1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks, when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "sink"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Analysis/Dominators.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
27
28 STATISTIC(NumSunk, "Number of instructions sunk");
29
30 namespace {
31 class Sinking : public FunctionPass {
32 DominatorTree *DT;
33 LoopInfo *LI;
34 AliasAnalysis *AA;
35
36 public:
37 static char ID; // Pass identification
Sinking()38 Sinking() : FunctionPass(ID) {
39 initializeSinkingPass(*PassRegistry::getPassRegistry());
40 }
41
42 virtual bool runOnFunction(Function &F);
43
getAnalysisUsage(AnalysisUsage & AU) const44 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45 AU.setPreservesCFG();
46 FunctionPass::getAnalysisUsage(AU);
47 AU.addRequired<AliasAnalysis>();
48 AU.addRequired<DominatorTree>();
49 AU.addRequired<LoopInfo>();
50 AU.addPreserved<DominatorTree>();
51 AU.addPreserved<LoopInfo>();
52 }
53 private:
54 bool ProcessBlock(BasicBlock &BB);
55 bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
56 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
57 };
58 } // end anonymous namespace
59
60 char Sinking::ID = 0;
61 INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)62 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
63 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
64 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
65 INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
66
67 FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
68
69 /// AllUsesDominatedByBlock - Return true if all uses of the specified value
70 /// occur in blocks dominated by the specified block.
AllUsesDominatedByBlock(Instruction * Inst,BasicBlock * BB) const71 bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
72 BasicBlock *BB) const {
73 // Ignoring debug uses is necessary so debug info doesn't affect the code.
74 // This may leave a referencing dbg_value in the original block, before
75 // the definition of the vreg. Dwarf generator handles this although the
76 // user might not get the right info at runtime.
77 for (Value::use_iterator I = Inst->use_begin(),
78 E = Inst->use_end(); I != E; ++I) {
79 // Determine the block of the use.
80 Instruction *UseInst = cast<Instruction>(*I);
81 BasicBlock *UseBlock = UseInst->getParent();
82 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
83 // PHI nodes use the operand in the predecessor block, not the block with
84 // the PHI.
85 unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
86 UseBlock = PN->getIncomingBlock(Num);
87 }
88 // Check that it dominates.
89 if (!DT->dominates(BB, UseBlock))
90 return false;
91 }
92 return true;
93 }
94
runOnFunction(Function & F)95 bool Sinking::runOnFunction(Function &F) {
96 DT = &getAnalysis<DominatorTree>();
97 LI = &getAnalysis<LoopInfo>();
98 AA = &getAnalysis<AliasAnalysis>();
99
100 bool EverMadeChange = false;
101
102 while (1) {
103 bool MadeChange = false;
104
105 // Process all basic blocks.
106 for (Function::iterator I = F.begin(), E = F.end();
107 I != E; ++I)
108 MadeChange |= ProcessBlock(*I);
109
110 // If this iteration over the code changed anything, keep iterating.
111 if (!MadeChange) break;
112 EverMadeChange = true;
113 }
114 return EverMadeChange;
115 }
116
ProcessBlock(BasicBlock & BB)117 bool Sinking::ProcessBlock(BasicBlock &BB) {
118 // Can't sink anything out of a block that has less than two successors.
119 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
120
121 // Don't bother sinking code out of unreachable blocks. In addition to being
122 // unprofitable, it can also lead to infinite looping, because in an unreachable
123 // loop there may be nowhere to stop.
124 if (!DT->isReachableFromEntry(&BB)) return false;
125
126 bool MadeChange = false;
127
128 // Walk the basic block bottom-up. Remember if we saw a store.
129 BasicBlock::iterator I = BB.end();
130 --I;
131 bool ProcessedBegin = false;
132 SmallPtrSet<Instruction *, 8> Stores;
133 do {
134 Instruction *Inst = I; // The instruction to sink.
135
136 // Predecrement I (if it's not begin) so that it isn't invalidated by
137 // sinking.
138 ProcessedBegin = I == BB.begin();
139 if (!ProcessedBegin)
140 --I;
141
142 if (isa<DbgInfoIntrinsic>(Inst))
143 continue;
144
145 if (SinkInstruction(Inst, Stores))
146 ++NumSunk, MadeChange = true;
147
148 // If we just processed the first instruction in the block, we're done.
149 } while (!ProcessedBegin);
150
151 return MadeChange;
152 }
153
isSafeToMove(Instruction * Inst,AliasAnalysis * AA,SmallPtrSet<Instruction *,8> & Stores)154 static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
155 SmallPtrSet<Instruction *, 8> &Stores) {
156
157 if (Inst->mayWriteToMemory()) {
158 Stores.insert(Inst);
159 return false;
160 }
161
162 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
163 AliasAnalysis::Location Loc = AA->getLocation(L);
164 for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
165 E = Stores.end(); I != E; ++I)
166 if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
167 return false;
168 }
169
170 if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
171 return false;
172
173 return true;
174 }
175
176 /// SinkInstruction - Determine whether it is safe to sink the specified machine
177 /// instruction out of its current block into a successor.
SinkInstruction(Instruction * Inst,SmallPtrSet<Instruction *,8> & Stores)178 bool Sinking::SinkInstruction(Instruction *Inst,
179 SmallPtrSet<Instruction *, 8> &Stores) {
180 // Check if it's safe to move the instruction.
181 if (!isSafeToMove(Inst, AA, Stores))
182 return false;
183
184 // FIXME: This should include support for sinking instructions within the
185 // block they are currently in to shorten the live ranges. We often get
186 // instructions sunk into the top of a large block, but it would be better to
187 // also sink them down before their first use in the block. This xform has to
188 // be careful not to *increase* register pressure though, e.g. sinking
189 // "x = y + z" down if it kills y and z would increase the live ranges of y
190 // and z and only shrink the live range of x.
191
192 // Loop over all the operands of the specified instruction. If there is
193 // anything we can't handle, bail out.
194 BasicBlock *ParentBlock = Inst->getParent();
195
196 // SuccToSinkTo - This is the successor to sink this instruction to, once we
197 // decide.
198 BasicBlock *SuccToSinkTo = 0;
199
200 // FIXME: This picks a successor to sink into based on having one
201 // successor that dominates all the uses. However, there are cases where
202 // sinking can happen but where the sink point isn't a successor. For
203 // example:
204 // x = computation
205 // if () {} else {}
206 // use x
207 // the instruction could be sunk over the whole diamond for the
208 // if/then/else (or loop, etc), allowing it to be sunk into other blocks
209 // after that.
210
211 // Instructions can only be sunk if all their uses are in blocks
212 // dominated by one of the successors.
213 // Look at all the successors and decide which one
214 // we should sink to.
215 for (succ_iterator SI = succ_begin(ParentBlock),
216 E = succ_end(ParentBlock); SI != E; ++SI) {
217 if (AllUsesDominatedByBlock(Inst, *SI)) {
218 SuccToSinkTo = *SI;
219 break;
220 }
221 }
222
223 // If we couldn't find a block to sink to, ignore this instruction.
224 if (SuccToSinkTo == 0)
225 return false;
226
227 // It is not possible to sink an instruction into its own block. This can
228 // happen with loops.
229 if (Inst->getParent() == SuccToSinkTo)
230 return false;
231
232 DEBUG(dbgs() << "Sink instr " << *Inst);
233 DEBUG(dbgs() << "to block ";
234 WriteAsOperand(dbgs(), SuccToSinkTo, false));
235
236 // If the block has multiple predecessors, this would introduce computation on
237 // a path that it doesn't already exist. We could split the critical edge,
238 // but for now we just punt.
239 // FIXME: Split critical edges if not backedges.
240 if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) {
241 // We cannot sink a load across a critical edge - there may be stores in
242 // other code paths.
243 if (!Inst->isSafeToSpeculativelyExecute()) {
244 DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
245 return false;
246 }
247
248 // We don't want to sink across a critical edge if we don't dominate the
249 // successor. We could be introducing calculations to new code paths.
250 if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
251 DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
252 return false;
253 }
254
255 // Don't sink instructions into a loop.
256 if (LI->isLoopHeader(SuccToSinkTo)) {
257 DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
258 return false;
259 }
260
261 // Otherwise we are OK with sinking along a critical edge.
262 DEBUG(dbgs() << "Sinking along critical edge.\n");
263 }
264
265 // Determine where to insert into. Skip phi nodes.
266 BasicBlock::iterator InsertPos = SuccToSinkTo->begin();
267 while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos))
268 ++InsertPos;
269
270 // Move the instruction.
271 Inst->moveBefore(InsertPos);
272 return true;
273 }
274