• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1SNMPv1 agent for lwIP
2
3Author: Christiaan Simons
4
5This is a brief introduction how to use and configure the SNMP agent.
6Note the agent uses the raw-API UDP interface so you may also want to
7read rawapi.txt to gain a better understanding of the SNMP message handling.
8
90 Agent Capabilities
10====================
11
12SNMPv1 per RFC1157
13  This is an old(er) standard but is still widely supported.
14  For SNMPv2c and v3 have a greater complexity and need many
15  more lines of code. IMHO this breaks the idea of "lightweight IP".
16
17  Note the S in SNMP stands for "Simple". Note that "Simple" is
18  relative. SNMP is simple compared to the complex ISO network
19  management protocols CMIP (Common Management Information Protocol)
20  and CMOT (CMip Over Tcp).
21
22MIB II per RFC1213
23  The standard lwIP stack management information base.
24  This is a required MIB, so this is always enabled.
25  When builing lwIP without TCP, the mib-2.tcp group is omitted.
26  The groups EGP, CMOT and transmission are disabled by default.
27
28  Most mib-2 objects are not writable except:
29  sysName, sysLocation, sysContact, snmpEnableAuthenTraps.
30  Writing to or changing the ARP and IP address and route
31  tables is not possible.
32
33  Note lwIP has a very limited notion of IP routing. It currently
34  doen't have a route table and doesn't have a notion of the U,G,H flags.
35  Instead lwIP uses the interface list with only one default interface
36  acting as a single gateway interface (G) for the default route.
37
38  The agent returns a "virtual table" with the default route 0.0.0.0
39  for the default interface and network routes (no H) for each
40  network interface in the netif_list.
41  All routes are considered to be up (U).
42
43Loading additional MIBs
44  MIBs can only be added in compile-time, not in run-time.
45  There is no MIB compiler thus additional MIBs must be hand coded.
46
47Large SNMP message support
48  The packet decoding and encoding routines are designed
49  to use pbuf-chains. Larger payloads than the minimum
50  SNMP requirement of 484 octets are supported if the
51  PBUF_POOL_SIZE and IP_REASS_BUFSIZE are set to match your
52  local requirement.
53
541 Building the Agent
55====================
56
57First of all you'll need to add the following define
58to your local lwipopts.h:
59
60#define LWIP_SNMP               1
61
62and add the source files in lwip/src/core/snmp
63and some snmp headers in lwip/src/include/lwip to your makefile.
64
65Note you'll might need to adapt you network driver to update
66the mib2 variables for your interface.
67
682 Running the Agent
69===================
70
71The following function calls must be made in your program to
72actually get the SNMP agent running.
73
74Before starting the agent you should supply pointers
75to non-volatile memory for sysContact, sysLocation,
76and snmpEnableAuthenTraps. You can do this by calling
77
78snmp_set_syscontact()
79snmp_set_syslocation()
80snmp_set_snmpenableauthentraps()
81
82Additionally you may want to set
83
84snmp_set_sysdescr()
85snmp_set_sysobjid() (if you have a private MIB)
86snmp_set_sysname()
87
88Also before starting the agent you need to setup
89one or more trap destinations using these calls:
90
91snmp_trap_dst_enable();
92snmp_trap_dst_ip_set();
93
94In the lwIP initialisation sequence call snmp_init() just after
95the call to udp_init().
96
97Exactly every 10 msec the SNMP uptime timestamp must be updated with
98snmp_inc_sysuptime(). You should call this from a timer interrupt
99or a timer signal handler depending on your runtime environment.
100
101An alternative way to update the SNMP uptime timestamp is to do a call like
102snmp_add_sysuptime(100) each 1000ms (which is bigger "step", but call to
103a lower frequency). Another one is to not call snmp_inc_sysuptime() or
104snmp_add_sysuptime(), and to define the SNMP_GET_SYSUPTIME(sysuptime) macro.
105This one is undefined by default in mib2.c. SNMP_GET_SYSUPTIME is called inside
106snmp_get_sysuptime(u32_t *value), and enable to change "sysuptime" value only
107when it's queried (any function which need "sysuptime" have to call
108snmp_get_sysuptime).
109
110
1113 Private MIBs
112==============
113
114If want to extend the agent with your own private MIB you'll need to
115add the following define to your local lwipopts.h:
116
117#define SNMP_PRIVATE_MIB        1
118
119You must provide the private_mib.h and associated files yourself.
120Note we don't have a "MIB compiler" that generates C source from a MIB,
121so you're required to do some serious coding if you enable this!
122
123Note the lwIP enterprise ID (26381) is assigned to the lwIP project,
124ALL OBJECT IDENTIFIERS LIVING UNDER THIS ID ARE ASSIGNED BY THE lwIP
125MAINTAINERS!
126
127If you need to create your own private MIB you'll need
128to apply for your own enterprise ID with IANA: http://www.iana.org/numbers.html
129
130You can set it by passing a struct snmp_obj_id to the agent
131using snmp_set_sysobjid(&my_object_id), just before snmp_init().
132
133Note the object identifiers for thes MIB-2 and your private MIB
134tree must be kept in sorted ascending (lexicographical) order.
135This to ensure correct getnext operation.
136
137An example for a private MIB is part of the "minimal Unix" project:
138contrib/ports/unix/proj/minimal/lwip_prvmib.c
139
140The next chapter gives a more detailed description of the
141MIB-2 tree and the optional private MIB.
142
1434 The Gory Details
144==================
145
1464.0 Object identifiers and the MIB tree.
147
148We have three distinct parts for all object identifiers:
149
150The prefix
151  .iso.org.dod.internet
152
153the middle part
154  .mgmt.mib-2.ip.ipNetToMediaTable.ipNetToMediaEntry.ipNetToMediaPhysAddress
155
156and the index part
157  .1.192.168.0.1
158
159Objects located above the .internet hierarchy aren't supported.
160Currently only the .mgmt sub-tree is available and
161when the SNMP_PRIVATE_MIB is enabled the .private tree
162becomes available too.
163
164Object identifiers from incoming requests are checked
165for a matching prefix, middle part and index part
166or are expanded(*) for GetNext requests with short
167or inexisting names in the request.
168(* we call this "expansion" but this also
169resembles the "auto-completion" operation)
170
171The middle part is usually located in ROM (const)
172to preserve precious RAM on small microcontrollers.
173However RAM location is possible for a dynamically
174changing private tree.
175
176The index part is handled by functions which in
177turn use dynamically allocated index trees from RAM.
178These trees are updated by e.g. the etharp code
179when new entries are made or removed form the ARP cache.
180
181/** @todo more gory details */
182