1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Function.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Metadata.h"
21 using namespace llvm;
22
23 // Out of line method to get vtable etc for class.
Anchor()24 void ValueMapTypeRemapper::Anchor() {}
25
MapValue(const Value * V,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper)26 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
27 ValueMapTypeRemapper *TypeMapper) {
28 ValueToValueMapTy::iterator I = VM.find(V);
29
30 // If the value already exists in the map, use it.
31 if (I != VM.end() && I->second) return I->second;
32
33 // Global values do not need to be seeded into the VM if they
34 // are using the identity mapping.
35 if (isa<GlobalValue>(V) || isa<MDString>(V))
36 return VM[V] = const_cast<Value*>(V);
37
38 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
39 // Inline asm may need *type* remapping.
40 FunctionType *NewTy = IA->getFunctionType();
41 if (TypeMapper) {
42 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
43
44 if (NewTy != IA->getFunctionType())
45 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
46 IA->hasSideEffects(), IA->isAlignStack());
47 }
48
49 return VM[V] = const_cast<Value*>(V);
50 }
51
52
53 if (const MDNode *MD = dyn_cast<MDNode>(V)) {
54 // If this is a module-level metadata and we know that nothing at the module
55 // level is changing, then use an identity mapping.
56 if (!MD->isFunctionLocal() && (Flags & RF_NoModuleLevelChanges))
57 return VM[V] = const_cast<Value*>(V);
58
59 // Create a dummy node in case we have a metadata cycle.
60 MDNode *Dummy = MDNode::getTemporary(V->getContext(), ArrayRef<Value*>());
61 VM[V] = Dummy;
62
63 // Check all operands to see if any need to be remapped.
64 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) {
65 Value *OP = MD->getOperand(i);
66 if (OP == 0 || MapValue(OP, VM, Flags, TypeMapper) == OP) continue;
67
68 // Ok, at least one operand needs remapping.
69 SmallVector<Value*, 4> Elts;
70 Elts.reserve(MD->getNumOperands());
71 for (i = 0; i != e; ++i) {
72 Value *Op = MD->getOperand(i);
73 Elts.push_back(Op ? MapValue(Op, VM, Flags, TypeMapper) : 0);
74 }
75 MDNode *NewMD = MDNode::get(V->getContext(), Elts);
76 Dummy->replaceAllUsesWith(NewMD);
77 VM[V] = NewMD;
78 MDNode::deleteTemporary(Dummy);
79 return NewMD;
80 }
81
82 VM[V] = const_cast<Value*>(V);
83 MDNode::deleteTemporary(Dummy);
84
85 // No operands needed remapping. Use an identity mapping.
86 return const_cast<Value*>(V);
87 }
88
89 // Okay, this either must be a constant (which may or may not be mappable) or
90 // is something that is not in the mapping table.
91 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
92 if (C == 0)
93 return 0;
94
95 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
96 Function *F =
97 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper));
98 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
99 Flags, TypeMapper));
100 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
101 }
102
103 // Otherwise, we have some other constant to remap. Start by checking to see
104 // if all operands have an identity remapping.
105 unsigned OpNo = 0, NumOperands = C->getNumOperands();
106 Value *Mapped = 0;
107 for (; OpNo != NumOperands; ++OpNo) {
108 Value *Op = C->getOperand(OpNo);
109 Mapped = MapValue(Op, VM, Flags, TypeMapper);
110 if (Mapped != C) break;
111 }
112
113 // See if the type mapper wants to remap the type as well.
114 Type *NewTy = C->getType();
115 if (TypeMapper)
116 NewTy = TypeMapper->remapType(NewTy);
117
118 // If the result type and all operands match up, then just insert an identity
119 // mapping.
120 if (OpNo == NumOperands && NewTy == C->getType())
121 return VM[V] = C;
122
123 // Okay, we need to create a new constant. We've already processed some or
124 // all of the operands, set them all up now.
125 SmallVector<Constant*, 8> Ops;
126 Ops.reserve(NumOperands);
127 for (unsigned j = 0; j != OpNo; ++j)
128 Ops.push_back(cast<Constant>(C->getOperand(j)));
129
130 // If one of the operands mismatch, push it and the other mapped operands.
131 if (OpNo != NumOperands) {
132 Ops.push_back(cast<Constant>(Mapped));
133
134 // Map the rest of the operands that aren't processed yet.
135 for (++OpNo; OpNo != NumOperands; ++OpNo)
136 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
137 Flags, TypeMapper));
138 }
139
140 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
141 return VM[V] = CE->getWithOperands(Ops, NewTy);
142 if (isa<ConstantArray>(C))
143 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
144 if (isa<ConstantStruct>(C))
145 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
146 if (isa<ConstantVector>(C))
147 return VM[V] = ConstantVector::get(Ops);
148 // If this is a no-operand constant, it must be because the type was remapped.
149 if (isa<UndefValue>(C))
150 return VM[V] = UndefValue::get(NewTy);
151 if (isa<ConstantAggregateZero>(C))
152 return VM[V] = ConstantAggregateZero::get(NewTy);
153 assert(isa<ConstantPointerNull>(C));
154 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
155 }
156
157 /// RemapInstruction - Convert the instruction operands from referencing the
158 /// current values into those specified by VMap.
159 ///
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper)160 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
161 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper){
162 // Remap operands.
163 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
164 Value *V = MapValue(*op, VMap, Flags, TypeMapper);
165 // If we aren't ignoring missing entries, assert that something happened.
166 if (V != 0)
167 *op = V;
168 else
169 assert((Flags & RF_IgnoreMissingEntries) &&
170 "Referenced value not in value map!");
171 }
172
173 // Remap phi nodes' incoming blocks.
174 if (PHINode *PN = dyn_cast<PHINode>(I)) {
175 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
176 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
177 // If we aren't ignoring missing entries, assert that something happened.
178 if (V != 0)
179 PN->setIncomingBlock(i, cast<BasicBlock>(V));
180 else
181 assert((Flags & RF_IgnoreMissingEntries) &&
182 "Referenced block not in value map!");
183 }
184 }
185
186 // Remap attached metadata.
187 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
188 I->getAllMetadata(MDs);
189 for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
190 MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) {
191 MDNode *Old = MI->second;
192 MDNode *New = MapValue(Old, VMap, Flags, TypeMapper);
193 if (New != Old)
194 I->setMetadata(MI->first, New);
195 }
196
197 // If the instruction's type is being remapped, do so now.
198 if (TypeMapper)
199 I->mutateType(TypeMapper->remapType(I->getType()));
200 }
201