122 // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n |
123 // | -2*p0 + 2*p1 | | . |
124 //
125 // = | 2*t 1 | * | tan1 - tan0 | * | n |
126 // | 2*tan0 | | . |
127 //
128 // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n)
129 //
130 // t = (tan0 dot n) / ((tan0 - tan1) dot n)
131 Sk2f dQ1n = (tan0 - tan1) * n;
132 Sk2f dQ0n = tan0 * n;
133 Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n));
134 t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error.
135
136 Sk2f p01 = SkNx_fma(t, tan0, p0);
137 Sk2f p12 = SkNx_fma(t, tan1, p1);
138 Sk2f p012 = lerp(p01, p12, t);
139
140 this->appendSingleMonotonicQuadratic(p0, p01, p012);
141 this->appendSingleMonotonicQuadratic(p012, p12, p2);
142 }
143
appendSingleMonotonicQuadratic(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2)144 inline void GrCCGeometry::appendSingleMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1,
145 const Sk2f& p2) {
146 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
147
148 // Don't send curves to the GPU if we know they are nearly flat (or just very small).
149 if (are_collinear(p0, p1, p2)) {
150 p2.store(&fPoints.push_back());
151 fVerbs.push_back(Verb::kLineTo);
152 return;
153 }
154
155 p1.store(&fPoints.push_back());
156 p2.store(&fPoints.push_back());
157 fVerbs.push_back(Verb::kMonotonicQuadraticTo);
158 ++fCurrContourTallies.fQuadratics;
159 }
160
161 using ExcludedTerm = GrPathUtils::ExcludedTerm;
162
163 // Calculates the padding to apply around inflection points, in homogeneous parametric coordinates.
164 //
165 // More specifically, if the inflection point lies at C(t/s), then C((t +/- returnValue) / s) will
166 // be the two points on the curve at which a square box with radius "padRadius" will have a corner
167 // that touches the inflection point's tangent line.
168 //
169 // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding
170 // for both in SIMD.
calc_inflect_homogeneous_padding(float padRadius,const Sk2f & t,const Sk2f & s,const SkMatrix & CIT,ExcludedTerm skipTerm)171 static inline Sk2f calc_inflect_homogeneous_padding(float padRadius, const Sk2f& t, const Sk2f& s,
172 const SkMatrix& CIT, ExcludedTerm skipTerm) {
173 SkASSERT(padRadius >= 0);
174
175 Sk2f Clx = s*s*s;
176 Sk2f Cly = (ExcludedTerm::kLinearTerm == skipTerm) ? s*s*t*-3 : s*t*t*3;
177
178 Sk2f Lx = CIT[0] * Clx + CIT[3] * Cly;
179 Sk2f Ly = CIT[1] * Clx + CIT[4] * Cly;
180
181 float ret[2];
182 Sk2f bloat = padRadius * (Lx.abs() + Ly.abs());
183 (bloat * s >= 0).thenElse(bloat, -bloat).store(ret);
184
185 ret[0] = cbrtf(ret[0]);
186 ret[1] = cbrtf(ret[1]);
187 return Sk2f::Load(ret);
188 }
189
swap_if_greater(float & a,float & b)190 static inline void swap_if_greater(float& a, float& b) {
191 if (a > b) {
192 std::swap(a, b);
193 }
194 }
195
196 // Calculates all parameter values for a loop at which points a square box with radius "padRadius"
197 // will have a corner that touches a tangent line from the intersection.
198 //
199 // T2 must contain the lesser parameter value of the loop intersection in its first component, and
200 // the greater in its second.
201 //
202 // roots[0] will be filled with 1 or 3 sorted parameter values, representing the padding points
203 // around the first tangent. roots[1] will be filled with the padding points for the second tangent.
calc_loop_intersect_padding_pts(float padRadius,const Sk2f & T2,const SkMatrix & CIT,ExcludedTerm skipTerm,SkSTArray<3,float,true> roots[2])204 static inline void calc_loop_intersect_padding_pts(float padRadius, const Sk2f& T2,
205 const SkMatrix& CIT, ExcludedTerm skipTerm,
206 SkSTArray<3, float, true> roots[2]) {
207 SkASSERT(padRadius >= 0);
208 SkASSERT(T2[0] <= T2[1]);
209 SkASSERT(roots[0].empty());
210 SkASSERT(roots[1].empty());
211
212 Sk2f T1 = SkNx_shuffle<1,0>(T2);
213 Sk2f Cl = (ExcludedTerm::kLinearTerm == skipTerm) ? T2*-2 - T1 : T2*T2 + T2*T1*2;
214 Sk2f Lx = Cl * CIT[3] + CIT[0];
215 Sk2f Ly = Cl * CIT[4] + CIT[1];
216
217 Sk2f bloat = Sk2f(+.5f * padRadius, -.5f * padRadius) * (Lx.abs() + Ly.abs());
218 Sk2f q = (1.f/3) * (T2 - T1);
219
220 Sk2f qqq = q*q*q;
221 Sk2f discr = qqq*bloat*2 + bloat*bloat;
222
223 float numRoots[2], D[2];
224 (discr < 0).thenElse(3, 1).store(numRoots);
225 (T2 - q).store(D);
226
227 // Values for calculating one root.
228 float R[2], QQ[2];
229 if ((discr >= 0).anyTrue()) {
230 Sk2f r = qqq + bloat;
231 Sk2f s = r.abs() + discr.sqrt();
232 (r > 0).thenElse(-s, s).store(R);
233 (q*q).store(QQ);
234 }
235
236 // Values for calculating three roots.
237 float P[2], cosTheta3[2];
238 if ((discr < 0).anyTrue()) {
239 (q.abs() * -2).store(P);
240 ((q >= 0).thenElse(1, -1) + bloat / qqq.abs()).store(cosTheta3);
241 }
242
243 for (int i = 0; i < 2; ++i) {
244 if (1 == numRoots[i]) {
245 float A = cbrtf(R[i]);
246 float B = A != 0 ? QQ[i]/A : 0;
247 roots[i].push_back(A + B + D[i]);
248 continue;
249 }
250
251 static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3;
252 float theta = std::acos(cosTheta3[i]) * (1.f/3);
253 roots[i].push_back(P[i] * std::cos(theta) + D[i]);
254 roots[i].push_back(P[i] * std::cos(theta + k2PiOver3) + D[i]);
255 roots[i].push_back(P[i] * std::cos(theta - k2PiOver3) + D[i]);
256
257 // Sort the three roots.
258 swap_if_greater(roots[i][0], roots[i][1]);
259 swap_if_greater(roots[i][1], roots[i][2]);
260 swap_if_greater(roots[i][0], roots[i][1]);
261 }
262 }
263
first_unless_nearly_zero(const Sk2f & a,const Sk2f & b)264 static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) {
265 Sk2f aa = a*a;
266 aa += SkNx_shuffle<1,0>(aa);
267 SkASSERT(aa[0] == aa[1]);
268
269 Sk2f bb = b*b;
270 bb += SkNx_shuffle<1,0>(bb);
271 SkASSERT(bb[0] == bb[1]);
272
273 return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b);
274 }
275
is_cubic_nearly_quadratic(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,Sk2f & tan0,Sk2f & tan3,Sk2f & c)276 static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
277 const Sk2f& p3, Sk2f& tan0, Sk2f& tan3, Sk2f& c) {
278 tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
279 tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
280
281 Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0);
282 Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan3, p3);
283 c = (c1 + c2) * .5f; // Hopefully optimized out if not used?
284
285 return ((c1 - c2).abs() <= 1).allTrue();
286 }
287
cubicTo(const SkPoint & devP1,const SkPoint & devP2,const SkPoint & devP3,float inflectPad,float loopIntersectPad)288 void GrCCGeometry::cubicTo(const SkPoint& devP1, const SkPoint& devP2, const SkPoint& devP3,
289 float inflectPad, float loopIntersectPad) {
290 SkASSERT(fBuildingContour);
291 SkASSERT(fCurrFanPoint == fPoints.back());
292
293 SkPoint devPts[4] = {fCurrFanPoint, devP1, devP2, devP3};
294 Sk2f p0 = Sk2f::Load(&fCurrFanPoint);
295 Sk2f p1 = Sk2f::Load(&devP1);
296 Sk2f p2 = Sk2f::Load(&devP2);
297 Sk2f p3 = Sk2f::Load(&devP3);
298 fCurrFanPoint = devP3;
299
300 // Don't crunch on the curve and inflate geometry if it is nearly flat (or just very small).
301 if (are_collinear(p0, p1, p2) &&
302 are_collinear(p1, p2, p3) &&
303 are_collinear(p0, (p1 + p2) * .5f, p3)) {
304 p3.store(&fPoints.push_back());
305 fVerbs.push_back(Verb::kLineTo);
306 return;
307 }
308
309 // Also detect near-quadratics ahead of time.
310 Sk2f tan0, tan3, c;
311 if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan3, c)) {
312 this->appendMonotonicQuadratics(p0, c, p3);
313 return;
314 }
315
316 double tt[2], ss[2];
317 fCurrCubicType = SkClassifyCubic(devPts, tt, ss);
318 SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); // Should have been caught above.
319
320 SkMatrix CIT;
321 ExcludedTerm skipTerm = GrPathUtils::calcCubicInverseTransposePowerBasisMatrix(devPts, &CIT);
322 SkASSERT(ExcludedTerm::kNonInvertible != skipTerm); // Should have been caught above.
323 SkASSERT(0 == CIT[6]);
324 SkASSERT(0 == CIT[7]);
325 SkASSERT(1 == CIT[8]);
326
327 // Each cubic has five different sections (not always inside t=[0..1]):
328 //
329 // 1. The section before the first inflection or loop intersection point, with padding.
330 // 2. The section that passes through the first inflection/intersection (aka the K,L
331 // intersection point or T=tt[0]/ss[0]).
332 // 3. The section between the two inflections/intersections, with padding.
333 // 4. The section that passes through the second inflection/intersection (aka the K,M
334 // intersection point or T=tt[1]/ss[1]).
335 // 5. The section after the second inflection/intersection, with padding.
336 //
337 // Sections 1,3,5 can be rendered directly using the CCPR cubic shader.
338 //
339 // Sections 2 & 4 must be approximated. For loop intersections we render them with
340 // quadratic(s), and when passing through an inflection point we use a plain old flat line.
341 //
342 // We find T0..T3 below to be the dividing points between these five sections.
343 float T0, T1, T2, T3;
344 if (SkCubicType::kLoop != fCurrCubicType) {
345 Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1]));
346 Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1]));
347 Sk2f pad = calc_inflect_homogeneous_padding(inflectPad, t, s, CIT, skipTerm);
348
349 float T[2];
350 ((t - pad) / s).store(T);
351 T0 = T[0];
352 T2 = T[1];
353
354 ((t + pad) / s).store(T);
355 T1 = T[0];
356 T3 = T[1];
357 } else {
358 const float T[2] = {static_cast<float>(tt[0]/ss[0]), static_cast<float>(tt[1]/ss[1])};
359 SkSTArray<3, float, true> roots[2];
360 calc_loop_intersect_padding_pts(loopIntersectPad, Sk2f::Load(T), CIT, skipTerm, roots);
361 T0 = roots[0].front();
362 if (1 == roots[0].count() || 1 == roots[1].count()) {
363 // The loop is tighter than our desired padding. Collapse the middle section to a point
364 // somewhere in the middle-ish of the loop and Sections 2 & 4 will approximate the the
365 // whole thing with quadratics.
366 T1 = T2 = (T[0] + T[1]) * .5f;
367 } else {
368 T1 = roots[0][1];
369 T2 = roots[1][1];
370 }
371 T3 = roots[1].back();
372 }
373
374 // Guarantee that T0..T3 are monotonic.
375 if (T0 > T3) {
376 // This is not a mathematically valid scenario. The only reason it would happen is if
377 // padding is very small and we have encountered FP rounding error.
378 T0 = T1 = T2 = T3 = (T0 + T3) / 2;
379 } else if (T1 > T2) {
380 // This just means padding before the middle section overlaps the padding after it. We
381 // collapse the middle section to a single point that splits the difference between the
382 // overlap in padding.
383 T1 = T2 = (T1 + T2) / 2;
384 }
385 // Clamp T1 & T2 inside T0..T3. The only reason this would be necessary is if we have
386 // encountered FP rounding error.
387 T1 = std::max(T0, std::min(T1, T3));
388 T2 = std::max(T0, std::min(T2, T3));
389
390 // Next we chop the cubic up at all T0..T3 inside 0..1 and store the resulting segments.
391 if (T1 >= 1) {
392 // Only sections 1 & 2 can be in 0..1.
393 this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
394 &GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3, T0);
395 return;
396 }
397
398 if (T2 <= 0) {
399 // Only sections 4 & 5 can be in 0..1.
400 this->chopCubic<&GrCCGeometry::appendCubicApproximation,
401 &GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3, T3);
402 return;
403 }
404
405 Sk2f midp0, midp1; // These hold the first two bezier points of the middle section, if needed.
406
407 if (T1 > 0) {
408 Sk2f T1T1 = Sk2f(T1);
409 Sk2f ab1 = lerp(p0, p1, T1T1);
410 Sk2f bc1 = lerp(p1, p2, T1T1);
411 Sk2f cd1 = lerp(p2, p3, T1T1);
412 Sk2f abc1 = lerp(ab1, bc1, T1T1);
413 Sk2f bcd1 = lerp(bc1, cd1, T1T1);
414 Sk2f abcd1 = lerp(abc1, bcd1, T1T1);
415
416 // Sections 1 & 2.
417 this->chopCubic<&GrCCGeometry::appendMonotonicCubics,
418 &GrCCGeometry::appendCubicApproximation>(p0, ab1, abc1, abcd1, T0/T1);
419
420 if (T2 >= 1) {
421 // The rest of the curve is Section 3 (middle section).
422 this->appendMonotonicCubics(abcd1, bcd1, cd1, p3);
423 return;
424 }
425
426 // Now calculate the first two bezier points of the middle section. The final two will come
427 // from when we chop the other side, as that is numerically more stable.
428 midp0 = abcd1;
429 midp1 = lerp(abcd1, bcd1, Sk2f((T2 - T1) / (1 - T1)));
430 } else if (T2 >= 1) {
431 // The entire cubic is Section 3 (middle section).
432 this->appendMonotonicCubics(p0, p1, p2, p3);
433 return;
434 }
435
436 SkASSERT(T2 > 0 && T2 < 1);
437
438 Sk2f T2T2 = Sk2f(T2);
439 Sk2f ab2 = lerp(p0, p1, T2T2);
440 Sk2f bc2 = lerp(p1, p2, T2T2);
441 Sk2f cd2 = lerp(p2, p3, T2T2);
442 Sk2f abc2 = lerp(ab2, bc2, T2T2);
443 Sk2f bcd2 = lerp(bc2, cd2, T2T2);
444 Sk2f abcd2 = lerp(abc2, bcd2, T2T2);
445
446 if (T1 <= 0) {
447 // The curve begins at Section 3 (middle section).
448 this->appendMonotonicCubics(p0, ab2, abc2, abcd2);
449 } else if (T2 > T1) {
450 // Section 3 (middle section).
451 Sk2f midp2 = lerp(abc2, abcd2, T1/T2);
452 this->appendMonotonicCubics(midp0, midp1, midp2, abcd2);
453 }
454
455 // Sections 4 & 5.
456 this->chopCubic<&GrCCGeometry::appendCubicApproximation,
457 &GrCCGeometry::appendMonotonicCubics>(abcd2, bcd2, cd2, p3, (T3-T2) / (1-T2));
458 }
459
460 template<GrCCGeometry::AppendCubicFn AppendLeftRight>
chopCubicAtMidTangent(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,const Sk2f & tan0,const Sk2f & tan3,int maxFutureSubdivisions)461 inline void GrCCGeometry::chopCubicAtMidTangent(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
462 const Sk2f& p3, const Sk2f& tan0,
463 const Sk2f& tan3, int maxFutureSubdivisions) {
464 // Find the T value whose tangent is perpendicular to the vector that bisects tan0 and -tan3.
465 Sk2f n = normalize(tan0) - normalize(tan3);
466
467 float a = 3 * dot(p3 + (p1 - p2)*3 - p0, n);
468 float b = 6 * dot(p0 - p1*2 + p2, n);
469 float c = 3 * dot(p1 - p0, n);
470
471 float discr = b*b - 4*a*c;
472 if (discr < 0) {
473 // If this is the case then the cubic must be nearly flat.
474 (this->*AppendLeftRight)(p0, p1, p2, p3, maxFutureSubdivisions);
475 return;
476 }
477
478 float q = -.5f * (b + copysignf(std::sqrt(discr), b));
479 float m = .5f*q*a;
480 float T = std::abs(q*q - m) < std::abs(a*c - m) ? q/a : c/q;
481
482 this->chopCubic<AppendLeftRight, AppendLeftRight>(p0, p1, p2, p3, T, maxFutureSubdivisions);
483 }
484
485 template<GrCCGeometry::AppendCubicFn AppendLeft, GrCCGeometry::AppendCubicFn AppendRight>
chopCubic(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,float T,int maxFutureSubdivisions)486 inline void GrCCGeometry::chopCubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
487 const Sk2f& p3, float T, int maxFutureSubdivisions) {
488 if (T >= 1) {
489 (this->*AppendLeft)(p0, p1, p2, p3, maxFutureSubdivisions);
490 return;
491 }
492
493 if (T <= 0) {
494 (this->*AppendRight)(p0, p1, p2, p3, maxFutureSubdivisions);
495 return;
496 }
497
498 Sk2f TT = T;
499 Sk2f ab = lerp(p0, p1, TT);
500 Sk2f bc = lerp(p1, p2, TT);
501 Sk2f cd = lerp(p2, p3, TT);
502 Sk2f abc = lerp(ab, bc, TT);
503 Sk2f bcd = lerp(bc, cd, TT);
504 Sk2f abcd = lerp(abc, bcd, TT);
505 (this->*AppendLeft)(p0, ab, abc, abcd, maxFutureSubdivisions);
506 (this->*AppendRight)(abcd, bcd, cd, p3, maxFutureSubdivisions);
507 }
508
appendMonotonicCubics(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,int maxSubdivisions)509 void GrCCGeometry::appendMonotonicCubics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
510 const Sk2f& p3, int maxSubdivisions) {
511 SkASSERT(maxSubdivisions >= 0);
512 if ((p0 == p3).allTrue()) {
513 return;
514 }
515
516 if (maxSubdivisions) {
517 Sk2f tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0);
518 Sk2f tan3 = first_unless_nearly_zero(p3 - p2, p3 - p1);
519
520 if (!is_convex_curve_monotonic(p0, tan0, p3, tan3)) {
521 this->chopCubicAtMidTangent<&GrCCGeometry::appendMonotonicCubics>(p0, p1, p2, p3,
522 tan0, tan3,
523 maxSubdivisions - 1);
524 return;
525 }
526 }
527
528 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
529
530 // Don't send curves to the GPU if we know they are nearly flat (or just very small).
531 // Since the cubic segment is known to be convex at this point, our flatness check is simple.
532 if (are_collinear(p0, (p1 + p2) * .5f, p3)) {
533 p3.store(&fPoints.push_back());
534 fVerbs.push_back(Verb::kLineTo);
535 return;
536 }
537
538 p1.store(&fPoints.push_back());
539 p2.store(&fPoints.push_back());
540 p3.store(&fPoints.push_back());
541 fVerbs.push_back(Verb::kMonotonicCubicTo);
542 ++fCurrContourTallies.fCubics;
543 }
544
appendCubicApproximation(const Sk2f & p0,const Sk2f & p1,const Sk2f & p2,const Sk2f & p3,int maxSubdivisions)545 void GrCCGeometry::appendCubicApproximation(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2,
546 const Sk2f& p3, int maxSubdivisions) {
547 SkASSERT(maxSubdivisions >= 0);
548 if ((p0 == p3).allTrue()) {
549 return;
550 }
551
552 if (SkCubicType::kLoop != fCurrCubicType && SkCubicType::kQuadratic != fCurrCubicType) {
553 // This section passes through an inflection point, so we can get away with a flat line.
554 // This can cause some curves to feel slightly more flat when inspected rigorously back and
555 // forth against another renderer, but for now this seems acceptable given the simplicity.
556 SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1]));
557 p3.store(&fPoints.push_back());
558 fVerbs.push_back(Verb::kLineTo);
559 return;
560 }
561
562 Sk2f tan0, tan3, c;
563 if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan3, c) && maxSubdivisions) {
564 this->chopCubicAtMidTangent<&GrCCGeometry::appendCubicApproximation>(p0, p1, p2, p3,
565 tan0, tan3,
566 maxSubdivisions - 1);
567 return;
568 }
569
570 if (maxSubdivisions) {
571 this->appendMonotonicQuadratics(p0, c, p3);
572 } else {
573 this->appendSingleMonotonicQuadratic(p0, c, p3);
574 }
575 }
576
endContour()577 GrCCGeometry::PrimitiveTallies GrCCGeometry::endContour() {
578 SkASSERT(fBuildingContour);
579 SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles);
580
581 // The fTriangles field currently contains this contour's starting verb index. We can now
582 // use it to calculate the size of the contour's fan.
583 int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles;
584 if (fCurrFanPoint == fCurrAnchorPoint) {
585 --fanSize;
586 fVerbs.push_back(Verb::kEndClosedContour);
587 } else {
588 fVerbs.push_back(Verb::kEndOpenContour);
589 }
590
591 fCurrContourTallies.fTriangles = SkTMax(fanSize - 2, 0);
592
593 SkDEBUGCODE(fBuildingContour = false);
594 return fCurrContourTallies;
595 }
596