• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
2
3TODO:
4* gpr0 allocation
5* implement do-loop -> bdnz transform
6* lmw/stmw pass a la arm load store optimizer for prolog/epilog
7
8===-------------------------------------------------------------------------===
9
10On PPC64, this:
11
12long f2 (long x) { return 0xfffffff000000000UL; }
13long f3 (long x) { return 0x1ffffffffUL; }
14
15could compile into:
16
17_f2:
18	li r3,-1
19	rldicr r3,r3,0,27
20	blr
21_f3:
22	li r3,-1
23	rldicl r3,r3,0,31
24	blr
25
26we produce:
27
28_f2:
29	lis r2, 4095
30	ori r2, r2, 65535
31	sldi r3, r2, 36
32	blr
33_f3:
34	li r2, 1
35	sldi r2, r2, 32
36	oris r2, r2, 65535
37	ori r3, r2, 65535
38	blr
39
40===-------------------------------------------------------------------------===
41
42This code:
43
44unsigned add32carry(unsigned sum, unsigned x) {
45 unsigned z = sum + x;
46 if (sum + x < x)
47     z++;
48 return z;
49}
50
51Should compile to something like:
52
53	addc r3,r3,r4
54	addze r3,r3
55
56instead we get:
57
58	add r3, r4, r3
59	cmplw cr7, r3, r4
60	mfcr r4 ; 1
61	rlwinm r4, r4, 29, 31, 31
62	add r3, r3, r4
63
64Ick.
65
66===-------------------------------------------------------------------------===
67
68Support 'update' load/store instructions.  These are cracked on the G5, but are
69still a codesize win.
70
71With preinc enabled, this:
72
73long *%test4(long *%X, long *%dest) {
74        %Y = getelementptr long* %X, int 4
75        %A = load long* %Y
76        store long %A, long* %dest
77        ret long* %Y
78}
79
80compiles to:
81
82_test4:
83        mr r2, r3
84        lwzu r5, 32(r2)
85        lwz r3, 36(r3)
86        stw r5, 0(r4)
87        stw r3, 4(r4)
88        mr r3, r2
89        blr
90
91with -sched=list-burr, I get:
92
93_test4:
94        lwz r2, 36(r3)
95        lwzu r5, 32(r3)
96        stw r2, 4(r4)
97        stw r5, 0(r4)
98        blr
99
100===-------------------------------------------------------------------------===
101
102We compile the hottest inner loop of viterbi to:
103
104        li r6, 0
105        b LBB1_84       ;bb432.i
106LBB1_83:        ;bb420.i
107        lbzx r8, r5, r7
108        addi r6, r7, 1
109        stbx r8, r4, r7
110LBB1_84:        ;bb432.i
111        mr r7, r6
112        cmplwi cr0, r7, 143
113        bne cr0, LBB1_83        ;bb420.i
114
115The CBE manages to produce:
116
117	li r0, 143
118	mtctr r0
119loop:
120	lbzx r2, r2, r11
121	stbx r0, r2, r9
122	addi r2, r2, 1
123	bdz later
124	b loop
125
126This could be much better (bdnz instead of bdz) but it still beats us.  If we
127produced this with bdnz, the loop would be a single dispatch group.
128
129===-------------------------------------------------------------------------===
130
131Compile:
132
133void foo(int *P) {
134 if (P)  *P = 0;
135}
136
137into:
138
139_foo:
140        cmpwi cr0,r3,0
141        beqlr cr0
142        li r0,0
143        stw r0,0(r3)
144        blr
145
146This is effectively a simple form of predication.
147
148===-------------------------------------------------------------------------===
149
150Lump the constant pool for each function into ONE pic object, and reference
151pieces of it as offsets from the start.  For functions like this (contrived
152to have lots of constants obviously):
153
154double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
155
156We generate:
157
158_X:
159        lis r2, ha16(.CPI_X_0)
160        lfd f0, lo16(.CPI_X_0)(r2)
161        lis r2, ha16(.CPI_X_1)
162        lfd f2, lo16(.CPI_X_1)(r2)
163        fmadd f0, f1, f0, f2
164        lis r2, ha16(.CPI_X_2)
165        lfd f1, lo16(.CPI_X_2)(r2)
166        lis r2, ha16(.CPI_X_3)
167        lfd f2, lo16(.CPI_X_3)(r2)
168        fmadd f1, f0, f1, f2
169        blr
170
171It would be better to materialize .CPI_X into a register, then use immediates
172off of the register to avoid the lis's.  This is even more important in PIC
173mode.
174
175Note that this (and the static variable version) is discussed here for GCC:
176http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
177
178Here's another example (the sgn function):
179double testf(double a) {
180       return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
181}
182
183it produces a BB like this:
184LBB1_1: ; cond_true
185        lis r2, ha16(LCPI1_0)
186        lfs f0, lo16(LCPI1_0)(r2)
187        lis r2, ha16(LCPI1_1)
188        lis r3, ha16(LCPI1_2)
189        lfs f2, lo16(LCPI1_2)(r3)
190        lfs f3, lo16(LCPI1_1)(r2)
191        fsub f0, f0, f1
192        fsel f1, f0, f2, f3
193        blr
194
195===-------------------------------------------------------------------------===
196
197PIC Code Gen IPO optimization:
198
199Squish small scalar globals together into a single global struct, allowing the
200address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
201of the GOT on targets with one).
202
203Note that this is discussed here for GCC:
204http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
205
206===-------------------------------------------------------------------------===
207
208Implement Newton-Rhapson method for improving estimate instructions to the
209correct accuracy, and implementing divide as multiply by reciprocal when it has
210more than one use.  Itanium would want this too.
211
212===-------------------------------------------------------------------------===
213
214Compile offsets from allocas:
215
216int *%test() {
217        %X = alloca { int, int }
218        %Y = getelementptr {int,int}* %X, int 0, uint 1
219        ret int* %Y
220}
221
222into a single add, not two:
223
224_test:
225        addi r2, r1, -8
226        addi r3, r2, 4
227        blr
228
229--> important for C++.
230
231===-------------------------------------------------------------------------===
232
233No loads or stores of the constants should be needed:
234
235struct foo { double X, Y; };
236void xxx(struct foo F);
237void bar() { struct foo R = { 1.0, 2.0 }; xxx(R); }
238
239===-------------------------------------------------------------------------===
240
241Darwin Stub removal:
242
243We still generate calls to foo$stub, and stubs, on Darwin.  This is not
244necessary when building with the Leopard (10.5) or later linker, as stubs are
245generated by ld when necessary.  Parameterizing this based on the deployment
246target (-mmacosx-version-min) is probably enough.  x86-32 does this right, see
247its logic.
248
249===-------------------------------------------------------------------------===
250
251Darwin Stub LICM optimization:
252
253Loops like this:
254
255  for (...)  bar();
256
257Have to go through an indirect stub if bar is external or linkonce.  It would
258be better to compile it as:
259
260     fp = &bar;
261     for (...)  fp();
262
263which only computes the address of bar once (instead of each time through the
264stub).  This is Darwin specific and would have to be done in the code generator.
265Probably not a win on x86.
266
267===-------------------------------------------------------------------------===
268
269Simple IPO for argument passing, change:
270  void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y)
271
272the Darwin ABI specifies that any integer arguments in the first 32 bytes worth
273of arguments get assigned to r3 through r10. That is, if you have a function
274foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the
275argument bytes for r4 and r5. The trick then would be to shuffle the argument
276order for functions we can internalize so that the maximum number of
277integers/pointers get passed in regs before you see any of the fp arguments.
278
279Instead of implementing this, it would actually probably be easier to just
280implement a PPC fastcc, where we could do whatever we wanted to the CC,
281including having this work sanely.
282
283===-------------------------------------------------------------------------===
284
285Fix Darwin FP-In-Integer Registers ABI
286
287Darwin passes doubles in structures in integer registers, which is very very
288bad.  Add something like a BITCAST to LLVM, then do an i-p transformation that
289percolates these things out of functions.
290
291Check out how horrible this is:
292http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html
293
294This is an extension of "interprocedural CC unmunging" that can't be done with
295just fastcc.
296
297===-------------------------------------------------------------------------===
298
299Compile this:
300
301int foo(int a) {
302  int b = (a < 8);
303  if (b) {
304    return b * 3;     // ignore the fact that this is always 3.
305  } else {
306    return 2;
307  }
308}
309
310into something not this:
311
312_foo:
3131)      cmpwi cr7, r3, 8
314        mfcr r2, 1
315        rlwinm r2, r2, 29, 31, 31
3161)      cmpwi cr0, r3, 7
317        bgt cr0, LBB1_2 ; UnifiedReturnBlock
318LBB1_1: ; then
319        rlwinm r2, r2, 0, 31, 31
320        mulli r3, r2, 3
321        blr
322LBB1_2: ; UnifiedReturnBlock
323        li r3, 2
324        blr
325
326In particular, the two compares (marked 1) could be shared by reversing one.
327This could be done in the dag combiner, by swapping a BR_CC when a SETCC of the
328same operands (but backwards) exists.  In this case, this wouldn't save us
329anything though, because the compares still wouldn't be shared.
330
331===-------------------------------------------------------------------------===
332
333We should custom expand setcc instead of pretending that we have it.  That
334would allow us to expose the access of the crbit after the mfcr, allowing
335that access to be trivially folded into other ops.  A simple example:
336
337int foo(int a, int b) { return (a < b) << 4; }
338
339compiles into:
340
341_foo:
342        cmpw cr7, r3, r4
343        mfcr r2, 1
344        rlwinm r2, r2, 29, 31, 31
345        slwi r3, r2, 4
346        blr
347
348===-------------------------------------------------------------------------===
349
350Fold add and sub with constant into non-extern, non-weak addresses so this:
351
352static int a;
353void bar(int b) { a = b; }
354void foo(unsigned char *c) {
355  *c = a;
356}
357
358So that
359
360_foo:
361        lis r2, ha16(_a)
362        la r2, lo16(_a)(r2)
363        lbz r2, 3(r2)
364        stb r2, 0(r3)
365        blr
366
367Becomes
368
369_foo:
370        lis r2, ha16(_a+3)
371        lbz r2, lo16(_a+3)(r2)
372        stb r2, 0(r3)
373        blr
374
375===-------------------------------------------------------------------------===
376
377We generate really bad code for this:
378
379int f(signed char *a, _Bool b, _Bool c) {
380   signed char t = 0;
381  if (b)  t = *a;
382  if (c)  *a = t;
383}
384
385===-------------------------------------------------------------------------===
386
387This:
388int test(unsigned *P) { return *P >> 24; }
389
390Should compile to:
391
392_test:
393        lbz r3,0(r3)
394        blr
395
396not:
397
398_test:
399        lwz r2, 0(r3)
400        srwi r3, r2, 24
401        blr
402
403===-------------------------------------------------------------------------===
404
405On the G5, logical CR operations are more expensive in their three
406address form: ops that read/write the same register are half as expensive as
407those that read from two registers that are different from their destination.
408
409We should model this with two separate instructions.  The isel should generate
410the "two address" form of the instructions.  When the register allocator
411detects that it needs to insert a copy due to the two-addresness of the CR
412logical op, it will invoke PPCInstrInfo::convertToThreeAddress.  At this point
413we can convert to the "three address" instruction, to save code space.
414
415This only matters when we start generating cr logical ops.
416
417===-------------------------------------------------------------------------===
418
419We should compile these two functions to the same thing:
420
421#include <stdlib.h>
422void f(int a, int b, int *P) {
423  *P = (a-b)>=0?(a-b):(b-a);
424}
425void g(int a, int b, int *P) {
426  *P = abs(a-b);
427}
428
429Further, they should compile to something better than:
430
431_g:
432        subf r2, r4, r3
433        subfic r3, r2, 0
434        cmpwi cr0, r2, -1
435        bgt cr0, LBB2_2 ; entry
436LBB2_1: ; entry
437        mr r2, r3
438LBB2_2: ; entry
439        stw r2, 0(r5)
440        blr
441
442GCC produces:
443
444_g:
445        subf r4,r4,r3
446        srawi r2,r4,31
447        xor r0,r2,r4
448        subf r0,r2,r0
449        stw r0,0(r5)
450        blr
451
452... which is much nicer.
453
454This theoretically may help improve twolf slightly (used in dimbox.c:142?).
455
456===-------------------------------------------------------------------------===
457
458PR5945: This:
459define i32 @clamp0g(i32 %a) {
460entry:
461        %cmp = icmp slt i32 %a, 0
462        %sel = select i1 %cmp, i32 0, i32 %a
463        ret i32 %sel
464}
465
466Is compile to this with the PowerPC (32-bit) backend:
467
468_clamp0g:
469        cmpwi cr0, r3, 0
470        li r2, 0
471        blt cr0, LBB1_2
472; BB#1:                                                     ; %entry
473        mr r2, r3
474LBB1_2:                                                     ; %entry
475        mr r3, r2
476        blr
477
478This could be reduced to the much simpler:
479
480_clamp0g:
481        srawi r2, r3, 31
482        andc r3, r3, r2
483        blr
484
485===-------------------------------------------------------------------------===
486
487int foo(int N, int ***W, int **TK, int X) {
488  int t, i;
489
490  for (t = 0; t < N; ++t)
491    for (i = 0; i < 4; ++i)
492      W[t / X][i][t % X] = TK[i][t];
493
494  return 5;
495}
496
497We generate relatively atrocious code for this loop compared to gcc.
498
499We could also strength reduce the rem and the div:
500http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
501
502===-------------------------------------------------------------------------===
503
504float foo(float X) { return (int)(X); }
505
506Currently produces:
507
508_foo:
509        fctiwz f0, f1
510        stfd f0, -8(r1)
511        lwz r2, -4(r1)
512        extsw r2, r2
513        std r2, -16(r1)
514        lfd f0, -16(r1)
515        fcfid f0, f0
516        frsp f1, f0
517        blr
518
519We could use a target dag combine to turn the lwz/extsw into an lwa when the
520lwz has a single use.  Since LWA is cracked anyway, this would be a codesize
521win only.
522
523===-------------------------------------------------------------------------===
524
525We generate ugly code for this:
526
527void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
528  unsigned code = 0;
529  if(dx < -dw) code |= 1;
530  if(dx > dw)  code |= 2;
531  if(dy < -dw) code |= 4;
532  if(dy > dw)  code |= 8;
533  if(dz < -dw) code |= 16;
534  if(dz > dw)  code |= 32;
535  *ret = code;
536}
537
538===-------------------------------------------------------------------------===
539
540Complete the signed i32 to FP conversion code using 64-bit registers
541transformation, good for PI.  See PPCISelLowering.cpp, this comment:
542
543     // FIXME: disable this lowered code.  This generates 64-bit register values,
544     // and we don't model the fact that the top part is clobbered by calls.  We
545     // need to flag these together so that the value isn't live across a call.
546     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
547
548Also, if the registers are spilled to the stack, we have to ensure that all
54964-bits of them are save/restored, otherwise we will miscompile the code.  It
550sounds like we need to get the 64-bit register classes going.
551
552===-------------------------------------------------------------------------===
553
554%struct.B = type { i8, [3 x i8] }
555
556define void @bar(%struct.B* %b) {
557entry:
558        %tmp = bitcast %struct.B* %b to i32*              ; <uint*> [#uses=1]
559        %tmp = load i32* %tmp          ; <uint> [#uses=1]
560        %tmp3 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=1]
561        %tmp4 = load i32* %tmp3                ; <uint> [#uses=1]
562        %tmp8 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=2]
563        %tmp9 = load i32* %tmp8                ; <uint> [#uses=1]
564        %tmp4.mask17 = shl i32 %tmp4, i8 1          ; <uint> [#uses=1]
565        %tmp1415 = and i32 %tmp4.mask17, 2147483648            ; <uint> [#uses=1]
566        %tmp.masked = and i32 %tmp, 2147483648         ; <uint> [#uses=1]
567        %tmp11 = or i32 %tmp1415, %tmp.masked          ; <uint> [#uses=1]
568        %tmp12 = and i32 %tmp9, 2147483647             ; <uint> [#uses=1]
569        %tmp13 = or i32 %tmp12, %tmp11         ; <uint> [#uses=1]
570        store i32 %tmp13, i32* %tmp8
571        ret void
572}
573
574We emit:
575
576_foo:
577        lwz r2, 0(r3)
578        slwi r4, r2, 1
579        or r4, r4, r2
580        rlwimi r2, r4, 0, 0, 0
581        stw r2, 0(r3)
582        blr
583
584We could collapse a bunch of those ORs and ANDs and generate the following
585equivalent code:
586
587_foo:
588        lwz r2, 0(r3)
589        rlwinm r4, r2, 1, 0, 0
590        or r2, r2, r4
591        stw r2, 0(r3)
592        blr
593
594===-------------------------------------------------------------------------===
595
596We compile:
597
598unsigned test6(unsigned x) {
599  return ((x & 0x00FF0000) >> 16) | ((x & 0x000000FF) << 16);
600}
601
602into:
603
604_test6:
605        lis r2, 255
606        rlwinm r3, r3, 16, 0, 31
607        ori r2, r2, 255
608        and r3, r3, r2
609        blr
610
611GCC gets it down to:
612
613_test6:
614        rlwinm r0,r3,16,8,15
615        rlwinm r3,r3,16,24,31
616        or r3,r3,r0
617        blr
618
619
620===-------------------------------------------------------------------------===
621
622Consider a function like this:
623
624float foo(float X) { return X + 1234.4123f; }
625
626The FP constant ends up in the constant pool, so we need to get the LR register.
627 This ends up producing code like this:
628
629_foo:
630.LBB_foo_0:     ; entry
631        mflr r11
632***     stw r11, 8(r1)
633        bl "L00000$pb"
634"L00000$pb":
635        mflr r2
636        addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
637        lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
638        fadds f1, f1, f0
639***     lwz r11, 8(r1)
640        mtlr r11
641        blr
642
643This is functional, but there is no reason to spill the LR register all the way
644to the stack (the two marked instrs): spilling it to a GPR is quite enough.
645
646Implementing this will require some codegen improvements.  Nate writes:
647
648"So basically what we need to support the "no stack frame save and restore" is a
649generalization of the LR optimization to "callee-save regs".
650
651Currently, we have LR marked as a callee-save reg.  The register allocator sees
652that it's callee save, and spills it directly to the stack.
653
654Ideally, something like this would happen:
655
656LR would be in a separate register class from the GPRs. The class of LR would be
657marked "unspillable".  When the register allocator came across an unspillable
658reg, it would ask "what is the best class to copy this into that I *can* spill"
659If it gets a class back, which it will in this case (the gprs), it grabs a free
660register of that class.  If it is then later necessary to spill that reg, so be
661it.
662
663===-------------------------------------------------------------------------===
664
665We compile this:
666int test(_Bool X) {
667  return X ? 524288 : 0;
668}
669
670to:
671_test:
672        cmplwi cr0, r3, 0
673        lis r2, 8
674        li r3, 0
675        beq cr0, LBB1_2 ;entry
676LBB1_1: ;entry
677        mr r3, r2
678LBB1_2: ;entry
679        blr
680
681instead of:
682_test:
683        addic r2,r3,-1
684        subfe r0,r2,r3
685        slwi r3,r0,19
686        blr
687
688This sort of thing occurs a lot due to globalopt.
689
690===-------------------------------------------------------------------------===
691
692We compile:
693
694define i32 @bar(i32 %x) nounwind readnone ssp {
695entry:
696  %0 = icmp eq i32 %x, 0                          ; <i1> [#uses=1]
697  %neg = sext i1 %0 to i32              ; <i32> [#uses=1]
698  ret i32 %neg
699}
700
701to:
702
703_bar:
704	cntlzw r2, r3
705	slwi r2, r2, 26
706	srawi r3, r2, 31
707	blr
708
709it would be better to produce:
710
711_bar:
712        addic r3,r3,-1
713        subfe r3,r3,r3
714        blr
715
716===-------------------------------------------------------------------------===
717
718We currently compile 32-bit bswap:
719
720declare i32 @llvm.bswap.i32(i32 %A)
721define i32 @test(i32 %A) {
722        %B = call i32 @llvm.bswap.i32(i32 %A)
723        ret i32 %B
724}
725
726to:
727
728_test:
729        rlwinm r2, r3, 24, 16, 23
730        slwi r4, r3, 24
731        rlwimi r2, r3, 8, 24, 31
732        rlwimi r4, r3, 8, 8, 15
733        rlwimi r4, r2, 0, 16, 31
734        mr r3, r4
735        blr
736
737it would be more efficient to produce:
738
739_foo:   mr r0,r3
740        rlwinm r3,r3,8,0xffffffff
741        rlwimi r3,r0,24,0,7
742        rlwimi r3,r0,24,16,23
743        blr
744
745===-------------------------------------------------------------------------===
746
747test/CodeGen/PowerPC/2007-03-24-cntlzd.ll compiles to:
748
749__ZNK4llvm5APInt17countLeadingZerosEv:
750        ld r2, 0(r3)
751        cntlzd r2, r2
752        or r2, r2, r2     <<-- silly.
753        addi r3, r2, -64
754        blr
755
756The dead or is a 'truncate' from 64- to 32-bits.
757
758===-------------------------------------------------------------------------===
759
760We generate horrible ppc code for this:
761
762#define N  2000000
763double   a[N],c[N];
764void simpleloop() {
765   int j;
766   for (j=0; j<N; j++)
767     c[j] = a[j];
768}
769
770LBB1_1: ;bb
771        lfdx f0, r3, r4
772        addi r5, r5, 1                 ;; Extra IV for the exit value compare.
773        stfdx f0, r2, r4
774        addi r4, r4, 8
775
776        xoris r6, r5, 30               ;; This is due to a large immediate.
777        cmplwi cr0, r6, 33920
778        bne cr0, LBB1_1
779
780//===---------------------------------------------------------------------===//
781
782This:
783        #include <algorithm>
784        inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
785        { return std::make_pair(a + b, a + b < a); }
786        bool no_overflow(unsigned a, unsigned b)
787        { return !full_add(a, b).second; }
788
789Should compile to:
790
791__Z11no_overflowjj:
792        add r4,r3,r4
793        subfc r3,r3,r4
794        li r3,0
795        adde r3,r3,r3
796        blr
797
798(or better) not:
799
800__Z11no_overflowjj:
801        add r2, r4, r3
802        cmplw cr7, r2, r3
803        mfcr r2
804        rlwinm r2, r2, 29, 31, 31
805        xori r3, r2, 1
806        blr
807
808//===---------------------------------------------------------------------===//
809
810We compile some FP comparisons into an mfcr with two rlwinms and an or.  For
811example:
812#include <math.h>
813int test(double x, double y) { return islessequal(x, y);}
814int test2(double x, double y) {  return islessgreater(x, y);}
815int test3(double x, double y) {  return !islessequal(x, y);}
816
817Compiles into (all three are similar, but the bits differ):
818
819_test:
820	fcmpu cr7, f1, f2
821	mfcr r2
822	rlwinm r3, r2, 29, 31, 31
823	rlwinm r2, r2, 31, 31, 31
824	or r3, r2, r3
825	blr
826
827GCC compiles this into:
828
829 _test:
830	fcmpu cr7,f1,f2
831	cror 30,28,30
832	mfcr r3
833	rlwinm r3,r3,31,1
834	blr
835
836which is more efficient and can use mfocr.  See PR642 for some more context.
837
838//===---------------------------------------------------------------------===//
839
840void foo(float *data, float d) {
841   long i;
842   for (i = 0; i < 8000; i++)
843      data[i] = d;
844}
845void foo2(float *data, float d) {
846   long i;
847   data--;
848   for (i = 0; i < 8000; i++) {
849      data[1] = d;
850      data++;
851   }
852}
853
854These compile to:
855
856_foo:
857	li r2, 0
858LBB1_1:	; bb
859	addi r4, r2, 4
860	stfsx f1, r3, r2
861	cmplwi cr0, r4, 32000
862	mr r2, r4
863	bne cr0, LBB1_1	; bb
864	blr
865_foo2:
866	li r2, 0
867LBB2_1:	; bb
868	addi r4, r2, 4
869	stfsx f1, r3, r2
870	cmplwi cr0, r4, 32000
871	mr r2, r4
872	bne cr0, LBB2_1	; bb
873	blr
874
875The 'mr' could be eliminated to folding the add into the cmp better.
876
877//===---------------------------------------------------------------------===//
878Codegen for the following (low-probability) case deteriorated considerably
879when the correctness fixes for unordered comparisons went in (PR 642, 58871).
880It should be possible to recover the code quality described in the comments.
881
882; RUN: llvm-as < %s | llc -march=ppc32  | grep or | count 3
883; This should produce one 'or' or 'cror' instruction per function.
884
885; RUN: llvm-as < %s | llc -march=ppc32  | grep mfcr | count 3
886; PR2964
887
888define i32 @test(double %x, double %y) nounwind  {
889entry:
890	%tmp3 = fcmp ole double %x, %y		; <i1> [#uses=1]
891	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
892	ret i32 %tmp345
893}
894
895define i32 @test2(double %x, double %y) nounwind  {
896entry:
897	%tmp3 = fcmp one double %x, %y		; <i1> [#uses=1]
898	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
899	ret i32 %tmp345
900}
901
902define i32 @test3(double %x, double %y) nounwind  {
903entry:
904	%tmp3 = fcmp ugt double %x, %y		; <i1> [#uses=1]
905	%tmp34 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
906	ret i32 %tmp34
907}
908//===----------------------------------------------------------------------===//
909; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
910
911; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
912; should not be generated except with -enable-finite-only-fp-math or the like).
913; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
914; recognize a more elaborate tree than a simple SETxx.
915
916define double @test_FNEG_sel(double %A, double %B, double %C) {
917        %D = fsub double -0.000000e+00, %A               ; <double> [#uses=1]
918        %Cond = fcmp ugt double %D, -0.000000e+00               ; <i1> [#uses=1]
919        %E = select i1 %Cond, double %B, double %C              ; <double> [#uses=1]
920        ret double %E
921}
922
923//===----------------------------------------------------------------------===//
924The save/restore sequence for CR in prolog/epilog is terrible:
925- Each CR subreg is saved individually, rather than doing one save as a unit.
926- On Darwin, the save is done after the decrement of SP, which means the offset
927from SP of the save slot can be too big for a store instruction, which means we
928need an additional register (currently hacked in 96015+96020; the solution there
929is correct, but poor).
930- On SVR4 the same thing can happen, and I don't think saving before the SP
931decrement is safe on that target, as there is no red zone.  This is currently
932broken AFAIK, although it's not a target I can exercise.
933The following demonstrates the problem:
934extern void bar(char *p);
935void foo() {
936  char x[100000];
937  bar(x);
938  __asm__("" ::: "cr2");
939}
940