• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- JITTest.cpp - Unit tests for the JIT -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "gtest/gtest.h"
11 #include "llvm/ADT/OwningPtr.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/Assembly/Parser.h"
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Bitcode/ReaderWriter.h"
16 #include "llvm/Constant.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/ExecutionEngine/JIT.h"
20 #include "llvm/ExecutionEngine/JITMemoryManager.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalValue.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/Module.h"
26 #include "llvm/Support/IRBuilder.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/SourceMgr.h"
29 #include "llvm/Support/TypeBuilder.h"
30 #include "llvm/Support/TargetSelect.h"
31 #include "llvm/Type.h"
32 
33 #include <vector>
34 
35 using namespace llvm;
36 
37 namespace {
38 
makeReturnGlobal(std::string Name,GlobalVariable * G,Module * M)39 Function *makeReturnGlobal(std::string Name, GlobalVariable *G, Module *M) {
40   std::vector<Type*> params;
41   FunctionType *FTy = FunctionType::get(G->getType()->getElementType(),
42                                               params, false);
43   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
44   BasicBlock *Entry = BasicBlock::Create(M->getContext(), "entry", F);
45   IRBuilder<> builder(Entry);
46   Value *Load = builder.CreateLoad(G);
47   Type *GTy = G->getType()->getElementType();
48   Value *Add = builder.CreateAdd(Load, ConstantInt::get(GTy, 1LL));
49   builder.CreateStore(Add, G);
50   builder.CreateRet(Add);
51   return F;
52 }
53 
DumpFunction(const Function * F)54 std::string DumpFunction(const Function *F) {
55   std::string Result;
56   raw_string_ostream(Result) << "" << *F;
57   return Result;
58 }
59 
60 class RecordingJITMemoryManager : public JITMemoryManager {
61   const OwningPtr<JITMemoryManager> Base;
62 public:
RecordingJITMemoryManager()63   RecordingJITMemoryManager()
64     : Base(JITMemoryManager::CreateDefaultMemManager()) {
65     stubsAllocated = 0;
66   }
67 
setMemoryWritable()68   virtual void setMemoryWritable() { Base->setMemoryWritable(); }
setMemoryExecutable()69   virtual void setMemoryExecutable() { Base->setMemoryExecutable(); }
setPoisonMemory(bool poison)70   virtual void setPoisonMemory(bool poison) { Base->setPoisonMemory(poison); }
AllocateGOT()71   virtual void AllocateGOT() { Base->AllocateGOT(); }
getGOTBase() const72   virtual uint8_t *getGOTBase() const { return Base->getGOTBase(); }
73   struct StartFunctionBodyCall {
StartFunctionBodyCall__anon3b98bb6d0111::RecordingJITMemoryManager::StartFunctionBodyCall74     StartFunctionBodyCall(uint8_t *Result, const Function *F,
75                           uintptr_t ActualSize, uintptr_t ActualSizeResult)
76       : Result(Result), F(F), F_dump(DumpFunction(F)),
77         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
78     uint8_t *Result;
79     const Function *F;
80     std::string F_dump;
81     uintptr_t ActualSize;
82     uintptr_t ActualSizeResult;
83   };
84   std::vector<StartFunctionBodyCall> startFunctionBodyCalls;
startFunctionBody(const Function * F,uintptr_t & ActualSize)85   virtual uint8_t *startFunctionBody(const Function *F,
86                                      uintptr_t &ActualSize) {
87     uintptr_t InitialActualSize = ActualSize;
88     uint8_t *Result = Base->startFunctionBody(F, ActualSize);
89     startFunctionBodyCalls.push_back(
90       StartFunctionBodyCall(Result, F, InitialActualSize, ActualSize));
91     return Result;
92   }
93   int stubsAllocated;
allocateStub(const GlobalValue * F,unsigned StubSize,unsigned Alignment)94   virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
95                                 unsigned Alignment) {
96     stubsAllocated++;
97     return Base->allocateStub(F, StubSize, Alignment);
98   }
99   struct EndFunctionBodyCall {
EndFunctionBodyCall__anon3b98bb6d0111::RecordingJITMemoryManager::EndFunctionBodyCall100     EndFunctionBodyCall(const Function *F, uint8_t *FunctionStart,
101                         uint8_t *FunctionEnd)
102       : F(F), F_dump(DumpFunction(F)),
103         FunctionStart(FunctionStart), FunctionEnd(FunctionEnd) {}
104     const Function *F;
105     std::string F_dump;
106     uint8_t *FunctionStart;
107     uint8_t *FunctionEnd;
108   };
109   std::vector<EndFunctionBodyCall> endFunctionBodyCalls;
endFunctionBody(const Function * F,uint8_t * FunctionStart,uint8_t * FunctionEnd)110   virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
111                                uint8_t *FunctionEnd) {
112     endFunctionBodyCalls.push_back(
113       EndFunctionBodyCall(F, FunctionStart, FunctionEnd));
114     Base->endFunctionBody(F, FunctionStart, FunctionEnd);
115   }
allocateSpace(intptr_t Size,unsigned Alignment)116   virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
117     return Base->allocateSpace(Size, Alignment);
118   }
allocateGlobal(uintptr_t Size,unsigned Alignment)119   virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
120     return Base->allocateGlobal(Size, Alignment);
121   }
122   struct DeallocateFunctionBodyCall {
DeallocateFunctionBodyCall__anon3b98bb6d0111::RecordingJITMemoryManager::DeallocateFunctionBodyCall123     DeallocateFunctionBodyCall(const void *Body) : Body(Body) {}
124     const void *Body;
125   };
126   std::vector<DeallocateFunctionBodyCall> deallocateFunctionBodyCalls;
deallocateFunctionBody(void * Body)127   virtual void deallocateFunctionBody(void *Body) {
128     deallocateFunctionBodyCalls.push_back(DeallocateFunctionBodyCall(Body));
129     Base->deallocateFunctionBody(Body);
130   }
131   struct DeallocateExceptionTableCall {
DeallocateExceptionTableCall__anon3b98bb6d0111::RecordingJITMemoryManager::DeallocateExceptionTableCall132     DeallocateExceptionTableCall(const void *ET) : ET(ET) {}
133     const void *ET;
134   };
135   std::vector<DeallocateExceptionTableCall> deallocateExceptionTableCalls;
deallocateExceptionTable(void * ET)136   virtual void deallocateExceptionTable(void *ET) {
137     deallocateExceptionTableCalls.push_back(DeallocateExceptionTableCall(ET));
138     Base->deallocateExceptionTable(ET);
139   }
140   struct StartExceptionTableCall {
StartExceptionTableCall__anon3b98bb6d0111::RecordingJITMemoryManager::StartExceptionTableCall141     StartExceptionTableCall(uint8_t *Result, const Function *F,
142                             uintptr_t ActualSize, uintptr_t ActualSizeResult)
143       : Result(Result), F(F), F_dump(DumpFunction(F)),
144         ActualSize(ActualSize), ActualSizeResult(ActualSizeResult) {}
145     uint8_t *Result;
146     const Function *F;
147     std::string F_dump;
148     uintptr_t ActualSize;
149     uintptr_t ActualSizeResult;
150   };
151   std::vector<StartExceptionTableCall> startExceptionTableCalls;
startExceptionTable(const Function * F,uintptr_t & ActualSize)152   virtual uint8_t* startExceptionTable(const Function* F,
153                                        uintptr_t &ActualSize) {
154     uintptr_t InitialActualSize = ActualSize;
155     uint8_t *Result = Base->startExceptionTable(F, ActualSize);
156     startExceptionTableCalls.push_back(
157       StartExceptionTableCall(Result, F, InitialActualSize, ActualSize));
158     return Result;
159   }
160   struct EndExceptionTableCall {
EndExceptionTableCall__anon3b98bb6d0111::RecordingJITMemoryManager::EndExceptionTableCall161     EndExceptionTableCall(const Function *F, uint8_t *TableStart,
162                           uint8_t *TableEnd, uint8_t* FrameRegister)
163       : F(F), F_dump(DumpFunction(F)),
164         TableStart(TableStart), TableEnd(TableEnd),
165         FrameRegister(FrameRegister) {}
166     const Function *F;
167     std::string F_dump;
168     uint8_t *TableStart;
169     uint8_t *TableEnd;
170     uint8_t *FrameRegister;
171   };
172   std::vector<EndExceptionTableCall> endExceptionTableCalls;
endExceptionTable(const Function * F,uint8_t * TableStart,uint8_t * TableEnd,uint8_t * FrameRegister)173   virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
174                                  uint8_t *TableEnd, uint8_t* FrameRegister) {
175       endExceptionTableCalls.push_back(
176           EndExceptionTableCall(F, TableStart, TableEnd, FrameRegister));
177     return Base->endExceptionTable(F, TableStart, TableEnd, FrameRegister);
178   }
179 };
180 
LoadAssemblyInto(Module * M,const char * assembly)181 bool LoadAssemblyInto(Module *M, const char *assembly) {
182   SMDiagnostic Error;
183   bool success =
184     NULL != ParseAssemblyString(assembly, M, Error, M->getContext());
185   std::string errMsg;
186   raw_string_ostream os(errMsg);
187   Error.Print("", os);
188   EXPECT_TRUE(success) << os.str();
189   return success;
190 }
191 
192 class JITTest : public testing::Test {
193  protected:
SetUp()194   virtual void SetUp() {
195     M = new Module("<main>", Context);
196     RJMM = new RecordingJITMemoryManager;
197     RJMM->setPoisonMemory(true);
198     std::string Error;
199     TheJIT.reset(EngineBuilder(M).setEngineKind(EngineKind::JIT)
200                  .setJITMemoryManager(RJMM)
201                  .setErrorStr(&Error).create());
202     ASSERT_TRUE(TheJIT.get() != NULL) << Error;
203   }
204 
LoadAssembly(const char * assembly)205   void LoadAssembly(const char *assembly) {
206     LoadAssemblyInto(M, assembly);
207   }
208 
209   LLVMContext Context;
210   Module *M;  // Owned by ExecutionEngine.
211   RecordingJITMemoryManager *RJMM;
212   OwningPtr<ExecutionEngine> TheJIT;
213 };
214 
215 // Regression test for a bug.  The JIT used to allocate globals inside the same
216 // memory block used for the function, and when the function code was freed,
217 // the global was left in the same place.  This test allocates a function
218 // that uses and global, deallocates it, and then makes sure that the global
219 // stays alive after that.
TEST(JIT,GlobalInFunction)220 TEST(JIT, GlobalInFunction) {
221   LLVMContext context;
222   Module *M = new Module("<main>", context);
223 
224   JITMemoryManager *MemMgr = JITMemoryManager::CreateDefaultMemManager();
225   // Tell the memory manager to poison freed memory so that accessing freed
226   // memory is more easily tested.
227   MemMgr->setPoisonMemory(true);
228   std::string Error;
229   OwningPtr<ExecutionEngine> JIT(EngineBuilder(M)
230                                  .setEngineKind(EngineKind::JIT)
231                                  .setErrorStr(&Error)
232                                  .setJITMemoryManager(MemMgr)
233                                  // The next line enables the fix:
234                                  .setAllocateGVsWithCode(false)
235                                  .create());
236   ASSERT_EQ(Error, "");
237 
238   // Create a global variable.
239   Type *GTy = Type::getInt32Ty(context);
240   GlobalVariable *G = new GlobalVariable(
241       *M,
242       GTy,
243       false,  // Not constant.
244       GlobalValue::InternalLinkage,
245       Constant::getNullValue(GTy),
246       "myglobal");
247 
248   // Make a function that points to a global.
249   Function *F1 = makeReturnGlobal("F1", G, M);
250 
251   // Get the pointer to the native code to force it to JIT the function and
252   // allocate space for the global.
253   void (*F1Ptr)() =
254       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F1));
255 
256   // Since F1 was codegen'd, a pointer to G should be available.
257   int32_t *GPtr = (int32_t*)JIT->getPointerToGlobalIfAvailable(G);
258   ASSERT_NE((int32_t*)NULL, GPtr);
259   EXPECT_EQ(0, *GPtr);
260 
261   // F1() should increment G.
262   F1Ptr();
263   EXPECT_EQ(1, *GPtr);
264 
265   // Make a second function identical to the first, referring to the same
266   // global.
267   Function *F2 = makeReturnGlobal("F2", G, M);
268   void (*F2Ptr)() =
269       reinterpret_cast<void(*)()>((intptr_t)JIT->getPointerToFunction(F2));
270 
271   // F2() should increment G.
272   F2Ptr();
273   EXPECT_EQ(2, *GPtr);
274 
275   // Deallocate F1.
276   JIT->freeMachineCodeForFunction(F1);
277 
278   // F2() should *still* increment G.
279   F2Ptr();
280   EXPECT_EQ(3, *GPtr);
281 }
282 
PlusOne(int arg)283 int PlusOne(int arg) {
284   return arg + 1;
285 }
286 
287 // ARM tests disabled pending fix for PR10783.
288 #if !defined(__arm__)
TEST_F(JITTest,FarCallToKnownFunction)289 TEST_F(JITTest, FarCallToKnownFunction) {
290   // x86-64 can only make direct calls to functions within 32 bits of
291   // the current PC.  To call anything farther away, we have to load
292   // the address into a register and call through the register.  The
293   // current JIT does this by allocating a stub for any far call.
294   // There was a bug in which the JIT tried to emit a direct call when
295   // the target was already in the JIT's global mappings and lazy
296   // compilation was disabled.
297 
298   Function *KnownFunction = Function::Create(
299       TypeBuilder<int(int), false>::get(Context),
300       GlobalValue::ExternalLinkage, "known", M);
301   TheJIT->addGlobalMapping(KnownFunction, (void*)(intptr_t)PlusOne);
302 
303   // int test() { return known(7); }
304   Function *TestFunction = Function::Create(
305       TypeBuilder<int(), false>::get(Context),
306       GlobalValue::ExternalLinkage, "test", M);
307   BasicBlock *Entry = BasicBlock::Create(Context, "entry", TestFunction);
308   IRBuilder<> Builder(Entry);
309   Value *result = Builder.CreateCall(
310       KnownFunction,
311       ConstantInt::get(TypeBuilder<int, false>::get(Context), 7));
312   Builder.CreateRet(result);
313 
314   TheJIT->DisableLazyCompilation(true);
315   int (*TestFunctionPtr)() = reinterpret_cast<int(*)()>(
316       (intptr_t)TheJIT->getPointerToFunction(TestFunction));
317   // This used to crash in trying to call PlusOne().
318   EXPECT_EQ(8, TestFunctionPtr());
319 }
320 
321 // Test a function C which calls A and B which call each other.
TEST_F(JITTest,NonLazyCompilationStillNeedsStubs)322 TEST_F(JITTest, NonLazyCompilationStillNeedsStubs) {
323   TheJIT->DisableLazyCompilation(true);
324 
325   FunctionType *Func1Ty =
326       cast<FunctionType>(TypeBuilder<void(void), false>::get(Context));
327   std::vector<Type*> arg_types;
328   arg_types.push_back(Type::getInt1Ty(Context));
329   FunctionType *FuncTy = FunctionType::get(
330       Type::getVoidTy(Context), arg_types, false);
331   Function *Func1 = Function::Create(Func1Ty, Function::ExternalLinkage,
332                                      "func1", M);
333   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
334                                      "func2", M);
335   Function *Func3 = Function::Create(FuncTy, Function::InternalLinkage,
336                                      "func3", M);
337   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
338   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
339   BasicBlock *True2 = BasicBlock::Create(Context, "cond_true", Func2);
340   BasicBlock *False2 = BasicBlock::Create(Context, "cond_false", Func2);
341   BasicBlock *Block3 = BasicBlock::Create(Context, "block3", Func3);
342   BasicBlock *True3 = BasicBlock::Create(Context, "cond_true", Func3);
343   BasicBlock *False3 = BasicBlock::Create(Context, "cond_false", Func3);
344 
345   // Make Func1 call Func2(0) and Func3(0).
346   IRBuilder<> Builder(Block1);
347   Builder.CreateCall(Func2, ConstantInt::getTrue(Context));
348   Builder.CreateCall(Func3, ConstantInt::getTrue(Context));
349   Builder.CreateRetVoid();
350 
351   // void Func2(bool b) { if (b) { Func3(false); return; } return; }
352   Builder.SetInsertPoint(Block2);
353   Builder.CreateCondBr(Func2->arg_begin(), True2, False2);
354   Builder.SetInsertPoint(True2);
355   Builder.CreateCall(Func3, ConstantInt::getFalse(Context));
356   Builder.CreateRetVoid();
357   Builder.SetInsertPoint(False2);
358   Builder.CreateRetVoid();
359 
360   // void Func3(bool b) { if (b) { Func2(false); return; } return; }
361   Builder.SetInsertPoint(Block3);
362   Builder.CreateCondBr(Func3->arg_begin(), True3, False3);
363   Builder.SetInsertPoint(True3);
364   Builder.CreateCall(Func2, ConstantInt::getFalse(Context));
365   Builder.CreateRetVoid();
366   Builder.SetInsertPoint(False3);
367   Builder.CreateRetVoid();
368 
369   // Compile the function to native code
370   void (*F1Ptr)() =
371      reinterpret_cast<void(*)()>((intptr_t)TheJIT->getPointerToFunction(Func1));
372 
373   F1Ptr();
374 }
375 
376 // Regression test for PR5162.  This used to trigger an AssertingVH inside the
377 // JIT's Function to stub mapping.
TEST_F(JITTest,NonLazyLeaksNoStubs)378 TEST_F(JITTest, NonLazyLeaksNoStubs) {
379   TheJIT->DisableLazyCompilation(true);
380 
381   // Create two functions with a single basic block each.
382   FunctionType *FuncTy =
383       cast<FunctionType>(TypeBuilder<int(), false>::get(Context));
384   Function *Func1 = Function::Create(FuncTy, Function::ExternalLinkage,
385                                      "func1", M);
386   Function *Func2 = Function::Create(FuncTy, Function::InternalLinkage,
387                                      "func2", M);
388   BasicBlock *Block1 = BasicBlock::Create(Context, "block1", Func1);
389   BasicBlock *Block2 = BasicBlock::Create(Context, "block2", Func2);
390 
391   // The first function calls the second and returns the result
392   IRBuilder<> Builder(Block1);
393   Value *Result = Builder.CreateCall(Func2);
394   Builder.CreateRet(Result);
395 
396   // The second function just returns a constant
397   Builder.SetInsertPoint(Block2);
398   Builder.CreateRet(ConstantInt::get(TypeBuilder<int, false>::get(Context),42));
399 
400   // Compile the function to native code
401   (void)TheJIT->getPointerToFunction(Func1);
402 
403   // Free the JIT state for the functions
404   TheJIT->freeMachineCodeForFunction(Func1);
405   TheJIT->freeMachineCodeForFunction(Func2);
406 
407   // Delete the first function (and show that is has no users)
408   EXPECT_EQ(Func1->getNumUses(), 0u);
409   Func1->eraseFromParent();
410 
411   // Delete the second function (and show that it has no users - it had one,
412   // func1 but that's gone now)
413   EXPECT_EQ(Func2->getNumUses(), 0u);
414   Func2->eraseFromParent();
415 }
416 
TEST_F(JITTest,ModuleDeletion)417 TEST_F(JITTest, ModuleDeletion) {
418   TheJIT->DisableLazyCompilation(false);
419   LoadAssembly("define void @main() { "
420                "  call i32 @computeVal() "
421                "  ret void "
422                "} "
423                " "
424                "define internal i32 @computeVal()  { "
425                "  ret i32 0 "
426                "} ");
427   Function *func = M->getFunction("main");
428   TheJIT->getPointerToFunction(func);
429   TheJIT->removeModule(M);
430   delete M;
431 
432   SmallPtrSet<const void*, 2> FunctionsDeallocated;
433   for (unsigned i = 0, e = RJMM->deallocateFunctionBodyCalls.size();
434        i != e; ++i) {
435     FunctionsDeallocated.insert(RJMM->deallocateFunctionBodyCalls[i].Body);
436   }
437   for (unsigned i = 0, e = RJMM->startFunctionBodyCalls.size(); i != e; ++i) {
438     EXPECT_TRUE(FunctionsDeallocated.count(
439                   RJMM->startFunctionBodyCalls[i].Result))
440       << "Function leaked: \n" << RJMM->startFunctionBodyCalls[i].F_dump;
441   }
442   EXPECT_EQ(RJMM->startFunctionBodyCalls.size(),
443             RJMM->deallocateFunctionBodyCalls.size());
444 
445   SmallPtrSet<const void*, 2> ExceptionTablesDeallocated;
446   unsigned NumTablesDeallocated = 0;
447   for (unsigned i = 0, e = RJMM->deallocateExceptionTableCalls.size();
448        i != e; ++i) {
449     ExceptionTablesDeallocated.insert(
450         RJMM->deallocateExceptionTableCalls[i].ET);
451     if (RJMM->deallocateExceptionTableCalls[i].ET != NULL) {
452         // If JITEmitDebugInfo is off, we'll "deallocate" NULL, which doesn't
453         // appear in startExceptionTableCalls.
454         NumTablesDeallocated++;
455     }
456   }
457   for (unsigned i = 0, e = RJMM->startExceptionTableCalls.size(); i != e; ++i) {
458     EXPECT_TRUE(ExceptionTablesDeallocated.count(
459                   RJMM->startExceptionTableCalls[i].Result))
460       << "Function's exception table leaked: \n"
461       << RJMM->startExceptionTableCalls[i].F_dump;
462   }
463   EXPECT_EQ(RJMM->startExceptionTableCalls.size(),
464             NumTablesDeallocated);
465 }
466 #endif // !defined(__arm__)
467 
468 // ARM and PPC still emit stubs for calls since the target may be too far away
469 // to call directly.  This #if can probably be removed when
470 // http://llvm.org/PR5201 is fixed.
471 #if !defined(__arm__) && !defined(__powerpc__) && !defined(__ppc__)
472 typedef int (*FooPtr) ();
473 
TEST_F(JITTest,NoStubs)474 TEST_F(JITTest, NoStubs) {
475   LoadAssembly("define void @bar() {"
476 	       "entry: "
477 	       "ret void"
478 	       "}"
479 	       " "
480 	       "define i32 @foo() {"
481 	       "entry:"
482 	       "call void @bar()"
483 	       "ret i32 undef"
484 	       "}"
485 	       " "
486 	       "define i32 @main() {"
487 	       "entry:"
488 	       "%0 = call i32 @foo()"
489 	       "call void @bar()"
490 	       "ret i32 undef"
491 	       "}");
492   Function *foo = M->getFunction("foo");
493   uintptr_t tmp = (uintptr_t)(TheJIT->getPointerToFunction(foo));
494   FooPtr ptr = (FooPtr)(tmp);
495 
496   (ptr)();
497 
498   // We should now allocate no more stubs, we have the code to foo
499   // and the existing stub for bar.
500   int stubsBefore = RJMM->stubsAllocated;
501   Function *func = M->getFunction("main");
502   TheJIT->getPointerToFunction(func);
503 
504   Function *bar = M->getFunction("bar");
505   TheJIT->getPointerToFunction(bar);
506 
507   ASSERT_EQ(stubsBefore, RJMM->stubsAllocated);
508 }
509 #endif  // !ARM && !PPC
510 
TEST_F(JITTest,FunctionPointersOutliveTheirCreator)511 TEST_F(JITTest, FunctionPointersOutliveTheirCreator) {
512   TheJIT->DisableLazyCompilation(true);
513   LoadAssembly("define i8()* @get_foo_addr() { "
514                "  ret i8()* @foo "
515                "} "
516                " "
517                "define i8 @foo() { "
518                "  ret i8 42 "
519                "} ");
520   Function *F_get_foo_addr = M->getFunction("get_foo_addr");
521 
522   typedef char(*fooT)();
523   fooT (*get_foo_addr)() = reinterpret_cast<fooT(*)()>(
524       (intptr_t)TheJIT->getPointerToFunction(F_get_foo_addr));
525   fooT foo_addr = get_foo_addr();
526 
527   // Now free get_foo_addr.  This should not free the machine code for foo or
528   // any call stub returned as foo's canonical address.
529   TheJIT->freeMachineCodeForFunction(F_get_foo_addr);
530 
531   // Check by calling the reported address of foo.
532   EXPECT_EQ(42, foo_addr());
533 
534   // The reported address should also be the same as the result of a subsequent
535   // getPointerToFunction(foo).
536 #if 0
537   // Fails until PR5126 is fixed:
538   Function *F_foo = M->getFunction("foo");
539   fooT foo = reinterpret_cast<fooT>(
540       (intptr_t)TheJIT->getPointerToFunction(F_foo));
541   EXPECT_EQ((intptr_t)foo, (intptr_t)foo_addr);
542 #endif
543 }
544 
545 // ARM doesn't have an implementation of replaceMachineCodeForFunction(), so
546 // recompileAndRelinkFunction doesn't work.
547 #if !defined(__arm__)
TEST_F(JITTest,FunctionIsRecompiledAndRelinked)548 TEST_F(JITTest, FunctionIsRecompiledAndRelinked) {
549   Function *F = Function::Create(TypeBuilder<int(void), false>::get(Context),
550                                  GlobalValue::ExternalLinkage, "test", M);
551   BasicBlock *Entry = BasicBlock::Create(Context, "entry", F);
552   IRBuilder<> Builder(Entry);
553   Value *Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 1);
554   Builder.CreateRet(Val);
555 
556   TheJIT->DisableLazyCompilation(true);
557   // Compile the function once, and make sure it works.
558   int (*OrigFPtr)() = reinterpret_cast<int(*)()>(
559     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
560   EXPECT_EQ(1, OrigFPtr());
561 
562   // Now change the function to return a different value.
563   Entry->eraseFromParent();
564   BasicBlock *NewEntry = BasicBlock::Create(Context, "new_entry", F);
565   Builder.SetInsertPoint(NewEntry);
566   Val = ConstantInt::get(TypeBuilder<int, false>::get(Context), 2);
567   Builder.CreateRet(Val);
568   // Recompile it, which should produce a new function pointer _and_ update the
569   // old one.
570   int (*NewFPtr)() = reinterpret_cast<int(*)()>(
571     (intptr_t)TheJIT->recompileAndRelinkFunction(F));
572 
573   EXPECT_EQ(2, NewFPtr())
574     << "The new pointer should call the new version of the function";
575   EXPECT_EQ(2, OrigFPtr())
576     << "The old pointer's target should now jump to the new version";
577 }
578 #endif  // !defined(__arm__)
579 
580 }  // anonymous namespace
581 // This variable is intentionally defined differently in the statically-compiled
582 // program from the IR input to the JIT to assert that the JIT doesn't use its
583 // definition.
584 extern "C" int32_t JITTest_AvailableExternallyGlobal;
585 int32_t JITTest_AvailableExternallyGlobal = 42;
586 namespace {
587 
TEST_F(JITTest,AvailableExternallyGlobalIsntEmitted)588 TEST_F(JITTest, AvailableExternallyGlobalIsntEmitted) {
589   TheJIT->DisableLazyCompilation(true);
590   LoadAssembly("@JITTest_AvailableExternallyGlobal = "
591                "  available_externally global i32 7 "
592                " "
593                "define i32 @loader() { "
594                "  %result = load i32* @JITTest_AvailableExternallyGlobal "
595                "  ret i32 %result "
596                "} ");
597   Function *loaderIR = M->getFunction("loader");
598 
599   int32_t (*loader)() = reinterpret_cast<int32_t(*)()>(
600     (intptr_t)TheJIT->getPointerToFunction(loaderIR));
601   EXPECT_EQ(42, loader()) << "func should return 42 from the external global,"
602                           << " not 7 from the IR version.";
603 }
604 
605 }  // anonymous namespace
606 // This function is intentionally defined differently in the statically-compiled
607 // program from the IR input to the JIT to assert that the JIT doesn't use its
608 // definition.
JITTest_AvailableExternallyFunction()609 extern "C" int32_t JITTest_AvailableExternallyFunction() {
610   return 42;
611 }
612 namespace {
613 
614 // ARM tests disabled pending fix for PR10783.
615 #if !defined(__arm__)
TEST_F(JITTest,AvailableExternallyFunctionIsntCompiled)616 TEST_F(JITTest, AvailableExternallyFunctionIsntCompiled) {
617   TheJIT->DisableLazyCompilation(true);
618   LoadAssembly("define available_externally i32 "
619                "    @JITTest_AvailableExternallyFunction() { "
620                "  ret i32 7 "
621                "} "
622                " "
623                "define i32 @func() { "
624                "  %result = tail call i32 "
625                "    @JITTest_AvailableExternallyFunction() "
626                "  ret i32 %result "
627                "} ");
628   Function *funcIR = M->getFunction("func");
629 
630   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
631     (intptr_t)TheJIT->getPointerToFunction(funcIR));
632   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
633                         << " not 7 from the IR version.";
634 }
635 
TEST_F(JITTest,EscapedLazyStubStillCallable)636 TEST_F(JITTest, EscapedLazyStubStillCallable) {
637   TheJIT->DisableLazyCompilation(false);
638   LoadAssembly("define internal i32 @stubbed() { "
639                "  ret i32 42 "
640                "} "
641                " "
642                "define i32()* @get_stub() { "
643                "  ret i32()* @stubbed "
644                "} ");
645   typedef int32_t(*StubTy)();
646 
647   // Call get_stub() to get the address of @stubbed without actually JITting it.
648   Function *get_stubIR = M->getFunction("get_stub");
649   StubTy (*get_stub)() = reinterpret_cast<StubTy(*)()>(
650     (intptr_t)TheJIT->getPointerToFunction(get_stubIR));
651   StubTy stubbed = get_stub();
652   // Now get_stubIR is the only reference to stubbed's stub.
653   get_stubIR->eraseFromParent();
654   // Now there are no references inside the JIT, but we've got a pointer outside
655   // it.  The stub should be callable and return the right value.
656   EXPECT_EQ(42, stubbed());
657 }
658 
659 // Converts the LLVM assembly to bitcode and returns it in a std::string.  An
660 // empty string indicates an error.
AssembleToBitcode(LLVMContext & Context,const char * Assembly)661 std::string AssembleToBitcode(LLVMContext &Context, const char *Assembly) {
662   Module TempModule("TempModule", Context);
663   if (!LoadAssemblyInto(&TempModule, Assembly)) {
664     return "";
665   }
666 
667   std::string Result;
668   raw_string_ostream OS(Result);
669   WriteBitcodeToFile(&TempModule, OS);
670   OS.flush();
671   return Result;
672 }
673 
674 // Returns a newly-created ExecutionEngine that reads the bitcode in 'Bitcode'
675 // lazily.  The associated Module (owned by the ExecutionEngine) is returned in
676 // M.  Both will be NULL on an error.  Bitcode must live at least as long as the
677 // ExecutionEngine.
getJITFromBitcode(LLVMContext & Context,const std::string & Bitcode,Module * & M)678 ExecutionEngine *getJITFromBitcode(
679   LLVMContext &Context, const std::string &Bitcode, Module *&M) {
680   // c_str() is null-terminated like MemoryBuffer::getMemBuffer requires.
681   MemoryBuffer *BitcodeBuffer =
682     MemoryBuffer::getMemBuffer(Bitcode, "Bitcode for test");
683   std::string errMsg;
684   M = getLazyBitcodeModule(BitcodeBuffer, Context, &errMsg);
685   if (M == NULL) {
686     ADD_FAILURE() << errMsg;
687     delete BitcodeBuffer;
688     return NULL;
689   }
690   ExecutionEngine *TheJIT = EngineBuilder(M)
691     .setEngineKind(EngineKind::JIT)
692     .setErrorStr(&errMsg)
693     .create();
694   if (TheJIT == NULL) {
695     ADD_FAILURE() << errMsg;
696     delete M;
697     M = NULL;
698     return NULL;
699   }
700   return TheJIT;
701 }
702 
TEST(LazyLoadedJITTest,MaterializableAvailableExternallyFunctionIsntCompiled)703 TEST(LazyLoadedJITTest, MaterializableAvailableExternallyFunctionIsntCompiled) {
704   LLVMContext Context;
705   const std::string Bitcode =
706     AssembleToBitcode(Context,
707                       "define available_externally i32 "
708                       "    @JITTest_AvailableExternallyFunction() { "
709                       "  ret i32 7 "
710                       "} "
711                       " "
712                       "define i32 @func() { "
713                       "  %result = tail call i32 "
714                       "    @JITTest_AvailableExternallyFunction() "
715                       "  ret i32 %result "
716                       "} ");
717   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
718   Module *M;
719   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
720   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
721   TheJIT->DisableLazyCompilation(true);
722 
723   Function *funcIR = M->getFunction("func");
724   Function *availableFunctionIR =
725     M->getFunction("JITTest_AvailableExternallyFunction");
726 
727   // Double-check that the available_externally function is still unmaterialized
728   // when getPointerToFunction needs to find out if it's available_externally.
729   EXPECT_TRUE(availableFunctionIR->isMaterializable());
730 
731   int32_t (*func)() = reinterpret_cast<int32_t(*)()>(
732     (intptr_t)TheJIT->getPointerToFunction(funcIR));
733   EXPECT_EQ(42, func()) << "func should return 42 from the static version,"
734                         << " not 7 from the IR version.";
735 }
736 
TEST(LazyLoadedJITTest,EagerCompiledRecursionThroughGhost)737 TEST(LazyLoadedJITTest, EagerCompiledRecursionThroughGhost) {
738   LLVMContext Context;
739   const std::string Bitcode =
740     AssembleToBitcode(Context,
741                       "define i32 @recur1(i32 %a) { "
742                       "  %zero = icmp eq i32 %a, 0 "
743                       "  br i1 %zero, label %done, label %notdone "
744                       "done: "
745                       "  ret i32 3 "
746                       "notdone: "
747                       "  %am1 = sub i32 %a, 1 "
748                       "  %result = call i32 @recur2(i32 %am1) "
749                       "  ret i32 %result "
750                       "} "
751                       " "
752                       "define i32 @recur2(i32 %b) { "
753                       "  %result = call i32 @recur1(i32 %b) "
754                       "  ret i32 %result "
755                       "} ");
756   ASSERT_FALSE(Bitcode.empty()) << "Assembling failed";
757   Module *M;
758   OwningPtr<ExecutionEngine> TheJIT(getJITFromBitcode(Context, Bitcode, M));
759   ASSERT_TRUE(TheJIT.get()) << "Failed to create JIT.";
760   TheJIT->DisableLazyCompilation(true);
761 
762   Function *recur1IR = M->getFunction("recur1");
763   Function *recur2IR = M->getFunction("recur2");
764   EXPECT_TRUE(recur1IR->isMaterializable());
765   EXPECT_TRUE(recur2IR->isMaterializable());
766 
767   int32_t (*recur1)(int32_t) = reinterpret_cast<int32_t(*)(int32_t)>(
768     (intptr_t)TheJIT->getPointerToFunction(recur1IR));
769   EXPECT_EQ(3, recur1(4));
770 }
771 #endif // !defined(__arm__)
772 
773 // This code is copied from JITEventListenerTest, but it only runs once for all
774 // the tests in this directory.  Everything seems fine, but that's strange
775 // behavior.
776 class JITEnvironment : public testing::Environment {
SetUp()777   virtual void SetUp() {
778     // Required to create a JIT.
779     InitializeNativeTarget();
780   }
781 };
782 testing::Environment* const jit_env =
783   testing::AddGlobalTestEnvironment(new JITEnvironment);
784 
785 }
786