• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/MC/MCInstrItineraries.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/SmallSet.h"
32 using namespace llvm;
33 
ScheduleDAGInstrs(MachineFunction & mf,const MachineLoopInfo & mli,const MachineDominatorTree & mdt)34 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35                                      const MachineLoopInfo &mli,
36                                      const MachineDominatorTree &mdt)
37   : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
38     InstrItins(mf.getTarget().getInstrItineraryData()),
39     Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
40     LoopRegs(MLI, MDT), FirstDbgValue(0) {
41   DbgValues.clear();
42 }
43 
44 /// Run - perform scheduling.
45 ///
Run(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned endcount)46 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
47                             MachineBasicBlock::iterator begin,
48                             MachineBasicBlock::iterator end,
49                             unsigned endcount) {
50   BB = bb;
51   Begin = begin;
52   InsertPosIndex = endcount;
53 
54   ScheduleDAG::Run(bb, end);
55 }
56 
57 /// getUnderlyingObjectFromInt - This is the function that does the work of
58 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)59 static const Value *getUnderlyingObjectFromInt(const Value *V) {
60   do {
61     if (const Operator *U = dyn_cast<Operator>(V)) {
62       // If we find a ptrtoint, we can transfer control back to the
63       // regular getUnderlyingObjectFromInt.
64       if (U->getOpcode() == Instruction::PtrToInt)
65         return U->getOperand(0);
66       // If we find an add of a constant or a multiplied value, it's
67       // likely that the other operand will lead us to the base
68       // object. We don't have to worry about the case where the
69       // object address is somehow being computed by the multiply,
70       // because our callers only care when the result is an
71       // identifibale object.
72       if (U->getOpcode() != Instruction::Add ||
73           (!isa<ConstantInt>(U->getOperand(1)) &&
74            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75         return V;
76       V = U->getOperand(0);
77     } else {
78       return V;
79     }
80     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
81   } while (1);
82 }
83 
84 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
85 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObject(const Value * V)86 static const Value *getUnderlyingObject(const Value *V) {
87   // First just call Value::getUnderlyingObject to let it do what it does.
88   do {
89     V = GetUnderlyingObject(V);
90     // If it found an inttoptr, use special code to continue climing.
91     if (Operator::getOpcode(V) != Instruction::IntToPtr)
92       break;
93     const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
94     // If that succeeded in finding a pointer, continue the search.
95     if (!O->getType()->isPointerTy())
96       break;
97     V = O;
98   } while (1);
99   return V;
100 }
101 
102 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
103 /// information and it can be tracked to a normal reference to a known
104 /// object, return the Value for that object. Otherwise return null.
getUnderlyingObjectForInstr(const MachineInstr * MI,const MachineFrameInfo * MFI,bool & MayAlias)105 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
106                                                 const MachineFrameInfo *MFI,
107                                                 bool &MayAlias) {
108   MayAlias = true;
109   if (!MI->hasOneMemOperand() ||
110       !(*MI->memoperands_begin())->getValue() ||
111       (*MI->memoperands_begin())->isVolatile())
112     return 0;
113 
114   const Value *V = (*MI->memoperands_begin())->getValue();
115   if (!V)
116     return 0;
117 
118   V = getUnderlyingObject(V);
119   if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
120     // For now, ignore PseudoSourceValues which may alias LLVM IR values
121     // because the code that uses this function has no way to cope with
122     // such aliases.
123     if (PSV->isAliased(MFI))
124       return 0;
125 
126     MayAlias = PSV->mayAlias(MFI);
127     return V;
128   }
129 
130   if (isIdentifiedObject(V))
131     return V;
132 
133   return 0;
134 }
135 
StartBlock(MachineBasicBlock * BB)136 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
137   LoopRegs.Deps.clear();
138   if (MachineLoop *ML = MLI.getLoopFor(BB))
139     if (BB == ML->getLoopLatch()) {
140       MachineBasicBlock *Header = ML->getHeader();
141       for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
142            E = Header->livein_end(); I != E; ++I)
143         LoopLiveInRegs.insert(*I);
144       LoopRegs.VisitLoop(ML);
145     }
146 }
147 
148 /// AddSchedBarrierDeps - Add dependencies from instructions in the current
149 /// list of instructions being scheduled to scheduling barrier by adding
150 /// the exit SU to the register defs and use list. This is because we want to
151 /// make sure instructions which define registers that are either used by
152 /// the terminator or are live-out are properly scheduled. This is
153 /// especially important when the definition latency of the return value(s)
154 /// are too high to be hidden by the branch or when the liveout registers
155 /// used by instructions in the fallthrough block.
AddSchedBarrierDeps()156 void ScheduleDAGInstrs::AddSchedBarrierDeps() {
157   MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
158   ExitSU.setInstr(ExitMI);
159   bool AllDepKnown = ExitMI &&
160     (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
161   if (ExitMI && AllDepKnown) {
162     // If it's a call or a barrier, add dependencies on the defs and uses of
163     // instruction.
164     for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
165       const MachineOperand &MO = ExitMI->getOperand(i);
166       if (!MO.isReg() || MO.isDef()) continue;
167       unsigned Reg = MO.getReg();
168       if (Reg == 0) continue;
169 
170       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
171       Uses[Reg].push_back(&ExitSU);
172     }
173   } else {
174     // For others, e.g. fallthrough, conditional branch, assume the exit
175     // uses all the registers that are livein to the successor blocks.
176     SmallSet<unsigned, 8> Seen;
177     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
178            SE = BB->succ_end(); SI != SE; ++SI)
179       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
180              E = (*SI)->livein_end(); I != E; ++I) {
181         unsigned Reg = *I;
182         if (Seen.insert(Reg))
183           Uses[Reg].push_back(&ExitSU);
184       }
185   }
186 }
187 
BuildSchedGraph(AliasAnalysis * AA)188 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
189   // We'll be allocating one SUnit for each instruction, plus one for
190   // the region exit node.
191   SUnits.reserve(BB->size());
192 
193   // We build scheduling units by walking a block's instruction list from bottom
194   // to top.
195 
196   // Remember where a generic side-effecting instruction is as we procede.
197   SUnit *BarrierChain = 0, *AliasChain = 0;
198 
199   // Memory references to specific known memory locations are tracked
200   // so that they can be given more precise dependencies. We track
201   // separately the known memory locations that may alias and those
202   // that are known not to alias
203   std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
204   std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
205 
206   // Check to see if the scheduler cares about latencies.
207   bool UnitLatencies = ForceUnitLatencies();
208 
209   // Ask the target if address-backscheduling is desirable, and if so how much.
210   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
211   unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
212 
213   // Remove any stale debug info; sometimes BuildSchedGraph is called again
214   // without emitting the info from the previous call.
215   DbgValues.clear();
216   FirstDbgValue = NULL;
217 
218   // Model data dependencies between instructions being scheduled and the
219   // ExitSU.
220   AddSchedBarrierDeps();
221 
222   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
223     assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
224   }
225 
226   // Walk the list of instructions, from bottom moving up.
227   MachineInstr *PrevMI = NULL;
228   for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
229        MII != MIE; --MII) {
230     MachineInstr *MI = prior(MII);
231     if (MI && PrevMI) {
232       DbgValues.push_back(std::make_pair(PrevMI, MI));
233       PrevMI = NULL;
234     }
235 
236     if (MI->isDebugValue()) {
237       PrevMI = MI;
238       continue;
239     }
240 
241     const MCInstrDesc &MCID = MI->getDesc();
242     assert(!MCID.isTerminator() && !MI->isLabel() &&
243            "Cannot schedule terminators or labels!");
244     // Create the SUnit for this MI.
245     SUnit *SU = NewSUnit(MI);
246     SU->isCall = MCID.isCall();
247     SU->isCommutable = MCID.isCommutable();
248 
249     // Assign the Latency field of SU using target-provided information.
250     if (UnitLatencies)
251       SU->Latency = 1;
252     else
253       ComputeLatency(SU);
254 
255     // Add register-based dependencies (data, anti, and output).
256     for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
257       const MachineOperand &MO = MI->getOperand(j);
258       if (!MO.isReg()) continue;
259       unsigned Reg = MO.getReg();
260       if (Reg == 0) continue;
261 
262       assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
263 
264       std::vector<SUnit *> &UseList = Uses[Reg];
265       // Defs are push in the order they are visited and never reordered.
266       std::vector<SUnit *> &DefList = Defs[Reg];
267       // Optionally add output and anti dependencies. For anti
268       // dependencies we use a latency of 0 because for a multi-issue
269       // target we want to allow the defining instruction to issue
270       // in the same cycle as the using instruction.
271       // TODO: Using a latency of 1 here for output dependencies assumes
272       //       there's no cost for reusing registers.
273       SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
274       unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
275       for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
276         SUnit *DefSU = DefList[i];
277         if (DefSU == &ExitSU)
278           continue;
279         if (DefSU != SU &&
280             (Kind != SDep::Output || !MO.isDead() ||
281              !DefSU->getInstr()->registerDefIsDead(Reg)))
282           DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
283       }
284       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
285         std::vector<SUnit *> &MemDefList = Defs[*Alias];
286         for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
287           SUnit *DefSU = MemDefList[i];
288           if (DefSU == &ExitSU)
289             continue;
290           if (DefSU != SU &&
291               (Kind != SDep::Output || !MO.isDead() ||
292                !DefSU->getInstr()->registerDefIsDead(*Alias)))
293             DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
294         }
295       }
296 
297       if (MO.isDef()) {
298         // Add any data dependencies.
299         unsigned DataLatency = SU->Latency;
300         for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
301           SUnit *UseSU = UseList[i];
302           if (UseSU == SU)
303             continue;
304           unsigned LDataLatency = DataLatency;
305           // Optionally add in a special extra latency for nodes that
306           // feed addresses.
307           // TODO: Do this for register aliases too.
308           // TODO: Perhaps we should get rid of
309           // SpecialAddressLatency and just move this into
310           // adjustSchedDependency for the targets that care about it.
311           if (SpecialAddressLatency != 0 && !UnitLatencies &&
312               UseSU != &ExitSU) {
313             MachineInstr *UseMI = UseSU->getInstr();
314             const MCInstrDesc &UseMCID = UseMI->getDesc();
315             int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
316             assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
317             if (RegUseIndex >= 0 &&
318                 (UseMCID.mayLoad() || UseMCID.mayStore()) &&
319                 (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
320                 UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
321               LDataLatency += SpecialAddressLatency;
322           }
323           // Adjust the dependence latency using operand def/use
324           // information (if any), and then allow the target to
325           // perform its own adjustments.
326           const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
327           if (!UnitLatencies) {
328             ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
329             ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
330           }
331           UseSU->addPred(dep);
332         }
333         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
334           std::vector<SUnit *> &UseList = Uses[*Alias];
335           for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
336             SUnit *UseSU = UseList[i];
337             if (UseSU == SU)
338               continue;
339             const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
340             if (!UnitLatencies) {
341               ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
342               ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
343             }
344             UseSU->addPred(dep);
345           }
346         }
347 
348         // If a def is going to wrap back around to the top of the loop,
349         // backschedule it.
350         if (!UnitLatencies && DefList.empty()) {
351           LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
352           if (I != LoopRegs.Deps.end()) {
353             const MachineOperand *UseMO = I->second.first;
354             unsigned Count = I->second.second;
355             const MachineInstr *UseMI = UseMO->getParent();
356             unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
357             const MCInstrDesc &UseMCID = UseMI->getDesc();
358             // TODO: If we knew the total depth of the region here, we could
359             // handle the case where the whole loop is inside the region but
360             // is large enough that the isScheduleHigh trick isn't needed.
361             if (UseMOIdx < UseMCID.getNumOperands()) {
362               // Currently, we only support scheduling regions consisting of
363               // single basic blocks. Check to see if the instruction is in
364               // the same region by checking to see if it has the same parent.
365               if (UseMI->getParent() != MI->getParent()) {
366                 unsigned Latency = SU->Latency;
367                 if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
368                   Latency += SpecialAddressLatency;
369                 // This is a wild guess as to the portion of the latency which
370                 // will be overlapped by work done outside the current
371                 // scheduling region.
372                 Latency -= std::min(Latency, Count);
373                 // Add the artificial edge.
374                 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
375                                     /*Reg=*/0, /*isNormalMemory=*/false,
376                                     /*isMustAlias=*/false,
377                                     /*isArtificial=*/true));
378               } else if (SpecialAddressLatency > 0 &&
379                          UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
380                 // The entire loop body is within the current scheduling region
381                 // and the latency of this operation is assumed to be greater
382                 // than the latency of the loop.
383                 // TODO: Recursively mark data-edge predecessors as
384                 //       isScheduleHigh too.
385                 SU->isScheduleHigh = true;
386               }
387             }
388             LoopRegs.Deps.erase(I);
389           }
390         }
391 
392         UseList.clear();
393         if (!MO.isDead())
394           DefList.clear();
395 
396         // Calls will not be reordered because of chain dependencies (see
397         // below). Since call operands are dead, calls may continue to be added
398         // to the DefList making dependence checking quadratic in the size of
399         // the block. Instead, we leave only one call at the back of the
400         // DefList.
401         if (SU->isCall) {
402           while (!DefList.empty() && DefList.back()->isCall)
403             DefList.pop_back();
404         }
405         DefList.push_back(SU);
406       } else {
407         UseList.push_back(SU);
408       }
409     }
410 
411     // Add chain dependencies.
412     // Chain dependencies used to enforce memory order should have
413     // latency of 0 (except for true dependency of Store followed by
414     // aliased Load... we estimate that with a single cycle of latency
415     // assuming the hardware will bypass)
416     // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
417     // after stack slots are lowered to actual addresses.
418     // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
419     // produce more precise dependence information.
420 #define STORE_LOAD_LATENCY 1
421     unsigned TrueMemOrderLatency = 0;
422     if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
423         (MI->hasVolatileMemoryRef() &&
424          (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
425       // Be conservative with these and add dependencies on all memory
426       // references, even those that are known to not alias.
427       for (std::map<const Value *, SUnit *>::iterator I =
428              NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
429         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
430       }
431       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
432              NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
433         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
434           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
435       }
436       NonAliasMemDefs.clear();
437       NonAliasMemUses.clear();
438       // Add SU to the barrier chain.
439       if (BarrierChain)
440         BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
441       BarrierChain = SU;
442 
443       // fall-through
444     new_alias_chain:
445       // Chain all possibly aliasing memory references though SU.
446       if (AliasChain)
447         AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
448       AliasChain = SU;
449       for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
450         PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
451       for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
452            E = AliasMemDefs.end(); I != E; ++I) {
453         I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
454       }
455       for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
456            AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
457         for (unsigned i = 0, e = I->second.size(); i != e; ++i)
458           I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
459       }
460       PendingLoads.clear();
461       AliasMemDefs.clear();
462       AliasMemUses.clear();
463     } else if (MCID.mayStore()) {
464       bool MayAlias = true;
465       TrueMemOrderLatency = STORE_LOAD_LATENCY;
466       if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
467         // A store to a specific PseudoSourceValue. Add precise dependencies.
468         // Record the def in MemDefs, first adding a dep if there is
469         // an existing def.
470         std::map<const Value *, SUnit *>::iterator I =
471           ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
472         std::map<const Value *, SUnit *>::iterator IE =
473           ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
474         if (I != IE) {
475           I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
476                                   /*isNormalMemory=*/true));
477           I->second = SU;
478         } else {
479           if (MayAlias)
480             AliasMemDefs[V] = SU;
481           else
482             NonAliasMemDefs[V] = SU;
483         }
484         // Handle the uses in MemUses, if there are any.
485         std::map<const Value *, std::vector<SUnit *> >::iterator J =
486           ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
487         std::map<const Value *, std::vector<SUnit *> >::iterator JE =
488           ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
489         if (J != JE) {
490           for (unsigned i = 0, e = J->second.size(); i != e; ++i)
491             J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
492                                        /*Reg=*/0, /*isNormalMemory=*/true));
493           J->second.clear();
494         }
495         if (MayAlias) {
496           // Add dependencies from all the PendingLoads, i.e. loads
497           // with no underlying object.
498           for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
499             PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
500           // Add dependence on alias chain, if needed.
501           if (AliasChain)
502             AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
503         }
504         // Add dependence on barrier chain, if needed.
505         if (BarrierChain)
506           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
507       } else {
508         // Treat all other stores conservatively.
509         goto new_alias_chain;
510       }
511 
512       if (!ExitSU.isPred(SU))
513         // Push store's up a bit to avoid them getting in between cmp
514         // and branches.
515         ExitSU.addPred(SDep(SU, SDep::Order, 0,
516                             /*Reg=*/0, /*isNormalMemory=*/false,
517                             /*isMustAlias=*/false,
518                             /*isArtificial=*/true));
519     } else if (MCID.mayLoad()) {
520       bool MayAlias = true;
521       TrueMemOrderLatency = 0;
522       if (MI->isInvariantLoad(AA)) {
523         // Invariant load, no chain dependencies needed!
524       } else {
525         if (const Value *V =
526             getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
527           // A load from a specific PseudoSourceValue. Add precise dependencies.
528           std::map<const Value *, SUnit *>::iterator I =
529             ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
530           std::map<const Value *, SUnit *>::iterator IE =
531             ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
532           if (I != IE)
533             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
534                                     /*isNormalMemory=*/true));
535           if (MayAlias)
536             AliasMemUses[V].push_back(SU);
537           else
538             NonAliasMemUses[V].push_back(SU);
539         } else {
540           // A load with no underlying object. Depend on all
541           // potentially aliasing stores.
542           for (std::map<const Value *, SUnit *>::iterator I =
543                  AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
544             I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
545 
546           PendingLoads.push_back(SU);
547           MayAlias = true;
548         }
549 
550         // Add dependencies on alias and barrier chains, if needed.
551         if (MayAlias && AliasChain)
552           AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
553         if (BarrierChain)
554           BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
555       }
556     }
557   }
558   if (PrevMI)
559     FirstDbgValue = PrevMI;
560 
561   for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
562     Defs[i].clear();
563     Uses[i].clear();
564   }
565   PendingLoads.clear();
566 }
567 
FinishBlock()568 void ScheduleDAGInstrs::FinishBlock() {
569   // Nothing to do.
570 }
571 
ComputeLatency(SUnit * SU)572 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
573   // Compute the latency for the node.
574   if (!InstrItins || InstrItins->isEmpty()) {
575     SU->Latency = 1;
576 
577     // Simplistic target-independent heuristic: assume that loads take
578     // extra time.
579     if (SU->getInstr()->getDesc().mayLoad())
580       SU->Latency += 2;
581   } else {
582     SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
583   }
584 }
585 
ComputeOperandLatency(SUnit * Def,SUnit * Use,SDep & dep) const586 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
587                                               SDep& dep) const {
588   if (!InstrItins || InstrItins->isEmpty())
589     return;
590 
591   // For a data dependency with a known register...
592   if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
593     return;
594 
595   const unsigned Reg = dep.getReg();
596 
597   // ... find the definition of the register in the defining
598   // instruction
599   MachineInstr *DefMI = Def->getInstr();
600   int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
601   if (DefIdx != -1) {
602     const MachineOperand &MO = DefMI->getOperand(DefIdx);
603     if (MO.isReg() && MO.isImplicit() &&
604         DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
605       // This is an implicit def, getOperandLatency() won't return the correct
606       // latency. e.g.
607       //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
608       //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
609       // What we want is to compute latency between def of %D6/%D7 and use of
610       // %Q3 instead.
611       DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
612     }
613     MachineInstr *UseMI = Use->getInstr();
614     // For all uses of the register, calculate the maxmimum latency
615     int Latency = -1;
616     if (UseMI) {
617       for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
618         const MachineOperand &MO = UseMI->getOperand(i);
619         if (!MO.isReg() || !MO.isUse())
620           continue;
621         unsigned MOReg = MO.getReg();
622         if (MOReg != Reg)
623           continue;
624 
625         int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
626                                               UseMI, i);
627         Latency = std::max(Latency, UseCycle);
628       }
629     } else {
630       // UseMI is null, then it must be a scheduling barrier.
631       if (!InstrItins || InstrItins->isEmpty())
632         return;
633       unsigned DefClass = DefMI->getDesc().getSchedClass();
634       Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
635     }
636 
637     // If we found a latency, then replace the existing dependence latency.
638     if (Latency >= 0)
639       dep.setLatency(Latency);
640   }
641 }
642 
dumpNode(const SUnit * SU) const643 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
644   SU->getInstr()->dump();
645 }
646 
getGraphNodeLabel(const SUnit * SU) const647 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
648   std::string s;
649   raw_string_ostream oss(s);
650   if (SU == &EntrySU)
651     oss << "<entry>";
652   else if (SU == &ExitSU)
653     oss << "<exit>";
654   else
655     SU->getInstr()->print(oss);
656   return oss.str();
657 }
658 
659 // EmitSchedule - Emit the machine code in scheduled order.
EmitSchedule()660 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
661   // For MachineInstr-based scheduling, we're rescheduling the instructions in
662   // the block, so start by removing them from the block.
663   while (Begin != InsertPos) {
664     MachineBasicBlock::iterator I = Begin;
665     ++Begin;
666     BB->remove(I);
667   }
668 
669   // If first instruction was a DBG_VALUE then put it back.
670   if (FirstDbgValue)
671     BB->insert(InsertPos, FirstDbgValue);
672 
673   // Then re-insert them according to the given schedule.
674   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
675     if (SUnit *SU = Sequence[i])
676       BB->insert(InsertPos, SU->getInstr());
677     else
678       // Null SUnit* is a noop.
679       EmitNoop();
680   }
681 
682   // Update the Begin iterator, as the first instruction in the block
683   // may have been scheduled later.
684   if (!Sequence.empty())
685     Begin = Sequence[0]->getInstr();
686 
687   // Reinsert any remaining debug_values.
688   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
689          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
690     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
691     MachineInstr *DbgValue = P.first;
692     MachineInstr *OrigPrivMI = P.second;
693     BB->insertAfter(OrigPrivMI, DbgValue);
694   }
695   DbgValues.clear();
696   FirstDbgValue = NULL;
697   return BB;
698 }
699