• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- Twine.h - Fast Temporary String Concatenation -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_ADT_TWINE_H
11 #define LLVM_ADT_TWINE_H
12 
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/Support/ErrorHandling.h"
16 #include <cassert>
17 #include <cstdint>
18 #include <string>
19 
20 namespace llvm {
21 
22   class formatv_object_base;
23   class raw_ostream;
24 
25   /// Twine - A lightweight data structure for efficiently representing the
26   /// concatenation of temporary values as strings.
27   ///
28   /// A Twine is a kind of rope, it represents a concatenated string using a
29   /// binary-tree, where the string is the preorder of the nodes. Since the
30   /// Twine can be efficiently rendered into a buffer when its result is used,
31   /// it avoids the cost of generating temporary values for intermediate string
32   /// results -- particularly in cases when the Twine result is never
33   /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34   /// the creation of temporary strings for conversions operations (such as
35   /// appending an integer to a string).
36   ///
37   /// A Twine is not intended for use directly and should not be stored, its
38   /// implementation relies on the ability to store pointers to temporary stack
39   /// objects which may be deallocated at the end of a statement. Twines should
40   /// only be used accepted as const references in arguments, when an API wishes
41   /// to accept possibly-concatenated strings.
42   ///
43   /// Twines support a special 'null' value, which always concatenates to form
44   /// itself, and renders as an empty string. This can be returned from APIs to
45   /// effectively nullify any concatenations performed on the result.
46   ///
47   /// \b Implementation
48   ///
49   /// Given the nature of a Twine, it is not possible for the Twine's
50   /// concatenation method to construct interior nodes; the result must be
51   /// represented inside the returned value. For this reason a Twine object
52   /// actually holds two values, the left- and right-hand sides of a
53   /// concatenation. We also have nullary Twine objects, which are effectively
54   /// sentinel values that represent empty strings.
55   ///
56   /// Thus, a Twine can effectively have zero, one, or two children. The \see
57   /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58   /// testing the number of children.
59   ///
60   /// We maintain a number of invariants on Twine objects (FIXME: Why):
61   ///  - Nullary twines are always represented with their Kind on the left-hand
62   ///    side, and the Empty kind on the right-hand side.
63   ///  - Unary twines are always represented with the value on the left-hand
64   ///    side, and the Empty kind on the right-hand side.
65   ///  - If a Twine has another Twine as a child, that child should always be
66   ///    binary (otherwise it could have been folded into the parent).
67   ///
68   /// These invariants are check by \see isValid().
69   ///
70   /// \b Efficiency Considerations
71   ///
72   /// The Twine is designed to yield efficient and small code for common
73   /// situations. For this reason, the concat() method is inlined so that
74   /// concatenations of leaf nodes can be optimized into stores directly into a
75   /// single stack allocated object.
76   ///
77   /// In practice, not all compilers can be trusted to optimize concat() fully,
78   /// so we provide two additional methods (and accompanying operator+
79   /// overloads) to guarantee that particularly important cases (cstring plus
80   /// StringRef) codegen as desired.
81   class Twine {
82     /// NodeKind - Represent the type of an argument.
83     enum NodeKind : unsigned char {
84       /// An empty string; the result of concatenating anything with it is also
85       /// empty.
86       NullKind,
87 
88       /// The empty string.
89       EmptyKind,
90 
91       /// A pointer to a Twine instance.
92       TwineKind,
93 
94       /// A pointer to a C string instance.
95       CStringKind,
96 
97       /// A pointer to an std::string instance.
98       StdStringKind,
99 
100       /// A pointer to a StringRef instance.
101       StringRefKind,
102 
103       /// A pointer to a SmallString instance.
104       SmallStringKind,
105 
106       /// A pointer to a formatv_object_base instance.
107       FormatvObjectKind,
108 
109       /// A char value, to render as a character.
110       CharKind,
111 
112       /// An unsigned int value, to render as an unsigned decimal integer.
113       DecUIKind,
114 
115       /// An int value, to render as a signed decimal integer.
116       DecIKind,
117 
118       /// A pointer to an unsigned long value, to render as an unsigned decimal
119       /// integer.
120       DecULKind,
121 
122       /// A pointer to a long value, to render as a signed decimal integer.
123       DecLKind,
124 
125       /// A pointer to an unsigned long long value, to render as an unsigned
126       /// decimal integer.
127       DecULLKind,
128 
129       /// A pointer to a long long value, to render as a signed decimal integer.
130       DecLLKind,
131 
132       /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
133       /// integer.
134       UHexKind
135     };
136 
137     union Child
138     {
139       const Twine *twine;
140       const char *cString;
141       const std::string *stdString;
142       const StringRef *stringRef;
143       const SmallVectorImpl<char> *smallString;
144       const formatv_object_base *formatvObject;
145       char character;
146       unsigned int decUI;
147       int decI;
148       const unsigned long *decUL;
149       const long *decL;
150       const unsigned long long *decULL;
151       const long long *decLL;
152       const uint64_t *uHex;
153     };
154 
155     /// LHS - The prefix in the concatenation, which may be uninitialized for
156     /// Null or Empty kinds.
157     Child LHS;
158     /// RHS - The suffix in the concatenation, which may be uninitialized for
159     /// Null or Empty kinds.
160     Child RHS;
161     /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
162     NodeKind LHSKind;
163     /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
164     NodeKind RHSKind;
165 
166     /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
Twine(NodeKind Kind)167     explicit Twine(NodeKind Kind)
168       : LHSKind(Kind), RHSKind(EmptyKind) {
169       assert(isNullary() && "Invalid kind!");
170     }
171 
172     /// Construct a binary twine.
Twine(const Twine & LHS,const Twine & RHS)173     explicit Twine(const Twine &LHS, const Twine &RHS)
174         : LHSKind(TwineKind), RHSKind(TwineKind) {
175       this->LHS.twine = &LHS;
176       this->RHS.twine = &RHS;
177       assert(isValid() && "Invalid twine!");
178     }
179 
180     /// Construct a twine from explicit values.
Twine(Child LHS,NodeKind LHSKind,Child RHS,NodeKind RHSKind)181     explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
182         : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
183       assert(isValid() && "Invalid twine!");
184     }
185 
186     /// Check for the null twine.
isNull()187     bool isNull() const {
188       return getLHSKind() == NullKind;
189     }
190 
191     /// Check for the empty twine.
isEmpty()192     bool isEmpty() const {
193       return getLHSKind() == EmptyKind;
194     }
195 
196     /// Check if this is a nullary twine (null or empty).
isNullary()197     bool isNullary() const {
198       return isNull() || isEmpty();
199     }
200 
201     /// Check if this is a unary twine.
isUnary()202     bool isUnary() const {
203       return getRHSKind() == EmptyKind && !isNullary();
204     }
205 
206     /// Check if this is a binary twine.
isBinary()207     bool isBinary() const {
208       return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
209     }
210 
211     /// Check if this is a valid twine (satisfying the invariants on
212     /// order and number of arguments).
isValid()213     bool isValid() const {
214       // Nullary twines always have Empty on the RHS.
215       if (isNullary() && getRHSKind() != EmptyKind)
216         return false;
217 
218       // Null should never appear on the RHS.
219       if (getRHSKind() == NullKind)
220         return false;
221 
222       // The RHS cannot be non-empty if the LHS is empty.
223       if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
224         return false;
225 
226       // A twine child should always be binary.
227       if (getLHSKind() == TwineKind &&
228           !LHS.twine->isBinary())
229         return false;
230       if (getRHSKind() == TwineKind &&
231           !RHS.twine->isBinary())
232         return false;
233 
234       return true;
235     }
236 
237     /// Get the NodeKind of the left-hand side.
getLHSKind()238     NodeKind getLHSKind() const { return LHSKind; }
239 
240     /// Get the NodeKind of the right-hand side.
getRHSKind()241     NodeKind getRHSKind() const { return RHSKind; }
242 
243     /// Print one child from a twine.
244     void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
245 
246     /// Print the representation of one child from a twine.
247     void printOneChildRepr(raw_ostream &OS, Child Ptr,
248                            NodeKind Kind) const;
249 
250   public:
251     /// @name Constructors
252     /// @{
253 
254     /// Construct from an empty string.
Twine()255     /*implicit*/ Twine() : LHSKind(EmptyKind), RHSKind(EmptyKind) {
256       assert(isValid() && "Invalid twine!");
257     }
258 
259     Twine(const Twine &) = default;
260 
261     /// Construct from a C string.
262     ///
263     /// We take care here to optimize "" into the empty twine -- this will be
264     /// optimized out for string constants. This allows Twine arguments have
265     /// default "" values, without introducing unnecessary string constants.
Twine(const char * Str)266     /*implicit*/ Twine(const char *Str)
267       : RHSKind(EmptyKind) {
268       if (Str[0] != '\0') {
269         LHS.cString = Str;
270         LHSKind = CStringKind;
271       } else
272         LHSKind = EmptyKind;
273 
274       assert(isValid() && "Invalid twine!");
275     }
276 
277     /// Construct from an std::string.
Twine(const std::string & Str)278     /*implicit*/ Twine(const std::string &Str)
279       : LHSKind(StdStringKind), RHSKind(EmptyKind) {
280       LHS.stdString = &Str;
281       assert(isValid() && "Invalid twine!");
282     }
283 
284     /// Construct from a StringRef.
Twine(const StringRef & Str)285     /*implicit*/ Twine(const StringRef &Str)
286       : LHSKind(StringRefKind), RHSKind(EmptyKind) {
287       LHS.stringRef = &Str;
288       assert(isValid() && "Invalid twine!");
289     }
290 
291     /// Construct from a SmallString.
Twine(const SmallVectorImpl<char> & Str)292     /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
293       : LHSKind(SmallStringKind), RHSKind(EmptyKind) {
294       LHS.smallString = &Str;
295       assert(isValid() && "Invalid twine!");
296     }
297 
298     /// Construct from a formatv_object_base.
Twine(const formatv_object_base & Fmt)299     /*implicit*/ Twine(const formatv_object_base &Fmt)
300         : LHSKind(FormatvObjectKind), RHSKind(EmptyKind) {
301       LHS.formatvObject = &Fmt;
302       assert(isValid() && "Invalid twine!");
303     }
304 
305     /// Construct from a char.
Twine(char Val)306     explicit Twine(char Val)
307       : LHSKind(CharKind), RHSKind(EmptyKind) {
308       LHS.character = Val;
309     }
310 
311     /// Construct from a signed char.
Twine(signed char Val)312     explicit Twine(signed char Val)
313       : LHSKind(CharKind), RHSKind(EmptyKind) {
314       LHS.character = static_cast<char>(Val);
315     }
316 
317     /// Construct from an unsigned char.
Twine(unsigned char Val)318     explicit Twine(unsigned char Val)
319       : LHSKind(CharKind), RHSKind(EmptyKind) {
320       LHS.character = static_cast<char>(Val);
321     }
322 
323     /// Construct a twine to print \p Val as an unsigned decimal integer.
Twine(unsigned Val)324     explicit Twine(unsigned Val)
325       : LHSKind(DecUIKind), RHSKind(EmptyKind) {
326       LHS.decUI = Val;
327     }
328 
329     /// Construct a twine to print \p Val as a signed decimal integer.
Twine(int Val)330     explicit Twine(int Val)
331       : LHSKind(DecIKind), RHSKind(EmptyKind) {
332       LHS.decI = Val;
333     }
334 
335     /// Construct a twine to print \p Val as an unsigned decimal integer.
Twine(const unsigned long & Val)336     explicit Twine(const unsigned long &Val)
337       : LHSKind(DecULKind), RHSKind(EmptyKind) {
338       LHS.decUL = &Val;
339     }
340 
341     /// Construct a twine to print \p Val as a signed decimal integer.
Twine(const long & Val)342     explicit Twine(const long &Val)
343       : LHSKind(DecLKind), RHSKind(EmptyKind) {
344       LHS.decL = &Val;
345     }
346 
347     /// Construct a twine to print \p Val as an unsigned decimal integer.
Twine(const unsigned long long & Val)348     explicit Twine(const unsigned long long &Val)
349       : LHSKind(DecULLKind), RHSKind(EmptyKind) {
350       LHS.decULL = &Val;
351     }
352 
353     /// Construct a twine to print \p Val as a signed decimal integer.
Twine(const long long & Val)354     explicit Twine(const long long &Val)
355       : LHSKind(DecLLKind), RHSKind(EmptyKind) {
356       LHS.decLL = &Val;
357     }
358 
359     // FIXME: Unfortunately, to make sure this is as efficient as possible we
360     // need extra binary constructors from particular types. We can't rely on
361     // the compiler to be smart enough to fold operator+()/concat() down to the
362     // right thing. Yet.
363 
364     /// Construct as the concatenation of a C string and a StringRef.
Twine(const char * LHS,const StringRef & RHS)365     /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
366         : LHSKind(CStringKind), RHSKind(StringRefKind) {
367       this->LHS.cString = LHS;
368       this->RHS.stringRef = &RHS;
369       assert(isValid() && "Invalid twine!");
370     }
371 
372     /// Construct as the concatenation of a StringRef and a C string.
Twine(const StringRef & LHS,const char * RHS)373     /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
374         : LHSKind(StringRefKind), RHSKind(CStringKind) {
375       this->LHS.stringRef = &LHS;
376       this->RHS.cString = RHS;
377       assert(isValid() && "Invalid twine!");
378     }
379 
380     /// Since the intended use of twines is as temporary objects, assignments
381     /// when concatenating might cause undefined behavior or stack corruptions
382     Twine &operator=(const Twine &) = delete;
383 
384     /// Create a 'null' string, which is an empty string that always
385     /// concatenates to form another empty string.
createNull()386     static Twine createNull() {
387       return Twine(NullKind);
388     }
389 
390     /// @}
391     /// @name Numeric Conversions
392     /// @{
393 
394     // Construct a twine to print \p Val as an unsigned hexadecimal integer.
utohexstr(const uint64_t & Val)395     static Twine utohexstr(const uint64_t &Val) {
396       Child LHS, RHS;
397       LHS.uHex = &Val;
398       RHS.twine = nullptr;
399       return Twine(LHS, UHexKind, RHS, EmptyKind);
400     }
401 
402     /// @}
403     /// @name Predicate Operations
404     /// @{
405 
406     /// Check if this twine is trivially empty; a false return value does not
407     /// necessarily mean the twine is empty.
isTriviallyEmpty()408     bool isTriviallyEmpty() const {
409       return isNullary();
410     }
411 
412     /// Return true if this twine can be dynamically accessed as a single
413     /// StringRef value with getSingleStringRef().
isSingleStringRef()414     bool isSingleStringRef() const {
415       if (getRHSKind() != EmptyKind) return false;
416 
417       switch (getLHSKind()) {
418       case EmptyKind:
419       case CStringKind:
420       case StdStringKind:
421       case StringRefKind:
422       case SmallStringKind:
423         return true;
424       default:
425         return false;
426       }
427     }
428 
429     /// @}
430     /// @name String Operations
431     /// @{
432 
433     Twine concat(const Twine &Suffix) const;
434 
435     /// @}
436     /// @name Output & Conversion.
437     /// @{
438 
439     /// Return the twine contents as a std::string.
440     std::string str() const;
441 
442     /// Append the concatenated string into the given SmallString or SmallVector.
443     void toVector(SmallVectorImpl<char> &Out) const;
444 
445     /// This returns the twine as a single StringRef.  This method is only valid
446     /// if isSingleStringRef() is true.
getSingleStringRef()447     StringRef getSingleStringRef() const {
448       assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
449       switch (getLHSKind()) {
450       default: llvm_unreachable("Out of sync with isSingleStringRef");
451       case EmptyKind:      return StringRef();
452       case CStringKind:    return StringRef(LHS.cString);
453       case StdStringKind:  return StringRef(*LHS.stdString);
454       case StringRefKind:  return *LHS.stringRef;
455       case SmallStringKind:
456         return StringRef(LHS.smallString->data(), LHS.smallString->size());
457       }
458     }
459 
460     /// This returns the twine as a single StringRef if it can be
461     /// represented as such. Otherwise the twine is written into the given
462     /// SmallVector and a StringRef to the SmallVector's data is returned.
toStringRef(SmallVectorImpl<char> & Out)463     StringRef toStringRef(SmallVectorImpl<char> &Out) const {
464       if (isSingleStringRef())
465         return getSingleStringRef();
466       toVector(Out);
467       return StringRef(Out.data(), Out.size());
468     }
469 
470     /// This returns the twine as a single null terminated StringRef if it
471     /// can be represented as such. Otherwise the twine is written into the
472     /// given SmallVector and a StringRef to the SmallVector's data is returned.
473     ///
474     /// The returned StringRef's size does not include the null terminator.
475     StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
476 
477     /// Write the concatenated string represented by this twine to the
478     /// stream \p OS.
479     void print(raw_ostream &OS) const;
480 
481     /// Dump the concatenated string represented by this twine to stderr.
482     void dump() const;
483 
484     /// Write the representation of this twine to the stream \p OS.
485     void printRepr(raw_ostream &OS) const;
486 
487     /// Dump the representation of this twine to stderr.
488     void dumpRepr() const;
489 
490     /// @}
491   };
492 
493   /// @name Twine Inline Implementations
494   /// @{
495 
concat(const Twine & Suffix)496   inline Twine Twine::concat(const Twine &Suffix) const {
497     // Concatenation with null is null.
498     if (isNull() || Suffix.isNull())
499       return Twine(NullKind);
500 
501     // Concatenation with empty yields the other side.
502     if (isEmpty())
503       return Suffix;
504     if (Suffix.isEmpty())
505       return *this;
506 
507     // Otherwise we need to create a new node, taking care to fold in unary
508     // twines.
509     Child NewLHS, NewRHS;
510     NewLHS.twine = this;
511     NewRHS.twine = &Suffix;
512     NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
513     if (isUnary()) {
514       NewLHS = LHS;
515       NewLHSKind = getLHSKind();
516     }
517     if (Suffix.isUnary()) {
518       NewRHS = Suffix.LHS;
519       NewRHSKind = Suffix.getLHSKind();
520     }
521 
522     return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
523   }
524 
525   inline Twine operator+(const Twine &LHS, const Twine &RHS) {
526     return LHS.concat(RHS);
527   }
528 
529   /// Additional overload to guarantee simplified codegen; this is equivalent to
530   /// concat().
531 
532   inline Twine operator+(const char *LHS, const StringRef &RHS) {
533     return Twine(LHS, RHS);
534   }
535 
536   /// Additional overload to guarantee simplified codegen; this is equivalent to
537   /// concat().
538 
539   inline Twine operator+(const StringRef &LHS, const char *RHS) {
540     return Twine(LHS, RHS);
541   }
542 
543   inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
544     RHS.print(OS);
545     return OS;
546   }
547 
548   /// @}
549 
550 } // end namespace llvm
551 
552 #endif // LLVM_ADT_TWINE_H
553