1 #include "llvm/DerivedTypes.h"
2 #include "llvm/ExecutionEngine/ExecutionEngine.h"
3 #include "llvm/ExecutionEngine/JIT.h"
4 #include "llvm/LLVMContext.h"
5 #include "llvm/Module.h"
6 #include "llvm/PassManager.h"
7 #include "llvm/Analysis/Verifier.h"
8 #include "llvm/Analysis/Passes.h"
9 #include "llvm/Target/TargetData.h"
10 #include "llvm/Transforms/Scalar.h"
11 #include "llvm/Support/IRBuilder.h"
12 #include "llvm/Support/TargetSelect.h"
13 #include <cstdio>
14 #include <string>
15 #include <map>
16 #include <vector>
17 using namespace llvm;
18
19 //===----------------------------------------------------------------------===//
20 // Lexer
21 //===----------------------------------------------------------------------===//
22
23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
24 // of these for known things.
25 enum Token {
26 tok_eof = -1,
27
28 // commands
29 tok_def = -2, tok_extern = -3,
30
31 // primary
32 tok_identifier = -4, tok_number = -5,
33
34 // control
35 tok_if = -6, tok_then = -7, tok_else = -8,
36 tok_for = -9, tok_in = -10,
37
38 // operators
39 tok_binary = -11, tok_unary = -12,
40
41 // var definition
42 tok_var = -13
43 };
44
45 static std::string IdentifierStr; // Filled in if tok_identifier
46 static double NumVal; // Filled in if tok_number
47
48 /// gettok - Return the next token from standard input.
gettok()49 static int gettok() {
50 static int LastChar = ' ';
51
52 // Skip any whitespace.
53 while (isspace(LastChar))
54 LastChar = getchar();
55
56 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
57 IdentifierStr = LastChar;
58 while (isalnum((LastChar = getchar())))
59 IdentifierStr += LastChar;
60
61 if (IdentifierStr == "def") return tok_def;
62 if (IdentifierStr == "extern") return tok_extern;
63 if (IdentifierStr == "if") return tok_if;
64 if (IdentifierStr == "then") return tok_then;
65 if (IdentifierStr == "else") return tok_else;
66 if (IdentifierStr == "for") return tok_for;
67 if (IdentifierStr == "in") return tok_in;
68 if (IdentifierStr == "binary") return tok_binary;
69 if (IdentifierStr == "unary") return tok_unary;
70 if (IdentifierStr == "var") return tok_var;
71 return tok_identifier;
72 }
73
74 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
75 std::string NumStr;
76 do {
77 NumStr += LastChar;
78 LastChar = getchar();
79 } while (isdigit(LastChar) || LastChar == '.');
80
81 NumVal = strtod(NumStr.c_str(), 0);
82 return tok_number;
83 }
84
85 if (LastChar == '#') {
86 // Comment until end of line.
87 do LastChar = getchar();
88 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
89
90 if (LastChar != EOF)
91 return gettok();
92 }
93
94 // Check for end of file. Don't eat the EOF.
95 if (LastChar == EOF)
96 return tok_eof;
97
98 // Otherwise, just return the character as its ascii value.
99 int ThisChar = LastChar;
100 LastChar = getchar();
101 return ThisChar;
102 }
103
104 //===----------------------------------------------------------------------===//
105 // Abstract Syntax Tree (aka Parse Tree)
106 //===----------------------------------------------------------------------===//
107
108 /// ExprAST - Base class for all expression nodes.
109 class ExprAST {
110 public:
~ExprAST()111 virtual ~ExprAST() {}
112 virtual Value *Codegen() = 0;
113 };
114
115 /// NumberExprAST - Expression class for numeric literals like "1.0".
116 class NumberExprAST : public ExprAST {
117 double Val;
118 public:
NumberExprAST(double val)119 NumberExprAST(double val) : Val(val) {}
120 virtual Value *Codegen();
121 };
122
123 /// VariableExprAST - Expression class for referencing a variable, like "a".
124 class VariableExprAST : public ExprAST {
125 std::string Name;
126 public:
VariableExprAST(const std::string & name)127 VariableExprAST(const std::string &name) : Name(name) {}
getName() const128 const std::string &getName() const { return Name; }
129 virtual Value *Codegen();
130 };
131
132 /// UnaryExprAST - Expression class for a unary operator.
133 class UnaryExprAST : public ExprAST {
134 char Opcode;
135 ExprAST *Operand;
136 public:
UnaryExprAST(char opcode,ExprAST * operand)137 UnaryExprAST(char opcode, ExprAST *operand)
138 : Opcode(opcode), Operand(operand) {}
139 virtual Value *Codegen();
140 };
141
142 /// BinaryExprAST - Expression class for a binary operator.
143 class BinaryExprAST : public ExprAST {
144 char Op;
145 ExprAST *LHS, *RHS;
146 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)147 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
148 : Op(op), LHS(lhs), RHS(rhs) {}
149 virtual Value *Codegen();
150 };
151
152 /// CallExprAST - Expression class for function calls.
153 class CallExprAST : public ExprAST {
154 std::string Callee;
155 std::vector<ExprAST*> Args;
156 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)157 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
158 : Callee(callee), Args(args) {}
159 virtual Value *Codegen();
160 };
161
162 /// IfExprAST - Expression class for if/then/else.
163 class IfExprAST : public ExprAST {
164 ExprAST *Cond, *Then, *Else;
165 public:
IfExprAST(ExprAST * cond,ExprAST * then,ExprAST * _else)166 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
167 : Cond(cond), Then(then), Else(_else) {}
168 virtual Value *Codegen();
169 };
170
171 /// ForExprAST - Expression class for for/in.
172 class ForExprAST : public ExprAST {
173 std::string VarName;
174 ExprAST *Start, *End, *Step, *Body;
175 public:
ForExprAST(const std::string & varname,ExprAST * start,ExprAST * end,ExprAST * step,ExprAST * body)176 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
177 ExprAST *step, ExprAST *body)
178 : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
179 virtual Value *Codegen();
180 };
181
182 /// VarExprAST - Expression class for var/in
183 class VarExprAST : public ExprAST {
184 std::vector<std::pair<std::string, ExprAST*> > VarNames;
185 ExprAST *Body;
186 public:
VarExprAST(const std::vector<std::pair<std::string,ExprAST * >> & varnames,ExprAST * body)187 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
188 ExprAST *body)
189 : VarNames(varnames), Body(body) {}
190
191 virtual Value *Codegen();
192 };
193
194 /// PrototypeAST - This class represents the "prototype" for a function,
195 /// which captures its argument names as well as if it is an operator.
196 class PrototypeAST {
197 std::string Name;
198 std::vector<std::string> Args;
199 bool isOperator;
200 unsigned Precedence; // Precedence if a binary op.
201 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args,bool isoperator=false,unsigned prec=0)202 PrototypeAST(const std::string &name, const std::vector<std::string> &args,
203 bool isoperator = false, unsigned prec = 0)
204 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
205
isUnaryOp() const206 bool isUnaryOp() const { return isOperator && Args.size() == 1; }
isBinaryOp() const207 bool isBinaryOp() const { return isOperator && Args.size() == 2; }
208
getOperatorName() const209 char getOperatorName() const {
210 assert(isUnaryOp() || isBinaryOp());
211 return Name[Name.size()-1];
212 }
213
getBinaryPrecedence() const214 unsigned getBinaryPrecedence() const { return Precedence; }
215
216 Function *Codegen();
217
218 void CreateArgumentAllocas(Function *F);
219 };
220
221 /// FunctionAST - This class represents a function definition itself.
222 class FunctionAST {
223 PrototypeAST *Proto;
224 ExprAST *Body;
225 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)226 FunctionAST(PrototypeAST *proto, ExprAST *body)
227 : Proto(proto), Body(body) {}
228
229 Function *Codegen();
230 };
231
232 //===----------------------------------------------------------------------===//
233 // Parser
234 //===----------------------------------------------------------------------===//
235
236 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
237 /// token the parser is looking at. getNextToken reads another token from the
238 /// lexer and updates CurTok with its results.
239 static int CurTok;
getNextToken()240 static int getNextToken() {
241 return CurTok = gettok();
242 }
243
244 /// BinopPrecedence - This holds the precedence for each binary operator that is
245 /// defined.
246 static std::map<char, int> BinopPrecedence;
247
248 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()249 static int GetTokPrecedence() {
250 if (!isascii(CurTok))
251 return -1;
252
253 // Make sure it's a declared binop.
254 int TokPrec = BinopPrecedence[CurTok];
255 if (TokPrec <= 0) return -1;
256 return TokPrec;
257 }
258
259 /// Error* - These are little helper functions for error handling.
Error(const char * Str)260 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)261 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)262 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
263
264 static ExprAST *ParseExpression();
265
266 /// identifierexpr
267 /// ::= identifier
268 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()269 static ExprAST *ParseIdentifierExpr() {
270 std::string IdName = IdentifierStr;
271
272 getNextToken(); // eat identifier.
273
274 if (CurTok != '(') // Simple variable ref.
275 return new VariableExprAST(IdName);
276
277 // Call.
278 getNextToken(); // eat (
279 std::vector<ExprAST*> Args;
280 if (CurTok != ')') {
281 while (1) {
282 ExprAST *Arg = ParseExpression();
283 if (!Arg) return 0;
284 Args.push_back(Arg);
285
286 if (CurTok == ')') break;
287
288 if (CurTok != ',')
289 return Error("Expected ')' or ',' in argument list");
290 getNextToken();
291 }
292 }
293
294 // Eat the ')'.
295 getNextToken();
296
297 return new CallExprAST(IdName, Args);
298 }
299
300 /// numberexpr ::= number
ParseNumberExpr()301 static ExprAST *ParseNumberExpr() {
302 ExprAST *Result = new NumberExprAST(NumVal);
303 getNextToken(); // consume the number
304 return Result;
305 }
306
307 /// parenexpr ::= '(' expression ')'
ParseParenExpr()308 static ExprAST *ParseParenExpr() {
309 getNextToken(); // eat (.
310 ExprAST *V = ParseExpression();
311 if (!V) return 0;
312
313 if (CurTok != ')')
314 return Error("expected ')'");
315 getNextToken(); // eat ).
316 return V;
317 }
318
319 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()320 static ExprAST *ParseIfExpr() {
321 getNextToken(); // eat the if.
322
323 // condition.
324 ExprAST *Cond = ParseExpression();
325 if (!Cond) return 0;
326
327 if (CurTok != tok_then)
328 return Error("expected then");
329 getNextToken(); // eat the then
330
331 ExprAST *Then = ParseExpression();
332 if (Then == 0) return 0;
333
334 if (CurTok != tok_else)
335 return Error("expected else");
336
337 getNextToken();
338
339 ExprAST *Else = ParseExpression();
340 if (!Else) return 0;
341
342 return new IfExprAST(Cond, Then, Else);
343 }
344
345 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()346 static ExprAST *ParseForExpr() {
347 getNextToken(); // eat the for.
348
349 if (CurTok != tok_identifier)
350 return Error("expected identifier after for");
351
352 std::string IdName = IdentifierStr;
353 getNextToken(); // eat identifier.
354
355 if (CurTok != '=')
356 return Error("expected '=' after for");
357 getNextToken(); // eat '='.
358
359
360 ExprAST *Start = ParseExpression();
361 if (Start == 0) return 0;
362 if (CurTok != ',')
363 return Error("expected ',' after for start value");
364 getNextToken();
365
366 ExprAST *End = ParseExpression();
367 if (End == 0) return 0;
368
369 // The step value is optional.
370 ExprAST *Step = 0;
371 if (CurTok == ',') {
372 getNextToken();
373 Step = ParseExpression();
374 if (Step == 0) return 0;
375 }
376
377 if (CurTok != tok_in)
378 return Error("expected 'in' after for");
379 getNextToken(); // eat 'in'.
380
381 ExprAST *Body = ParseExpression();
382 if (Body == 0) return 0;
383
384 return new ForExprAST(IdName, Start, End, Step, Body);
385 }
386
387 /// varexpr ::= 'var' identifier ('=' expression)?
388 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()389 static ExprAST *ParseVarExpr() {
390 getNextToken(); // eat the var.
391
392 std::vector<std::pair<std::string, ExprAST*> > VarNames;
393
394 // At least one variable name is required.
395 if (CurTok != tok_identifier)
396 return Error("expected identifier after var");
397
398 while (1) {
399 std::string Name = IdentifierStr;
400 getNextToken(); // eat identifier.
401
402 // Read the optional initializer.
403 ExprAST *Init = 0;
404 if (CurTok == '=') {
405 getNextToken(); // eat the '='.
406
407 Init = ParseExpression();
408 if (Init == 0) return 0;
409 }
410
411 VarNames.push_back(std::make_pair(Name, Init));
412
413 // End of var list, exit loop.
414 if (CurTok != ',') break;
415 getNextToken(); // eat the ','.
416
417 if (CurTok != tok_identifier)
418 return Error("expected identifier list after var");
419 }
420
421 // At this point, we have to have 'in'.
422 if (CurTok != tok_in)
423 return Error("expected 'in' keyword after 'var'");
424 getNextToken(); // eat 'in'.
425
426 ExprAST *Body = ParseExpression();
427 if (Body == 0) return 0;
428
429 return new VarExprAST(VarNames, Body);
430 }
431
432 /// primary
433 /// ::= identifierexpr
434 /// ::= numberexpr
435 /// ::= parenexpr
436 /// ::= ifexpr
437 /// ::= forexpr
438 /// ::= varexpr
ParsePrimary()439 static ExprAST *ParsePrimary() {
440 switch (CurTok) {
441 default: return Error("unknown token when expecting an expression");
442 case tok_identifier: return ParseIdentifierExpr();
443 case tok_number: return ParseNumberExpr();
444 case '(': return ParseParenExpr();
445 case tok_if: return ParseIfExpr();
446 case tok_for: return ParseForExpr();
447 case tok_var: return ParseVarExpr();
448 }
449 }
450
451 /// unary
452 /// ::= primary
453 /// ::= '!' unary
ParseUnary()454 static ExprAST *ParseUnary() {
455 // If the current token is not an operator, it must be a primary expr.
456 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
457 return ParsePrimary();
458
459 // If this is a unary operator, read it.
460 int Opc = CurTok;
461 getNextToken();
462 if (ExprAST *Operand = ParseUnary())
463 return new UnaryExprAST(Opc, Operand);
464 return 0;
465 }
466
467 /// binoprhs
468 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)469 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
470 // If this is a binop, find its precedence.
471 while (1) {
472 int TokPrec = GetTokPrecedence();
473
474 // If this is a binop that binds at least as tightly as the current binop,
475 // consume it, otherwise we are done.
476 if (TokPrec < ExprPrec)
477 return LHS;
478
479 // Okay, we know this is a binop.
480 int BinOp = CurTok;
481 getNextToken(); // eat binop
482
483 // Parse the unary expression after the binary operator.
484 ExprAST *RHS = ParseUnary();
485 if (!RHS) return 0;
486
487 // If BinOp binds less tightly with RHS than the operator after RHS, let
488 // the pending operator take RHS as its LHS.
489 int NextPrec = GetTokPrecedence();
490 if (TokPrec < NextPrec) {
491 RHS = ParseBinOpRHS(TokPrec+1, RHS);
492 if (RHS == 0) return 0;
493 }
494
495 // Merge LHS/RHS.
496 LHS = new BinaryExprAST(BinOp, LHS, RHS);
497 }
498 }
499
500 /// expression
501 /// ::= unary binoprhs
502 ///
ParseExpression()503 static ExprAST *ParseExpression() {
504 ExprAST *LHS = ParseUnary();
505 if (!LHS) return 0;
506
507 return ParseBinOpRHS(0, LHS);
508 }
509
510 /// prototype
511 /// ::= id '(' id* ')'
512 /// ::= binary LETTER number? (id, id)
513 /// ::= unary LETTER (id)
ParsePrototype()514 static PrototypeAST *ParsePrototype() {
515 std::string FnName;
516
517 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
518 unsigned BinaryPrecedence = 30;
519
520 switch (CurTok) {
521 default:
522 return ErrorP("Expected function name in prototype");
523 case tok_identifier:
524 FnName = IdentifierStr;
525 Kind = 0;
526 getNextToken();
527 break;
528 case tok_unary:
529 getNextToken();
530 if (!isascii(CurTok))
531 return ErrorP("Expected unary operator");
532 FnName = "unary";
533 FnName += (char)CurTok;
534 Kind = 1;
535 getNextToken();
536 break;
537 case tok_binary:
538 getNextToken();
539 if (!isascii(CurTok))
540 return ErrorP("Expected binary operator");
541 FnName = "binary";
542 FnName += (char)CurTok;
543 Kind = 2;
544 getNextToken();
545
546 // Read the precedence if present.
547 if (CurTok == tok_number) {
548 if (NumVal < 1 || NumVal > 100)
549 return ErrorP("Invalid precedecnce: must be 1..100");
550 BinaryPrecedence = (unsigned)NumVal;
551 getNextToken();
552 }
553 break;
554 }
555
556 if (CurTok != '(')
557 return ErrorP("Expected '(' in prototype");
558
559 std::vector<std::string> ArgNames;
560 while (getNextToken() == tok_identifier)
561 ArgNames.push_back(IdentifierStr);
562 if (CurTok != ')')
563 return ErrorP("Expected ')' in prototype");
564
565 // success.
566 getNextToken(); // eat ')'.
567
568 // Verify right number of names for operator.
569 if (Kind && ArgNames.size() != Kind)
570 return ErrorP("Invalid number of operands for operator");
571
572 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
573 }
574
575 /// definition ::= 'def' prototype expression
ParseDefinition()576 static FunctionAST *ParseDefinition() {
577 getNextToken(); // eat def.
578 PrototypeAST *Proto = ParsePrototype();
579 if (Proto == 0) return 0;
580
581 if (ExprAST *E = ParseExpression())
582 return new FunctionAST(Proto, E);
583 return 0;
584 }
585
586 /// toplevelexpr ::= expression
ParseTopLevelExpr()587 static FunctionAST *ParseTopLevelExpr() {
588 if (ExprAST *E = ParseExpression()) {
589 // Make an anonymous proto.
590 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
591 return new FunctionAST(Proto, E);
592 }
593 return 0;
594 }
595
596 /// external ::= 'extern' prototype
ParseExtern()597 static PrototypeAST *ParseExtern() {
598 getNextToken(); // eat extern.
599 return ParsePrototype();
600 }
601
602 //===----------------------------------------------------------------------===//
603 // Code Generation
604 //===----------------------------------------------------------------------===//
605
606 static Module *TheModule;
607 static IRBuilder<> Builder(getGlobalContext());
608 static std::map<std::string, AllocaInst*> NamedValues;
609 static FunctionPassManager *TheFPM;
610
ErrorV(const char * Str)611 Value *ErrorV(const char *Str) { Error(Str); return 0; }
612
613 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
614 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)615 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
616 const std::string &VarName) {
617 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
618 TheFunction->getEntryBlock().begin());
619 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
620 VarName.c_str());
621 }
622
Codegen()623 Value *NumberExprAST::Codegen() {
624 return ConstantFP::get(getGlobalContext(), APFloat(Val));
625 }
626
Codegen()627 Value *VariableExprAST::Codegen() {
628 // Look this variable up in the function.
629 Value *V = NamedValues[Name];
630 if (V == 0) return ErrorV("Unknown variable name");
631
632 // Load the value.
633 return Builder.CreateLoad(V, Name.c_str());
634 }
635
Codegen()636 Value *UnaryExprAST::Codegen() {
637 Value *OperandV = Operand->Codegen();
638 if (OperandV == 0) return 0;
639
640 Function *F = TheModule->getFunction(std::string("unary")+Opcode);
641 if (F == 0)
642 return ErrorV("Unknown unary operator");
643
644 return Builder.CreateCall(F, OperandV, "unop");
645 }
646
Codegen()647 Value *BinaryExprAST::Codegen() {
648 // Special case '=' because we don't want to emit the LHS as an expression.
649 if (Op == '=') {
650 // Assignment requires the LHS to be an identifier.
651 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
652 if (!LHSE)
653 return ErrorV("destination of '=' must be a variable");
654 // Codegen the RHS.
655 Value *Val = RHS->Codegen();
656 if (Val == 0) return 0;
657
658 // Look up the name.
659 Value *Variable = NamedValues[LHSE->getName()];
660 if (Variable == 0) return ErrorV("Unknown variable name");
661
662 Builder.CreateStore(Val, Variable);
663 return Val;
664 }
665
666 Value *L = LHS->Codegen();
667 Value *R = RHS->Codegen();
668 if (L == 0 || R == 0) return 0;
669
670 switch (Op) {
671 case '+': return Builder.CreateFAdd(L, R, "addtmp");
672 case '-': return Builder.CreateFSub(L, R, "subtmp");
673 case '*': return Builder.CreateFMul(L, R, "multmp");
674 case '<':
675 L = Builder.CreateFCmpULT(L, R, "cmptmp");
676 // Convert bool 0/1 to double 0.0 or 1.0
677 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
678 "booltmp");
679 default: break;
680 }
681
682 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
683 // a call to it.
684 Function *F = TheModule->getFunction(std::string("binary")+Op);
685 assert(F && "binary operator not found!");
686
687 Value *Ops[] = { L, R };
688 return Builder.CreateCall(F, Ops, "binop");
689 }
690
Codegen()691 Value *CallExprAST::Codegen() {
692 // Look up the name in the global module table.
693 Function *CalleeF = TheModule->getFunction(Callee);
694 if (CalleeF == 0)
695 return ErrorV("Unknown function referenced");
696
697 // If argument mismatch error.
698 if (CalleeF->arg_size() != Args.size())
699 return ErrorV("Incorrect # arguments passed");
700
701 std::vector<Value*> ArgsV;
702 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
703 ArgsV.push_back(Args[i]->Codegen());
704 if (ArgsV.back() == 0) return 0;
705 }
706
707 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
708 }
709
Codegen()710 Value *IfExprAST::Codegen() {
711 Value *CondV = Cond->Codegen();
712 if (CondV == 0) return 0;
713
714 // Convert condition to a bool by comparing equal to 0.0.
715 CondV = Builder.CreateFCmpONE(CondV,
716 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
717 "ifcond");
718
719 Function *TheFunction = Builder.GetInsertBlock()->getParent();
720
721 // Create blocks for the then and else cases. Insert the 'then' block at the
722 // end of the function.
723 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
724 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
725 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
726
727 Builder.CreateCondBr(CondV, ThenBB, ElseBB);
728
729 // Emit then value.
730 Builder.SetInsertPoint(ThenBB);
731
732 Value *ThenV = Then->Codegen();
733 if (ThenV == 0) return 0;
734
735 Builder.CreateBr(MergeBB);
736 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
737 ThenBB = Builder.GetInsertBlock();
738
739 // Emit else block.
740 TheFunction->getBasicBlockList().push_back(ElseBB);
741 Builder.SetInsertPoint(ElseBB);
742
743 Value *ElseV = Else->Codegen();
744 if (ElseV == 0) return 0;
745
746 Builder.CreateBr(MergeBB);
747 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
748 ElseBB = Builder.GetInsertBlock();
749
750 // Emit merge block.
751 TheFunction->getBasicBlockList().push_back(MergeBB);
752 Builder.SetInsertPoint(MergeBB);
753 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
754 "iftmp");
755
756 PN->addIncoming(ThenV, ThenBB);
757 PN->addIncoming(ElseV, ElseBB);
758 return PN;
759 }
760
Codegen()761 Value *ForExprAST::Codegen() {
762 // Output this as:
763 // var = alloca double
764 // ...
765 // start = startexpr
766 // store start -> var
767 // goto loop
768 // loop:
769 // ...
770 // bodyexpr
771 // ...
772 // loopend:
773 // step = stepexpr
774 // endcond = endexpr
775 //
776 // curvar = load var
777 // nextvar = curvar + step
778 // store nextvar -> var
779 // br endcond, loop, endloop
780 // outloop:
781
782 Function *TheFunction = Builder.GetInsertBlock()->getParent();
783
784 // Create an alloca for the variable in the entry block.
785 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
786
787 // Emit the start code first, without 'variable' in scope.
788 Value *StartVal = Start->Codegen();
789 if (StartVal == 0) return 0;
790
791 // Store the value into the alloca.
792 Builder.CreateStore(StartVal, Alloca);
793
794 // Make the new basic block for the loop header, inserting after current
795 // block.
796 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
797
798 // Insert an explicit fall through from the current block to the LoopBB.
799 Builder.CreateBr(LoopBB);
800
801 // Start insertion in LoopBB.
802 Builder.SetInsertPoint(LoopBB);
803
804 // Within the loop, the variable is defined equal to the PHI node. If it
805 // shadows an existing variable, we have to restore it, so save it now.
806 AllocaInst *OldVal = NamedValues[VarName];
807 NamedValues[VarName] = Alloca;
808
809 // Emit the body of the loop. This, like any other expr, can change the
810 // current BB. Note that we ignore the value computed by the body, but don't
811 // allow an error.
812 if (Body->Codegen() == 0)
813 return 0;
814
815 // Emit the step value.
816 Value *StepVal;
817 if (Step) {
818 StepVal = Step->Codegen();
819 if (StepVal == 0) return 0;
820 } else {
821 // If not specified, use 1.0.
822 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
823 }
824
825 // Compute the end condition.
826 Value *EndCond = End->Codegen();
827 if (EndCond == 0) return EndCond;
828
829 // Reload, increment, and restore the alloca. This handles the case where
830 // the body of the loop mutates the variable.
831 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
832 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
833 Builder.CreateStore(NextVar, Alloca);
834
835 // Convert condition to a bool by comparing equal to 0.0.
836 EndCond = Builder.CreateFCmpONE(EndCond,
837 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
838 "loopcond");
839
840 // Create the "after loop" block and insert it.
841 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
842
843 // Insert the conditional branch into the end of LoopEndBB.
844 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
845
846 // Any new code will be inserted in AfterBB.
847 Builder.SetInsertPoint(AfterBB);
848
849 // Restore the unshadowed variable.
850 if (OldVal)
851 NamedValues[VarName] = OldVal;
852 else
853 NamedValues.erase(VarName);
854
855
856 // for expr always returns 0.0.
857 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
858 }
859
Codegen()860 Value *VarExprAST::Codegen() {
861 std::vector<AllocaInst *> OldBindings;
862
863 Function *TheFunction = Builder.GetInsertBlock()->getParent();
864
865 // Register all variables and emit their initializer.
866 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
867 const std::string &VarName = VarNames[i].first;
868 ExprAST *Init = VarNames[i].second;
869
870 // Emit the initializer before adding the variable to scope, this prevents
871 // the initializer from referencing the variable itself, and permits stuff
872 // like this:
873 // var a = 1 in
874 // var a = a in ... # refers to outer 'a'.
875 Value *InitVal;
876 if (Init) {
877 InitVal = Init->Codegen();
878 if (InitVal == 0) return 0;
879 } else { // If not specified, use 0.0.
880 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
881 }
882
883 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
884 Builder.CreateStore(InitVal, Alloca);
885
886 // Remember the old variable binding so that we can restore the binding when
887 // we unrecurse.
888 OldBindings.push_back(NamedValues[VarName]);
889
890 // Remember this binding.
891 NamedValues[VarName] = Alloca;
892 }
893
894 // Codegen the body, now that all vars are in scope.
895 Value *BodyVal = Body->Codegen();
896 if (BodyVal == 0) return 0;
897
898 // Pop all our variables from scope.
899 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
900 NamedValues[VarNames[i].first] = OldBindings[i];
901
902 // Return the body computation.
903 return BodyVal;
904 }
905
Codegen()906 Function *PrototypeAST::Codegen() {
907 // Make the function type: double(double,double) etc.
908 std::vector<Type*> Doubles(Args.size(),
909 Type::getDoubleTy(getGlobalContext()));
910 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
911 Doubles, false);
912
913 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
914
915 // If F conflicted, there was already something named 'Name'. If it has a
916 // body, don't allow redefinition or reextern.
917 if (F->getName() != Name) {
918 // Delete the one we just made and get the existing one.
919 F->eraseFromParent();
920 F = TheModule->getFunction(Name);
921
922 // If F already has a body, reject this.
923 if (!F->empty()) {
924 ErrorF("redefinition of function");
925 return 0;
926 }
927
928 // If F took a different number of args, reject.
929 if (F->arg_size() != Args.size()) {
930 ErrorF("redefinition of function with different # args");
931 return 0;
932 }
933 }
934
935 // Set names for all arguments.
936 unsigned Idx = 0;
937 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
938 ++AI, ++Idx)
939 AI->setName(Args[Idx]);
940
941 return F;
942 }
943
944 /// CreateArgumentAllocas - Create an alloca for each argument and register the
945 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F)946 void PrototypeAST::CreateArgumentAllocas(Function *F) {
947 Function::arg_iterator AI = F->arg_begin();
948 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
949 // Create an alloca for this variable.
950 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
951
952 // Store the initial value into the alloca.
953 Builder.CreateStore(AI, Alloca);
954
955 // Add arguments to variable symbol table.
956 NamedValues[Args[Idx]] = Alloca;
957 }
958 }
959
Codegen()960 Function *FunctionAST::Codegen() {
961 NamedValues.clear();
962
963 Function *TheFunction = Proto->Codegen();
964 if (TheFunction == 0)
965 return 0;
966
967 // If this is an operator, install it.
968 if (Proto->isBinaryOp())
969 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
970
971 // Create a new basic block to start insertion into.
972 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
973 Builder.SetInsertPoint(BB);
974
975 // Add all arguments to the symbol table and create their allocas.
976 Proto->CreateArgumentAllocas(TheFunction);
977
978 if (Value *RetVal = Body->Codegen()) {
979 // Finish off the function.
980 Builder.CreateRet(RetVal);
981
982 // Validate the generated code, checking for consistency.
983 verifyFunction(*TheFunction);
984
985 // Optimize the function.
986 TheFPM->run(*TheFunction);
987
988 return TheFunction;
989 }
990
991 // Error reading body, remove function.
992 TheFunction->eraseFromParent();
993
994 if (Proto->isBinaryOp())
995 BinopPrecedence.erase(Proto->getOperatorName());
996 return 0;
997 }
998
999 //===----------------------------------------------------------------------===//
1000 // Top-Level parsing and JIT Driver
1001 //===----------------------------------------------------------------------===//
1002
1003 static ExecutionEngine *TheExecutionEngine;
1004
HandleDefinition()1005 static void HandleDefinition() {
1006 if (FunctionAST *F = ParseDefinition()) {
1007 if (Function *LF = F->Codegen()) {
1008 fprintf(stderr, "Read function definition:");
1009 LF->dump();
1010 }
1011 } else {
1012 // Skip token for error recovery.
1013 getNextToken();
1014 }
1015 }
1016
HandleExtern()1017 static void HandleExtern() {
1018 if (PrototypeAST *P = ParseExtern()) {
1019 if (Function *F = P->Codegen()) {
1020 fprintf(stderr, "Read extern: ");
1021 F->dump();
1022 }
1023 } else {
1024 // Skip token for error recovery.
1025 getNextToken();
1026 }
1027 }
1028
HandleTopLevelExpression()1029 static void HandleTopLevelExpression() {
1030 // Evaluate a top-level expression into an anonymous function.
1031 if (FunctionAST *F = ParseTopLevelExpr()) {
1032 if (Function *LF = F->Codegen()) {
1033 // JIT the function, returning a function pointer.
1034 void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
1035
1036 // Cast it to the right type (takes no arguments, returns a double) so we
1037 // can call it as a native function.
1038 double (*FP)() = (double (*)())(intptr_t)FPtr;
1039 fprintf(stderr, "Evaluated to %f\n", FP());
1040 }
1041 } else {
1042 // Skip token for error recovery.
1043 getNextToken();
1044 }
1045 }
1046
1047 /// top ::= definition | external | expression | ';'
MainLoop()1048 static void MainLoop() {
1049 while (1) {
1050 fprintf(stderr, "ready> ");
1051 switch (CurTok) {
1052 case tok_eof: return;
1053 case ';': getNextToken(); break; // ignore top-level semicolons.
1054 case tok_def: HandleDefinition(); break;
1055 case tok_extern: HandleExtern(); break;
1056 default: HandleTopLevelExpression(); break;
1057 }
1058 }
1059 }
1060
1061 //===----------------------------------------------------------------------===//
1062 // "Library" functions that can be "extern'd" from user code.
1063 //===----------------------------------------------------------------------===//
1064
1065 /// putchard - putchar that takes a double and returns 0.
1066 extern "C"
putchard(double X)1067 double putchard(double X) {
1068 putchar((char)X);
1069 return 0;
1070 }
1071
1072 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1073 extern "C"
printd(double X)1074 double printd(double X) {
1075 printf("%f\n", X);
1076 return 0;
1077 }
1078
1079 //===----------------------------------------------------------------------===//
1080 // Main driver code.
1081 //===----------------------------------------------------------------------===//
1082
main()1083 int main() {
1084 InitializeNativeTarget();
1085 LLVMContext &Context = getGlobalContext();
1086
1087 // Install standard binary operators.
1088 // 1 is lowest precedence.
1089 BinopPrecedence['='] = 2;
1090 BinopPrecedence['<'] = 10;
1091 BinopPrecedence['+'] = 20;
1092 BinopPrecedence['-'] = 20;
1093 BinopPrecedence['*'] = 40; // highest.
1094
1095 // Prime the first token.
1096 fprintf(stderr, "ready> ");
1097 getNextToken();
1098
1099 // Make the module, which holds all the code.
1100 TheModule = new Module("my cool jit", Context);
1101
1102 // Create the JIT. This takes ownership of the module.
1103 std::string ErrStr;
1104 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
1105 if (!TheExecutionEngine) {
1106 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
1107 exit(1);
1108 }
1109
1110 FunctionPassManager OurFPM(TheModule);
1111
1112 // Set up the optimizer pipeline. Start with registering info about how the
1113 // target lays out data structures.
1114 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
1115 // Provide basic AliasAnalysis support for GVN.
1116 OurFPM.add(createBasicAliasAnalysisPass());
1117 // Promote allocas to registers.
1118 OurFPM.add(createPromoteMemoryToRegisterPass());
1119 // Do simple "peephole" optimizations and bit-twiddling optzns.
1120 OurFPM.add(createInstructionCombiningPass());
1121 // Reassociate expressions.
1122 OurFPM.add(createReassociatePass());
1123 // Eliminate Common SubExpressions.
1124 OurFPM.add(createGVNPass());
1125 // Simplify the control flow graph (deleting unreachable blocks, etc).
1126 OurFPM.add(createCFGSimplificationPass());
1127
1128 OurFPM.doInitialization();
1129
1130 // Set the global so the code gen can use this.
1131 TheFPM = &OurFPM;
1132
1133 // Run the main "interpreter loop" now.
1134 MainLoop();
1135
1136 TheFPM = 0;
1137
1138 // Print out all of the generated code.
1139 TheModule->dump();
1140
1141 return 0;
1142 }
1143