• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Functional tests for basic component wise operations using a GPU device."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import itertools
22import threading
23
24import numpy as np
25from six.moves import xrange  # pylint: disable=redefined-builtin
26
27from tensorflow.python.framework import dtypes
28from tensorflow.python.framework import ops
29from tensorflow.python.framework import random_seed
30from tensorflow.python.framework import test_util
31from tensorflow.python.ops import array_ops
32from tensorflow.python.ops import gradient_checker
33from tensorflow.python.ops import math_ops
34from tensorflow.python.ops import random_ops
35from tensorflow.python.ops import variables
36from tensorflow.python.ops.gen_array_ops import _broadcast_gradient_args
37from tensorflow.python.platform import test
38
39
40class GPUBinaryOpsTest(test.TestCase):
41
42  def _compareGPU(self, x, y, np_func, tf_func):
43    with self.test_session(use_gpu=True) as sess:
44      inx = ops.convert_to_tensor(x)
45      iny = ops.convert_to_tensor(y)
46      out = tf_func(inx, iny)
47      tf_gpu = sess.run(out)
48
49    with self.test_session(use_gpu=False) as sess:
50      inx = ops.convert_to_tensor(x)
51      iny = ops.convert_to_tensor(y)
52      out = tf_func(inx, iny)
53      tf_cpu = sess.run(out)
54
55    self.assertAllClose(tf_cpu, tf_gpu)
56
57  def testFloatBasic(self):
58    x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32)
59    y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32)
60    self._compareGPU(x, y, np.add, math_ops.add)
61    self._compareGPU(x, y, np.subtract, math_ops.subtract)
62    self._compareGPU(x, y, np.multiply, math_ops.multiply)
63    self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
64    self._compareGPU(x, y + 0.1, np.floor_divide, math_ops.floordiv)
65    self._compareGPU(x, y, np.power, math_ops.pow)
66
67  def testFloatWithBCast(self):
68    x = np.linspace(-5, 20, 15).reshape(3, 5).astype(np.float32)
69    y = np.linspace(20, -5, 30).reshape(2, 3, 5).astype(np.float32)
70    self._compareGPU(x, y, np.add, math_ops.add)
71    self._compareGPU(x, y, np.subtract, math_ops.subtract)
72    self._compareGPU(x, y, np.multiply, math_ops.multiply)
73    self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
74
75  def testDoubleBasic(self):
76    x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64)
77    y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64)
78    self._compareGPU(x, y, np.add, math_ops.add)
79    self._compareGPU(x, y, np.subtract, math_ops.subtract)
80    self._compareGPU(x, y, np.multiply, math_ops.multiply)
81    self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
82
83  def testDoubleWithBCast(self):
84    x = np.linspace(-5, 20, 15).reshape(3, 5).astype(np.float64)
85    y = np.linspace(20, -5, 30).reshape(2, 3, 5).astype(np.float64)
86    self._compareGPU(x, y, np.add, math_ops.add)
87    self._compareGPU(x, y, np.subtract, math_ops.subtract)
88    self._compareGPU(x, y, np.multiply, math_ops.multiply)
89    self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv)
90
91
92class MathBuiltinUnaryTest(test.TestCase):
93
94  def _compare(self, x, np_func, tf_func, use_gpu):
95    np_out = np_func(x)
96    with self.test_session(use_gpu=use_gpu) as sess:
97      inx = ops.convert_to_tensor(x)
98      ofunc = tf_func(inx)
99      tf_out = sess.run(ofunc)
100    self.assertAllClose(np_out, tf_out)
101
102  def _inv(self, x):
103    return 1.0 / x
104
105  def _rsqrt(self, x):
106    return self._inv(np.sqrt(x))
107
108  def _testDtype(self, dtype, use_gpu):
109    data = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(dtype)
110    data_gt_1 = data + 2 # for x > 1
111    self._compare(data, np.abs, math_ops.abs, use_gpu)
112    self._compare(data, np.arccos, math_ops.acos, use_gpu)
113    self._compare(data, np.arcsin, math_ops.asin, use_gpu)
114    self._compare(data, np.arcsinh, math_ops.asinh, use_gpu)
115    self._compare(data_gt_1, np.arccosh, math_ops.acosh, use_gpu)
116    self._compare(data, np.arctan, math_ops.atan, use_gpu)
117    self._compare(data, np.ceil, math_ops.ceil, use_gpu)
118    self._compare(data, np.cos, math_ops.cos, use_gpu)
119    self._compare(data, np.cosh, math_ops.cosh, use_gpu)
120    self._compare(data, np.exp, math_ops.exp, use_gpu)
121    self._compare(data, np.floor, math_ops.floor, use_gpu)
122    self._compare(data, np.log, math_ops.log, use_gpu)
123    self._compare(data, np.log1p, math_ops.log1p, use_gpu)
124    self._compare(data, np.negative, math_ops.negative, use_gpu)
125    self._compare(data, self._rsqrt, math_ops.rsqrt, use_gpu)
126    self._compare(data, np.sin, math_ops.sin, use_gpu)
127    self._compare(data, np.sinh, math_ops.sinh, use_gpu)
128    self._compare(data, np.sqrt, math_ops.sqrt, use_gpu)
129    self._compare(data, np.square, math_ops.square, use_gpu)
130    self._compare(data, np.tan, math_ops.tan, use_gpu)
131    self._compare(data, np.tanh, math_ops.tanh, use_gpu)
132    self._compare(data, np.arctanh, math_ops.atanh, use_gpu)
133
134  def testTypes(self):
135    for dtype in [np.float32]:
136      self._testDtype(dtype, use_gpu=True)
137
138  def testFloorDivide(self):
139    x = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
140        [1, 3, 2])
141    y = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
142        [1, 3, 2])
143
144    np_out = np.floor_divide(x, y + 0.1)
145
146    with self.test_session(use_gpu=True) as sess:
147      inx = ops.convert_to_tensor(x)
148      iny = ops.convert_to_tensor(y + 0.1)
149      ofunc = inx / iny
150      out_func2 = math_ops.floor(ofunc)
151      tf_out = sess.run(out_func2)
152
153    self.assertAllClose(np_out, tf_out)
154
155
156class BroadcastSimpleTest(test.TestCase):
157
158  def _GetGradientArgs(self, xs, ys):
159    with self.test_session(use_gpu=True) as sess:
160      return sess.run(_broadcast_gradient_args(xs, ys))
161
162  def testBroadcast(self):
163    r0, r1 = self._GetGradientArgs([2, 3, 5], [1])
164    self.assertAllEqual(r0, [])
165    self.assertAllEqual(r1, [0, 1, 2])
166
167  _GRAD_TOL = {dtypes.float32: 1e-3}
168
169  def _compareGradientX(self,
170                        x,
171                        y,
172                        np_func,
173                        tf_func,
174                        numeric_gradient_type=None):
175    z = np_func(x, y)
176    zs = list(z.shape)
177    with self.test_session():
178      inx = ops.convert_to_tensor(x)
179      iny = ops.convert_to_tensor(y)
180      if x.dtype in (np.float32, np.float64):
181        out = 1.1 * tf_func(inx, iny)
182      else:
183        out = tf_func(inx, iny)
184      xs = list(x.shape)
185      jacob_t, jacob_n = gradient_checker.compute_gradient(
186          inx, xs, out, zs, x_init_value=x)
187      tol = self._GRAD_TOL[dtypes.as_dtype(x.dtype)]
188      self.assertAllClose(jacob_t, jacob_n, rtol=tol, atol=tol)
189
190  def _compareGradientY(self,
191                        x,
192                        y,
193                        np_func,
194                        tf_func,
195                        numeric_gradient_type=None):
196    z = np_func(x, y)
197    zs = list(z.shape)
198    with self.test_session():
199      inx = ops.convert_to_tensor(x)
200      iny = ops.convert_to_tensor(y)
201      if x.dtype in (np.float32, np.float64):
202        out = 1.1 * tf_func(inx, iny)
203      else:
204        out = tf_func(inx, iny)
205      ys = list(np.shape(y))
206      jacob_t, jacob_n = gradient_checker.compute_gradient(
207          iny, ys, out, zs, x_init_value=y)
208    tol = self._GRAD_TOL[dtypes.as_dtype(x.dtype)]
209    self.assertAllClose(jacob_t, jacob_n, rtol=tol, atol=tol)
210
211  def _compareGpu(self, x, y, np_func, tf_func):
212    np_ans = np_func(x, y)
213    with self.test_session(use_gpu=True):
214      inx = ops.convert_to_tensor(x)
215      iny = ops.convert_to_tensor(y)
216      out = tf_func(inx, iny)
217      tf_gpu = out.eval()
218    self.assertAllClose(np_ans, tf_gpu)
219    self.assertShapeEqual(np_ans, out)
220    # TODO(zhifengc/ke): make gradient checker work on GPU.
221
222  def testGradient(self):
223    x = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
224        [1, 3, 2])
225    y = (1 + np.linspace(0, 5, np.prod([1, 3, 2]))).astype(np.float32).reshape(
226        [1, 3, 2])
227
228    self._compareGradientX(x, y, np.true_divide, math_ops.truediv)
229    self._compareGradientY(x, y, np.true_divide, math_ops.truediv)
230    self._compareGpu(x, y, np.true_divide, math_ops.truediv)
231    self._compareGpu(x, y + 0.1, np.floor_divide, math_ops.floordiv)
232
233
234class GpuMultiSessionMemoryTest(test_util.TensorFlowTestCase):
235  """Tests concurrent sessions executing on the same GPU."""
236
237  def _run_session(self, session, results):
238    n_iterations = 500
239    with session as s:
240      data = variables.Variable(1.0)
241      with ops.device('/device:GPU:0'):
242        random_seed.set_random_seed(1)
243        matrix1 = variables.Variable(
244            random_ops.truncated_normal([1024, 1]), name='matrix1')
245        matrix2 = variables.Variable(
246            random_ops.truncated_normal([1, 1024]), name='matrix2')
247        x1 = math_ops.multiply(data, matrix1, name='x1')
248        x3 = math_ops.matmul(x1, math_ops.matmul(matrix2, matrix1))
249        x4 = math_ops.matmul(array_ops.transpose(x3), x3, name='x4')
250        s.run(variables.global_variables_initializer())
251
252        for _ in xrange(n_iterations):
253          value = s.run(x4)
254          results.add(value.flat[0])
255          if len(results) != 1:
256            break
257
258  def testConcurrentSessions(self):
259    n_threads = 4
260    threads = []
261    results = []
262    for _ in xrange(n_threads):
263      session = self.test_session(graph=ops.Graph(), use_gpu=True)
264      results.append(set())
265      args = (session, results[-1])
266      threads.append(threading.Thread(target=self._run_session, args=args))
267
268    for thread in threads:
269      thread.start()
270    for thread in threads:
271      thread.join()
272
273    flat_results = set([x for x in itertools.chain(*results)])
274    self.assertEqual(1,
275                     len(flat_results),
276                     'Expected single value, got %r' % flat_results)
277
278
279if __name__ == '__main__':
280  test.main()
281