1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 // Optimization of sign / zero extension instructions. It may be extended to
15 // handle other instructions with similar properties.
16 //
17 // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 // leave the source value in the lower part of the result. This optimization
19 // will replace some uses of the pre-extension value with uses of the
20 // sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 // Optimization of comparison instructions. For instance, in this code:
25 //
26 // sub r1, 1
27 // cmp r1, 0
28 // bz L1
29 //
30 // If the "sub" instruction all ready sets (or could be modified to set) the
31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 // eliminate the "cmp" instruction.
33 //
34 // - Optimize Bitcast pairs:
35 //
36 // v1 = bitcast v0
37 // v2 = bitcast v1
38 // = v2
39 // =>
40 // v1 = bitcast v0
41 // = v0
42 //
43 //===----------------------------------------------------------------------===//
44
45 #define DEBUG_TYPE "peephole-opt"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/MachineDominators.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/Target/TargetInstrInfo.h"
51 #include "llvm/Target/TargetRegisterInfo.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/ADT/DenseMap.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/Statistic.h"
57 using namespace llvm;
58
59 // Optimize Extensions
60 static cl::opt<bool>
61 Aggressive("aggressive-ext-opt", cl::Hidden,
62 cl::desc("Aggressive extension optimization"));
63
64 static cl::opt<bool>
65 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
66 cl::desc("Disable the peephole optimizer"));
67
68 STATISTIC(NumReuse, "Number of extension results reused");
69 STATISTIC(NumBitcasts, "Number of bitcasts eliminated");
70 STATISTIC(NumCmps, "Number of compares eliminated");
71 STATISTIC(NumImmFold, "Number of move immediate foled");
72
73 namespace {
74 class PeepholeOptimizer : public MachineFunctionPass {
75 const TargetMachine *TM;
76 const TargetInstrInfo *TII;
77 MachineRegisterInfo *MRI;
78 MachineDominatorTree *DT; // Machine dominator tree
79
80 public:
81 static char ID; // Pass identification
PeepholeOptimizer()82 PeepholeOptimizer() : MachineFunctionPass(ID) {
83 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
84 }
85
86 virtual bool runOnMachineFunction(MachineFunction &MF);
87
getAnalysisUsage(AnalysisUsage & AU) const88 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
89 AU.setPreservesCFG();
90 MachineFunctionPass::getAnalysisUsage(AU);
91 if (Aggressive) {
92 AU.addRequired<MachineDominatorTree>();
93 AU.addPreserved<MachineDominatorTree>();
94 }
95 }
96
97 private:
98 bool OptimizeBitcastInstr(MachineInstr *MI, MachineBasicBlock *MBB);
99 bool OptimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
100 bool OptimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
101 SmallPtrSet<MachineInstr*, 8> &LocalMIs);
102 bool isMoveImmediate(MachineInstr *MI,
103 SmallSet<unsigned, 4> &ImmDefRegs,
104 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
105 bool FoldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
106 SmallSet<unsigned, 4> &ImmDefRegs,
107 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
108 };
109 }
110
111 char PeepholeOptimizer::ID = 0;
112 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
113 "Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)114 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
115 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
116 "Peephole Optimizations", false, false)
117
118 FunctionPass *llvm::createPeepholeOptimizerPass() {
119 return new PeepholeOptimizer();
120 }
121
122 /// OptimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
123 /// a single register and writes a single register and it does not modify the
124 /// source, and if the source value is preserved as a sub-register of the
125 /// result, then replace all reachable uses of the source with the subreg of the
126 /// result.
127 ///
128 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
129 /// the code. Since this code does not currently share EXTRACTs, just ignore all
130 /// debug uses.
131 bool PeepholeOptimizer::
OptimizeExtInstr(MachineInstr * MI,MachineBasicBlock * MBB,SmallPtrSet<MachineInstr *,8> & LocalMIs)132 OptimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
133 SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
134 unsigned SrcReg, DstReg, SubIdx;
135 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
136 return false;
137
138 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
139 TargetRegisterInfo::isPhysicalRegister(SrcReg))
140 return false;
141
142 MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(SrcReg);
143 if (++UI == MRI->use_nodbg_end())
144 // No other uses.
145 return false;
146
147 // The source has other uses. See if we can replace the other uses with use of
148 // the result of the extension.
149 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
150 UI = MRI->use_nodbg_begin(DstReg);
151 for (MachineRegisterInfo::use_nodbg_iterator UE = MRI->use_nodbg_end();
152 UI != UE; ++UI)
153 ReachedBBs.insert(UI->getParent());
154
155 // Uses that are in the same BB of uses of the result of the instruction.
156 SmallVector<MachineOperand*, 8> Uses;
157
158 // Uses that the result of the instruction can reach.
159 SmallVector<MachineOperand*, 8> ExtendedUses;
160
161 bool ExtendLife = true;
162 UI = MRI->use_nodbg_begin(SrcReg);
163 for (MachineRegisterInfo::use_nodbg_iterator UE = MRI->use_nodbg_end();
164 UI != UE; ++UI) {
165 MachineOperand &UseMO = UI.getOperand();
166 MachineInstr *UseMI = &*UI;
167 if (UseMI == MI)
168 continue;
169
170 if (UseMI->isPHI()) {
171 ExtendLife = false;
172 continue;
173 }
174
175 // It's an error to translate this:
176 //
177 // %reg1025 = <sext> %reg1024
178 // ...
179 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
180 //
181 // into this:
182 //
183 // %reg1025 = <sext> %reg1024
184 // ...
185 // %reg1027 = COPY %reg1025:4
186 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
187 //
188 // The problem here is that SUBREG_TO_REG is there to assert that an
189 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
190 // the COPY here, it will give us the value after the <sext>, not the
191 // original value of %reg1024 before <sext>.
192 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
193 continue;
194
195 MachineBasicBlock *UseMBB = UseMI->getParent();
196 if (UseMBB == MBB) {
197 // Local uses that come after the extension.
198 if (!LocalMIs.count(UseMI))
199 Uses.push_back(&UseMO);
200 } else if (ReachedBBs.count(UseMBB)) {
201 // Non-local uses where the result of the extension is used. Always
202 // replace these unless it's a PHI.
203 Uses.push_back(&UseMO);
204 } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
205 // We may want to extend the live range of the extension result in order
206 // to replace these uses.
207 ExtendedUses.push_back(&UseMO);
208 } else {
209 // Both will be live out of the def MBB anyway. Don't extend live range of
210 // the extension result.
211 ExtendLife = false;
212 break;
213 }
214 }
215
216 if (ExtendLife && !ExtendedUses.empty())
217 // Extend the liveness of the extension result.
218 std::copy(ExtendedUses.begin(), ExtendedUses.end(),
219 std::back_inserter(Uses));
220
221 // Now replace all uses.
222 bool Changed = false;
223 if (!Uses.empty()) {
224 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
225
226 // Look for PHI uses of the extended result, we don't want to extend the
227 // liveness of a PHI input. It breaks all kinds of assumptions down
228 // stream. A PHI use is expected to be the kill of its source values.
229 UI = MRI->use_nodbg_begin(DstReg);
230 for (MachineRegisterInfo::use_nodbg_iterator
231 UE = MRI->use_nodbg_end(); UI != UE; ++UI)
232 if (UI->isPHI())
233 PHIBBs.insert(UI->getParent());
234
235 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
236 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
237 MachineOperand *UseMO = Uses[i];
238 MachineInstr *UseMI = UseMO->getParent();
239 MachineBasicBlock *UseMBB = UseMI->getParent();
240 if (PHIBBs.count(UseMBB))
241 continue;
242
243 unsigned NewVR = MRI->createVirtualRegister(RC);
244 BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
245 TII->get(TargetOpcode::COPY), NewVR)
246 .addReg(DstReg, 0, SubIdx);
247
248 UseMO->setReg(NewVR);
249 ++NumReuse;
250 Changed = true;
251 }
252 }
253
254 return Changed;
255 }
256
257 /// OptimizeBitcastInstr - If the instruction is a bitcast instruction A that
258 /// cannot be optimized away during isel (e.g. ARM::VMOVSR, which bitcast
259 /// a value cross register classes), and the source is defined by another
260 /// bitcast instruction B. And if the register class of source of B matches
261 /// the register class of instruction A, then it is legal to replace all uses
262 /// of the def of A with source of B. e.g.
263 /// %vreg0<def> = VMOVSR %vreg1
264 /// %vreg3<def> = VMOVRS %vreg0
265 /// Replace all uses of vreg3 with vreg1.
266
OptimizeBitcastInstr(MachineInstr * MI,MachineBasicBlock * MBB)267 bool PeepholeOptimizer::OptimizeBitcastInstr(MachineInstr *MI,
268 MachineBasicBlock *MBB) {
269 unsigned NumDefs = MI->getDesc().getNumDefs();
270 unsigned NumSrcs = MI->getDesc().getNumOperands() - NumDefs;
271 if (NumDefs != 1)
272 return false;
273
274 unsigned Def = 0;
275 unsigned Src = 0;
276 for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
277 const MachineOperand &MO = MI->getOperand(i);
278 if (!MO.isReg())
279 continue;
280 unsigned Reg = MO.getReg();
281 if (!Reg)
282 continue;
283 if (MO.isDef())
284 Def = Reg;
285 else if (Src)
286 // Multiple sources?
287 return false;
288 else
289 Src = Reg;
290 }
291
292 assert(Def && Src && "Malformed bitcast instruction!");
293
294 MachineInstr *DefMI = MRI->getVRegDef(Src);
295 if (!DefMI || !DefMI->getDesc().isBitcast())
296 return false;
297
298 unsigned SrcSrc = 0;
299 NumDefs = DefMI->getDesc().getNumDefs();
300 NumSrcs = DefMI->getDesc().getNumOperands() - NumDefs;
301 if (NumDefs != 1)
302 return false;
303 for (unsigned i = 0, e = NumDefs + NumSrcs; i != e; ++i) {
304 const MachineOperand &MO = DefMI->getOperand(i);
305 if (!MO.isReg() || MO.isDef())
306 continue;
307 unsigned Reg = MO.getReg();
308 if (!Reg)
309 continue;
310 if (!MO.isDef()) {
311 if (SrcSrc)
312 // Multiple sources?
313 return false;
314 else
315 SrcSrc = Reg;
316 }
317 }
318
319 if (MRI->getRegClass(SrcSrc) != MRI->getRegClass(Def))
320 return false;
321
322 MRI->replaceRegWith(Def, SrcSrc);
323 MRI->clearKillFlags(SrcSrc);
324 MI->eraseFromParent();
325 ++NumBitcasts;
326 return true;
327 }
328
329 /// OptimizeCmpInstr - If the instruction is a compare and the previous
330 /// instruction it's comparing against all ready sets (or could be modified to
331 /// set) the same flag as the compare, then we can remove the comparison and use
332 /// the flag from the previous instruction.
OptimizeCmpInstr(MachineInstr * MI,MachineBasicBlock * MBB)333 bool PeepholeOptimizer::OptimizeCmpInstr(MachineInstr *MI,
334 MachineBasicBlock *MBB) {
335 // If this instruction is a comparison against zero and isn't comparing a
336 // physical register, we can try to optimize it.
337 unsigned SrcReg;
338 int CmpMask, CmpValue;
339 if (!TII->AnalyzeCompare(MI, SrcReg, CmpMask, CmpValue) ||
340 TargetRegisterInfo::isPhysicalRegister(SrcReg))
341 return false;
342
343 // Attempt to optimize the comparison instruction.
344 if (TII->OptimizeCompareInstr(MI, SrcReg, CmpMask, CmpValue, MRI)) {
345 ++NumCmps;
346 return true;
347 }
348
349 return false;
350 }
351
isMoveImmediate(MachineInstr * MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)352 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
353 SmallSet<unsigned, 4> &ImmDefRegs,
354 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
355 const MCInstrDesc &MCID = MI->getDesc();
356 if (!MCID.isMoveImmediate())
357 return false;
358 if (MCID.getNumDefs() != 1)
359 return false;
360 unsigned Reg = MI->getOperand(0).getReg();
361 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
362 ImmDefMIs.insert(std::make_pair(Reg, MI));
363 ImmDefRegs.insert(Reg);
364 return true;
365 }
366
367 return false;
368 }
369
370 /// FoldImmediate - Try folding register operands that are defined by move
371 /// immediate instructions, i.e. a trivial constant folding optimization, if
372 /// and only if the def and use are in the same BB.
FoldImmediate(MachineInstr * MI,MachineBasicBlock * MBB,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)373 bool PeepholeOptimizer::FoldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
374 SmallSet<unsigned, 4> &ImmDefRegs,
375 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
376 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
377 MachineOperand &MO = MI->getOperand(i);
378 if (!MO.isReg() || MO.isDef())
379 continue;
380 unsigned Reg = MO.getReg();
381 if (!TargetRegisterInfo::isVirtualRegister(Reg))
382 continue;
383 if (ImmDefRegs.count(Reg) == 0)
384 continue;
385 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
386 assert(II != ImmDefMIs.end());
387 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
388 ++NumImmFold;
389 return true;
390 }
391 }
392 return false;
393 }
394
runOnMachineFunction(MachineFunction & MF)395 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
396 if (DisablePeephole)
397 return false;
398
399 TM = &MF.getTarget();
400 TII = TM->getInstrInfo();
401 MRI = &MF.getRegInfo();
402 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : 0;
403
404 bool Changed = false;
405
406 SmallPtrSet<MachineInstr*, 8> LocalMIs;
407 SmallSet<unsigned, 4> ImmDefRegs;
408 DenseMap<unsigned, MachineInstr*> ImmDefMIs;
409 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
410 MachineBasicBlock *MBB = &*I;
411
412 bool SeenMoveImm = false;
413 LocalMIs.clear();
414 ImmDefRegs.clear();
415 ImmDefMIs.clear();
416
417 bool First = true;
418 MachineBasicBlock::iterator PMII;
419 for (MachineBasicBlock::iterator
420 MII = I->begin(), MIE = I->end(); MII != MIE; ) {
421 MachineInstr *MI = &*MII;
422 LocalMIs.insert(MI);
423
424 if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
425 MI->isKill() || MI->isInlineAsm() || MI->isDebugValue() ||
426 MI->hasUnmodeledSideEffects()) {
427 ++MII;
428 continue;
429 }
430
431 const MCInstrDesc &MCID = MI->getDesc();
432
433 if (MCID.isBitcast()) {
434 if (OptimizeBitcastInstr(MI, MBB)) {
435 // MI is deleted.
436 LocalMIs.erase(MI);
437 Changed = true;
438 MII = First ? I->begin() : llvm::next(PMII);
439 continue;
440 }
441 } else if (MCID.isCompare()) {
442 if (OptimizeCmpInstr(MI, MBB)) {
443 // MI is deleted.
444 LocalMIs.erase(MI);
445 Changed = true;
446 MII = First ? I->begin() : llvm::next(PMII);
447 continue;
448 }
449 }
450
451 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
452 SeenMoveImm = true;
453 } else {
454 Changed |= OptimizeExtInstr(MI, MBB, LocalMIs);
455 if (SeenMoveImm)
456 Changed |= FoldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
457 }
458
459 First = false;
460 PMII = MII;
461 ++MII;
462 }
463 }
464
465 return Changed;
466 }
467