• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/crankshaft/arm/lithium-codegen-arm.h"
6 
7 #include "src/base/bits.h"
8 #include "src/builtins/builtins-constructor.h"
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/crankshaft/arm/lithium-gap-resolver-arm.h"
12 #include "src/crankshaft/hydrogen-osr.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 
20 class SafepointGenerator final : public CallWrapper {
21  public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)22   SafepointGenerator(LCodeGen* codegen,
23                      LPointerMap* pointers,
24                      Safepoint::DeoptMode mode)
25       : codegen_(codegen),
26         pointers_(pointers),
27         deopt_mode_(mode) { }
~SafepointGenerator()28   virtual ~SafepointGenerator() {}
29 
BeforeCall(int call_size) const30   void BeforeCall(int call_size) const override {}
31 
AfterCall() const32   void AfterCall() const override {
33     codegen_->RecordSafepoint(pointers_, deopt_mode_);
34   }
35 
36  private:
37   LCodeGen* codegen_;
38   LPointerMap* pointers_;
39   Safepoint::DeoptMode deopt_mode_;
40 };
41 
42 
43 #define __ masm()->
44 
GenerateCode()45 bool LCodeGen::GenerateCode() {
46   LPhase phase("Z_Code generation", chunk());
47   DCHECK(is_unused());
48   status_ = GENERATING;
49 
50   // Open a frame scope to indicate that there is a frame on the stack.  The
51   // NONE indicates that the scope shouldn't actually generate code to set up
52   // the frame (that is done in GeneratePrologue).
53   FrameScope frame_scope(masm_, StackFrame::NONE);
54 
55   return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
56          GenerateJumpTable() && GenerateSafepointTable();
57 }
58 
59 
FinishCode(Handle<Code> code)60 void LCodeGen::FinishCode(Handle<Code> code) {
61   DCHECK(is_done());
62   code->set_stack_slots(GetTotalFrameSlotCount());
63   code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
64   PopulateDeoptimizationData(code);
65 }
66 
67 
SaveCallerDoubles()68 void LCodeGen::SaveCallerDoubles() {
69   DCHECK(info()->saves_caller_doubles());
70   DCHECK(NeedsEagerFrame());
71   Comment(";;; Save clobbered callee double registers");
72   int count = 0;
73   BitVector* doubles = chunk()->allocated_double_registers();
74   BitVector::Iterator save_iterator(doubles);
75   while (!save_iterator.Done()) {
76     __ vstr(DoubleRegister::from_code(save_iterator.Current()),
77             MemOperand(sp, count * kDoubleSize));
78     save_iterator.Advance();
79     count++;
80   }
81 }
82 
83 
RestoreCallerDoubles()84 void LCodeGen::RestoreCallerDoubles() {
85   DCHECK(info()->saves_caller_doubles());
86   DCHECK(NeedsEagerFrame());
87   Comment(";;; Restore clobbered callee double registers");
88   BitVector* doubles = chunk()->allocated_double_registers();
89   BitVector::Iterator save_iterator(doubles);
90   int count = 0;
91   while (!save_iterator.Done()) {
92     __ vldr(DoubleRegister::from_code(save_iterator.Current()),
93             MemOperand(sp, count * kDoubleSize));
94     save_iterator.Advance();
95     count++;
96   }
97 }
98 
99 
GeneratePrologue()100 bool LCodeGen::GeneratePrologue() {
101   DCHECK(is_generating());
102 
103   if (info()->IsOptimizing()) {
104     ProfileEntryHookStub::MaybeCallEntryHook(masm_);
105 
106     // r1: Callee's JS function.
107     // cp: Callee's context.
108     // pp: Callee's constant pool pointer (if enabled)
109     // fp: Caller's frame pointer.
110     // lr: Caller's pc.
111   }
112 
113   info()->set_prologue_offset(masm_->pc_offset());
114   if (NeedsEagerFrame()) {
115     if (info()->IsStub()) {
116       __ StubPrologue(StackFrame::STUB);
117     } else {
118       __ Prologue(info()->GeneratePreagedPrologue());
119     }
120     frame_is_built_ = true;
121   }
122 
123   // Reserve space for the stack slots needed by the code.
124   int slots = GetStackSlotCount();
125   if (slots > 0) {
126     if (FLAG_debug_code) {
127       __ sub(sp,  sp, Operand(slots * kPointerSize));
128       __ push(r0);
129       __ push(r1);
130       __ add(r0, sp, Operand(slots *  kPointerSize));
131       __ mov(r1, Operand(kSlotsZapValue));
132       Label loop;
133       __ bind(&loop);
134       __ sub(r0, r0, Operand(kPointerSize));
135       __ str(r1, MemOperand(r0, 2 * kPointerSize));
136       __ cmp(r0, sp);
137       __ b(ne, &loop);
138       __ pop(r1);
139       __ pop(r0);
140     } else {
141       __ sub(sp,  sp, Operand(slots * kPointerSize));
142     }
143   }
144 
145   if (info()->saves_caller_doubles()) {
146     SaveCallerDoubles();
147   }
148   return !is_aborted();
149 }
150 
151 
DoPrologue(LPrologue * instr)152 void LCodeGen::DoPrologue(LPrologue* instr) {
153   Comment(";;; Prologue begin");
154 
155   // Possibly allocate a local context.
156   if (info()->scope()->NeedsContext()) {
157     Comment(";;; Allocate local context");
158     bool need_write_barrier = true;
159     // Argument to NewContext is the function, which is in r1.
160     int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
161     Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
162     if (info()->scope()->is_script_scope()) {
163       __ push(r1);
164       __ Push(info()->scope()->scope_info());
165       __ CallRuntime(Runtime::kNewScriptContext);
166       deopt_mode = Safepoint::kLazyDeopt;
167     } else {
168       if (slots <=
169           ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) {
170         Callable callable = CodeFactory::FastNewFunctionContext(
171             isolate(), info()->scope()->scope_type());
172         __ mov(FastNewFunctionContextDescriptor::SlotsRegister(),
173                Operand(slots));
174         __ Call(callable.code(), RelocInfo::CODE_TARGET);
175         // Result of the FastNewFunctionContext builtin is always in new space.
176         need_write_barrier = false;
177       } else {
178         __ push(r1);
179         __ Push(Smi::FromInt(info()->scope()->scope_type()));
180         __ CallRuntime(Runtime::kNewFunctionContext);
181       }
182     }
183     RecordSafepoint(deopt_mode);
184 
185     // Context is returned in both r0 and cp.  It replaces the context
186     // passed to us.  It's saved in the stack and kept live in cp.
187     __ mov(cp, r0);
188     __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
189     // Copy any necessary parameters into the context.
190     int num_parameters = info()->scope()->num_parameters();
191     int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
192     for (int i = first_parameter; i < num_parameters; i++) {
193       Variable* var = (i == -1) ? info()->scope()->receiver()
194                                 : info()->scope()->parameter(i);
195       if (var->IsContextSlot()) {
196         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
197             (num_parameters - 1 - i) * kPointerSize;
198         // Load parameter from stack.
199         __ ldr(r0, MemOperand(fp, parameter_offset));
200         // Store it in the context.
201         MemOperand target = ContextMemOperand(cp, var->index());
202         __ str(r0, target);
203         // Update the write barrier. This clobbers r3 and r0.
204         if (need_write_barrier) {
205           __ RecordWriteContextSlot(
206               cp,
207               target.offset(),
208               r0,
209               r3,
210               GetLinkRegisterState(),
211               kSaveFPRegs);
212         } else if (FLAG_debug_code) {
213           Label done;
214           __ JumpIfInNewSpace(cp, r0, &done);
215           __ Abort(kExpectedNewSpaceObject);
216           __ bind(&done);
217         }
218       }
219     }
220     Comment(";;; End allocate local context");
221   }
222 
223   Comment(";;; Prologue end");
224 }
225 
226 
GenerateOsrPrologue()227 void LCodeGen::GenerateOsrPrologue() {
228   // Generate the OSR entry prologue at the first unknown OSR value, or if there
229   // are none, at the OSR entrypoint instruction.
230   if (osr_pc_offset_ >= 0) return;
231 
232   osr_pc_offset_ = masm()->pc_offset();
233 
234   // Adjust the frame size, subsuming the unoptimized frame into the
235   // optimized frame.
236   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
237   DCHECK(slots >= 0);
238   __ sub(sp, sp, Operand(slots * kPointerSize));
239 }
240 
241 
GenerateBodyInstructionPre(LInstruction * instr)242 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
243   if (instr->IsCall()) {
244     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
245   }
246   if (!instr->IsLazyBailout() && !instr->IsGap()) {
247     safepoints_.BumpLastLazySafepointIndex();
248   }
249 }
250 
251 
GenerateDeferredCode()252 bool LCodeGen::GenerateDeferredCode() {
253   DCHECK(is_generating());
254   if (deferred_.length() > 0) {
255     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
256       LDeferredCode* code = deferred_[i];
257 
258       HValue* value =
259           instructions_->at(code->instruction_index())->hydrogen_value();
260       RecordAndWritePosition(value->position());
261 
262       Comment(";;; <@%d,#%d> "
263               "-------------------- Deferred %s --------------------",
264               code->instruction_index(),
265               code->instr()->hydrogen_value()->id(),
266               code->instr()->Mnemonic());
267       __ bind(code->entry());
268       if (NeedsDeferredFrame()) {
269         Comment(";;; Build frame");
270         DCHECK(!frame_is_built_);
271         DCHECK(info()->IsStub());
272         frame_is_built_ = true;
273         __ mov(scratch0(), Operand(StackFrame::TypeToMarker(StackFrame::STUB)));
274         __ PushCommonFrame(scratch0());
275         Comment(";;; Deferred code");
276       }
277       code->Generate();
278       if (NeedsDeferredFrame()) {
279         Comment(";;; Destroy frame");
280         DCHECK(frame_is_built_);
281         __ PopCommonFrame(scratch0());
282         frame_is_built_ = false;
283       }
284       __ jmp(code->exit());
285     }
286   }
287 
288   // Force constant pool emission at the end of the deferred code to make
289   // sure that no constant pools are emitted after.
290   masm()->CheckConstPool(true, false);
291 
292   return !is_aborted();
293 }
294 
295 
GenerateJumpTable()296 bool LCodeGen::GenerateJumpTable() {
297   // Check that the jump table is accessible from everywhere in the function
298   // code, i.e. that offsets to the table can be encoded in the 24bit signed
299   // immediate of a branch instruction.
300   // To simplify we consider the code size from the first instruction to the
301   // end of the jump table. We also don't consider the pc load delta.
302   // Each entry in the jump table generates one instruction and inlines one
303   // 32bit data after it.
304   if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
305                 jump_table_.length() * 7)) {
306     Abort(kGeneratedCodeIsTooLarge);
307   }
308 
309   if (jump_table_.length() > 0) {
310     Label needs_frame, call_deopt_entry;
311 
312     Comment(";;; -------------------- Jump table --------------------");
313     Address base = jump_table_[0].address;
314 
315     Register entry_offset = scratch0();
316 
317     int length = jump_table_.length();
318     for (int i = 0; i < length; i++) {
319       Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
320       __ bind(&table_entry->label);
321 
322       DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
323       Address entry = table_entry->address;
324       DeoptComment(table_entry->deopt_info);
325 
326       // Second-level deopt table entries are contiguous and small, so instead
327       // of loading the full, absolute address of each one, load an immediate
328       // offset which will be added to the base address later.
329       __ mov(entry_offset, Operand(entry - base));
330 
331       if (table_entry->needs_frame) {
332         DCHECK(!info()->saves_caller_doubles());
333         Comment(";;; call deopt with frame");
334         __ PushCommonFrame();
335         __ bl(&needs_frame);
336       } else {
337         __ bl(&call_deopt_entry);
338       }
339       masm()->CheckConstPool(false, false);
340     }
341 
342     if (needs_frame.is_linked()) {
343       __ bind(&needs_frame);
344       // This variant of deopt can only be used with stubs. Since we don't
345       // have a function pointer to install in the stack frame that we're
346       // building, install a special marker there instead.
347       __ mov(ip, Operand(StackFrame::TypeToMarker(StackFrame::STUB)));
348       __ push(ip);
349       DCHECK(info()->IsStub());
350     }
351 
352     Comment(";;; call deopt");
353     __ bind(&call_deopt_entry);
354 
355     if (info()->saves_caller_doubles()) {
356       DCHECK(info()->IsStub());
357       RestoreCallerDoubles();
358     }
359 
360     // Add the base address to the offset previously loaded in entry_offset.
361     __ add(entry_offset, entry_offset,
362            Operand(ExternalReference::ForDeoptEntry(base)));
363     __ bx(entry_offset);
364   }
365 
366   // Force constant pool emission at the end of the deopt jump table to make
367   // sure that no constant pools are emitted after.
368   masm()->CheckConstPool(true, false);
369 
370   // The deoptimization jump table is the last part of the instruction
371   // sequence. Mark the generated code as done unless we bailed out.
372   if (!is_aborted()) status_ = DONE;
373   return !is_aborted();
374 }
375 
376 
GenerateSafepointTable()377 bool LCodeGen::GenerateSafepointTable() {
378   DCHECK(is_done());
379   safepoints_.Emit(masm(), GetTotalFrameSlotCount());
380   return !is_aborted();
381 }
382 
383 
ToRegister(int code) const384 Register LCodeGen::ToRegister(int code) const {
385   return Register::from_code(code);
386 }
387 
388 
ToDoubleRegister(int code) const389 DwVfpRegister LCodeGen::ToDoubleRegister(int code) const {
390   return DwVfpRegister::from_code(code);
391 }
392 
393 
ToRegister(LOperand * op) const394 Register LCodeGen::ToRegister(LOperand* op) const {
395   DCHECK(op->IsRegister());
396   return ToRegister(op->index());
397 }
398 
399 
EmitLoadRegister(LOperand * op,Register scratch)400 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
401   if (op->IsRegister()) {
402     return ToRegister(op->index());
403   } else if (op->IsConstantOperand()) {
404     LConstantOperand* const_op = LConstantOperand::cast(op);
405     HConstant* constant = chunk_->LookupConstant(const_op);
406     Handle<Object> literal = constant->handle(isolate());
407     Representation r = chunk_->LookupLiteralRepresentation(const_op);
408     if (r.IsInteger32()) {
409       AllowDeferredHandleDereference get_number;
410       DCHECK(literal->IsNumber());
411       __ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
412     } else if (r.IsDouble()) {
413       Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
414     } else {
415       DCHECK(r.IsSmiOrTagged());
416       __ Move(scratch, literal);
417     }
418     return scratch;
419   } else if (op->IsStackSlot()) {
420     __ ldr(scratch, ToMemOperand(op));
421     return scratch;
422   }
423   UNREACHABLE();
424   return scratch;
425 }
426 
427 
ToDoubleRegister(LOperand * op) const428 DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
429   DCHECK(op->IsDoubleRegister());
430   return ToDoubleRegister(op->index());
431 }
432 
433 
EmitLoadDoubleRegister(LOperand * op,SwVfpRegister flt_scratch,DwVfpRegister dbl_scratch)434 DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
435                                                SwVfpRegister flt_scratch,
436                                                DwVfpRegister dbl_scratch) {
437   if (op->IsDoubleRegister()) {
438     return ToDoubleRegister(op->index());
439   } else if (op->IsConstantOperand()) {
440     LConstantOperand* const_op = LConstantOperand::cast(op);
441     HConstant* constant = chunk_->LookupConstant(const_op);
442     Handle<Object> literal = constant->handle(isolate());
443     Representation r = chunk_->LookupLiteralRepresentation(const_op);
444     if (r.IsInteger32()) {
445       DCHECK(literal->IsNumber());
446       __ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
447       __ vmov(flt_scratch, ip);
448       __ vcvt_f64_s32(dbl_scratch, flt_scratch);
449       return dbl_scratch;
450     } else if (r.IsDouble()) {
451       Abort(kUnsupportedDoubleImmediate);
452     } else if (r.IsTagged()) {
453       Abort(kUnsupportedTaggedImmediate);
454     }
455   } else if (op->IsStackSlot()) {
456     // TODO(regis): Why is vldr not taking a MemOperand?
457     // __ vldr(dbl_scratch, ToMemOperand(op));
458     MemOperand mem_op = ToMemOperand(op);
459     __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
460     return dbl_scratch;
461   }
462   UNREACHABLE();
463   return dbl_scratch;
464 }
465 
466 
ToHandle(LConstantOperand * op) const467 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
468   HConstant* constant = chunk_->LookupConstant(op);
469   DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
470   return constant->handle(isolate());
471 }
472 
473 
IsInteger32(LConstantOperand * op) const474 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
475   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
476 }
477 
478 
IsSmi(LConstantOperand * op) const479 bool LCodeGen::IsSmi(LConstantOperand* op) const {
480   return chunk_->LookupLiteralRepresentation(op).IsSmi();
481 }
482 
483 
ToInteger32(LConstantOperand * op) const484 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
485   return ToRepresentation(op, Representation::Integer32());
486 }
487 
488 
ToRepresentation(LConstantOperand * op,const Representation & r) const489 int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
490                                    const Representation& r) const {
491   HConstant* constant = chunk_->LookupConstant(op);
492   int32_t value = constant->Integer32Value();
493   if (r.IsInteger32()) return value;
494   DCHECK(r.IsSmiOrTagged());
495   return reinterpret_cast<int32_t>(Smi::FromInt(value));
496 }
497 
498 
ToSmi(LConstantOperand * op) const499 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
500   HConstant* constant = chunk_->LookupConstant(op);
501   return Smi::FromInt(constant->Integer32Value());
502 }
503 
504 
ToDouble(LConstantOperand * op) const505 double LCodeGen::ToDouble(LConstantOperand* op) const {
506   HConstant* constant = chunk_->LookupConstant(op);
507   DCHECK(constant->HasDoubleValue());
508   return constant->DoubleValue();
509 }
510 
511 
ToOperand(LOperand * op)512 Operand LCodeGen::ToOperand(LOperand* op) {
513   if (op->IsConstantOperand()) {
514     LConstantOperand* const_op = LConstantOperand::cast(op);
515     HConstant* constant = chunk()->LookupConstant(const_op);
516     Representation r = chunk_->LookupLiteralRepresentation(const_op);
517     if (r.IsSmi()) {
518       DCHECK(constant->HasSmiValue());
519       return Operand(Smi::FromInt(constant->Integer32Value()));
520     } else if (r.IsInteger32()) {
521       DCHECK(constant->HasInteger32Value());
522       return Operand(constant->Integer32Value());
523     } else if (r.IsDouble()) {
524       Abort(kToOperandUnsupportedDoubleImmediate);
525     }
526     DCHECK(r.IsTagged());
527     return Operand(constant->handle(isolate()));
528   } else if (op->IsRegister()) {
529     return Operand(ToRegister(op));
530   } else if (op->IsDoubleRegister()) {
531     Abort(kToOperandIsDoubleRegisterUnimplemented);
532     return Operand::Zero();
533   }
534   // Stack slots not implemented, use ToMemOperand instead.
535   UNREACHABLE();
536   return Operand::Zero();
537 }
538 
539 
ArgumentsOffsetWithoutFrame(int index)540 static int ArgumentsOffsetWithoutFrame(int index) {
541   DCHECK(index < 0);
542   return -(index + 1) * kPointerSize;
543 }
544 
545 
ToMemOperand(LOperand * op) const546 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
547   DCHECK(!op->IsRegister());
548   DCHECK(!op->IsDoubleRegister());
549   DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
550   if (NeedsEagerFrame()) {
551     return MemOperand(fp, FrameSlotToFPOffset(op->index()));
552   } else {
553     // Retrieve parameter without eager stack-frame relative to the
554     // stack-pointer.
555     return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
556   }
557 }
558 
559 
ToHighMemOperand(LOperand * op) const560 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
561   DCHECK(op->IsDoubleStackSlot());
562   if (NeedsEagerFrame()) {
563     return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
564   } else {
565     // Retrieve parameter without eager stack-frame relative to the
566     // stack-pointer.
567     return MemOperand(
568         sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
569   }
570 }
571 
572 
WriteTranslation(LEnvironment * environment,Translation * translation)573 void LCodeGen::WriteTranslation(LEnvironment* environment,
574                                 Translation* translation) {
575   if (environment == NULL) return;
576 
577   // The translation includes one command per value in the environment.
578   int translation_size = environment->translation_size();
579 
580   WriteTranslation(environment->outer(), translation);
581   WriteTranslationFrame(environment, translation);
582 
583   int object_index = 0;
584   int dematerialized_index = 0;
585   for (int i = 0; i < translation_size; ++i) {
586     LOperand* value = environment->values()->at(i);
587     AddToTranslation(
588         environment, translation, value, environment->HasTaggedValueAt(i),
589         environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
590   }
591 }
592 
593 
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)594 void LCodeGen::AddToTranslation(LEnvironment* environment,
595                                 Translation* translation,
596                                 LOperand* op,
597                                 bool is_tagged,
598                                 bool is_uint32,
599                                 int* object_index_pointer,
600                                 int* dematerialized_index_pointer) {
601   if (op == LEnvironment::materialization_marker()) {
602     int object_index = (*object_index_pointer)++;
603     if (environment->ObjectIsDuplicateAt(object_index)) {
604       int dupe_of = environment->ObjectDuplicateOfAt(object_index);
605       translation->DuplicateObject(dupe_of);
606       return;
607     }
608     int object_length = environment->ObjectLengthAt(object_index);
609     if (environment->ObjectIsArgumentsAt(object_index)) {
610       translation->BeginArgumentsObject(object_length);
611     } else {
612       translation->BeginCapturedObject(object_length);
613     }
614     int dematerialized_index = *dematerialized_index_pointer;
615     int env_offset = environment->translation_size() + dematerialized_index;
616     *dematerialized_index_pointer += object_length;
617     for (int i = 0; i < object_length; ++i) {
618       LOperand* value = environment->values()->at(env_offset + i);
619       AddToTranslation(environment,
620                        translation,
621                        value,
622                        environment->HasTaggedValueAt(env_offset + i),
623                        environment->HasUint32ValueAt(env_offset + i),
624                        object_index_pointer,
625                        dematerialized_index_pointer);
626     }
627     return;
628   }
629 
630   if (op->IsStackSlot()) {
631     int index = op->index();
632     if (is_tagged) {
633       translation->StoreStackSlot(index);
634     } else if (is_uint32) {
635       translation->StoreUint32StackSlot(index);
636     } else {
637       translation->StoreInt32StackSlot(index);
638     }
639   } else if (op->IsDoubleStackSlot()) {
640     int index = op->index();
641     translation->StoreDoubleStackSlot(index);
642   } else if (op->IsRegister()) {
643     Register reg = ToRegister(op);
644     if (is_tagged) {
645       translation->StoreRegister(reg);
646     } else if (is_uint32) {
647       translation->StoreUint32Register(reg);
648     } else {
649       translation->StoreInt32Register(reg);
650     }
651   } else if (op->IsDoubleRegister()) {
652     DoubleRegister reg = ToDoubleRegister(op);
653     translation->StoreDoubleRegister(reg);
654   } else if (op->IsConstantOperand()) {
655     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
656     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
657     translation->StoreLiteral(src_index);
658   } else {
659     UNREACHABLE();
660   }
661 }
662 
663 
CallCodeSize(Handle<Code> code,RelocInfo::Mode mode)664 int LCodeGen::CallCodeSize(Handle<Code> code, RelocInfo::Mode mode) {
665   int size = masm()->CallSize(code, mode);
666   if (code->kind() == Code::BINARY_OP_IC ||
667       code->kind() == Code::COMPARE_IC) {
668     size += Assembler::kInstrSize;  // extra nop() added in CallCodeGeneric.
669   }
670   return size;
671 }
672 
673 
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,TargetAddressStorageMode storage_mode)674 void LCodeGen::CallCode(Handle<Code> code,
675                         RelocInfo::Mode mode,
676                         LInstruction* instr,
677                         TargetAddressStorageMode storage_mode) {
678   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
679 }
680 
681 
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode,TargetAddressStorageMode storage_mode)682 void LCodeGen::CallCodeGeneric(Handle<Code> code,
683                                RelocInfo::Mode mode,
684                                LInstruction* instr,
685                                SafepointMode safepoint_mode,
686                                TargetAddressStorageMode storage_mode) {
687   DCHECK(instr != NULL);
688   // Block literal pool emission to ensure nop indicating no inlined smi code
689   // is in the correct position.
690   Assembler::BlockConstPoolScope block_const_pool(masm());
691   __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
692   RecordSafepointWithLazyDeopt(instr, safepoint_mode);
693 
694   // Signal that we don't inline smi code before these stubs in the
695   // optimizing code generator.
696   if (code->kind() == Code::BINARY_OP_IC ||
697       code->kind() == Code::COMPARE_IC) {
698     __ nop();
699   }
700 }
701 
702 
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)703 void LCodeGen::CallRuntime(const Runtime::Function* function,
704                            int num_arguments,
705                            LInstruction* instr,
706                            SaveFPRegsMode save_doubles) {
707   DCHECK(instr != NULL);
708 
709   __ CallRuntime(function, num_arguments, save_doubles);
710 
711   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
712 }
713 
714 
LoadContextFromDeferred(LOperand * context)715 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
716   if (context->IsRegister()) {
717     __ Move(cp, ToRegister(context));
718   } else if (context->IsStackSlot()) {
719     __ ldr(cp, ToMemOperand(context));
720   } else if (context->IsConstantOperand()) {
721     HConstant* constant =
722         chunk_->LookupConstant(LConstantOperand::cast(context));
723     __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
724   } else {
725     UNREACHABLE();
726   }
727 }
728 
729 
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)730 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
731                                        int argc,
732                                        LInstruction* instr,
733                                        LOperand* context) {
734   LoadContextFromDeferred(context);
735   __ CallRuntimeSaveDoubles(id);
736   RecordSafepointWithRegisters(
737       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
738 }
739 
740 
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)741 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
742                                                     Safepoint::DeoptMode mode) {
743   environment->set_has_been_used();
744   if (!environment->HasBeenRegistered()) {
745     // Physical stack frame layout:
746     // -x ............. -4  0 ..................................... y
747     // [incoming arguments] [spill slots] [pushed outgoing arguments]
748 
749     // Layout of the environment:
750     // 0 ..................................................... size-1
751     // [parameters] [locals] [expression stack including arguments]
752 
753     // Layout of the translation:
754     // 0 ........................................................ size - 1 + 4
755     // [expression stack including arguments] [locals] [4 words] [parameters]
756     // |>------------  translation_size ------------<|
757 
758     int frame_count = 0;
759     int jsframe_count = 0;
760     for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
761       ++frame_count;
762       if (e->frame_type() == JS_FUNCTION) {
763         ++jsframe_count;
764       }
765     }
766     Translation translation(&translations_, frame_count, jsframe_count, zone());
767     WriteTranslation(environment, &translation);
768     int deoptimization_index = deoptimizations_.length();
769     int pc_offset = masm()->pc_offset();
770     environment->Register(deoptimization_index,
771                           translation.index(),
772                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
773     deoptimizations_.Add(environment, zone());
774   }
775 }
776 
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason,Deoptimizer::BailoutType bailout_type)777 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
778                             DeoptimizeReason deopt_reason,
779                             Deoptimizer::BailoutType bailout_type) {
780   LEnvironment* environment = instr->environment();
781   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
782   DCHECK(environment->HasBeenRegistered());
783   int id = environment->deoptimization_index();
784   Address entry =
785       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
786   if (entry == NULL) {
787     Abort(kBailoutWasNotPrepared);
788     return;
789   }
790 
791   if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
792     Register scratch = scratch0();
793     ExternalReference count = ExternalReference::stress_deopt_count(isolate());
794 
795     // Store the condition on the stack if necessary
796     if (condition != al) {
797       __ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition));
798       __ mov(scratch, Operand(1), LeaveCC, condition);
799       __ push(scratch);
800     }
801 
802     __ push(r1);
803     __ mov(scratch, Operand(count));
804     __ ldr(r1, MemOperand(scratch));
805     __ sub(r1, r1, Operand(1), SetCC);
806     __ mov(r1, Operand(FLAG_deopt_every_n_times), LeaveCC, eq);
807     __ str(r1, MemOperand(scratch));
808     __ pop(r1);
809 
810     if (condition != al) {
811       // Clean up the stack before the deoptimizer call
812       __ pop(scratch);
813     }
814 
815     __ Call(entry, RelocInfo::RUNTIME_ENTRY, eq);
816 
817     // 'Restore' the condition in a slightly hacky way. (It would be better
818     // to use 'msr' and 'mrs' instructions here, but they are not supported by
819     // our ARM simulator).
820     if (condition != al) {
821       condition = ne;
822       __ cmp(scratch, Operand::Zero());
823     }
824   }
825 
826   if (info()->ShouldTrapOnDeopt()) {
827     __ stop("trap_on_deopt", condition);
828   }
829 
830   Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
831 
832   DCHECK(info()->IsStub() || frame_is_built_);
833   // Go through jump table if we need to handle condition, build frame, or
834   // restore caller doubles.
835   if (condition == al && frame_is_built_ &&
836       !info()->saves_caller_doubles()) {
837     DeoptComment(deopt_info);
838     __ Call(entry, RelocInfo::RUNTIME_ENTRY);
839   } else {
840     Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
841                                             !frame_is_built_);
842     // We often have several deopts to the same entry, reuse the last
843     // jump entry if this is the case.
844     if (FLAG_trace_deopt || isolate()->is_profiling() ||
845         jump_table_.is_empty() ||
846         !table_entry.IsEquivalentTo(jump_table_.last())) {
847       jump_table_.Add(table_entry, zone());
848     }
849     __ b(condition, &jump_table_.last().label);
850   }
851 }
852 
DeoptimizeIf(Condition condition,LInstruction * instr,DeoptimizeReason deopt_reason)853 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
854                             DeoptimizeReason deopt_reason) {
855   Deoptimizer::BailoutType bailout_type = info()->IsStub()
856       ? Deoptimizer::LAZY
857       : Deoptimizer::EAGER;
858   DeoptimizeIf(condition, instr, deopt_reason, bailout_type);
859 }
860 
861 
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)862 void LCodeGen::RecordSafepointWithLazyDeopt(
863     LInstruction* instr, SafepointMode safepoint_mode) {
864   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
865     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
866   } else {
867     DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
868     RecordSafepointWithRegisters(
869         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
870   }
871 }
872 
873 
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)874 void LCodeGen::RecordSafepoint(
875     LPointerMap* pointers,
876     Safepoint::Kind kind,
877     int arguments,
878     Safepoint::DeoptMode deopt_mode) {
879   DCHECK(expected_safepoint_kind_ == kind);
880 
881   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
882   Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
883       kind, arguments, deopt_mode);
884   for (int i = 0; i < operands->length(); i++) {
885     LOperand* pointer = operands->at(i);
886     if (pointer->IsStackSlot()) {
887       safepoint.DefinePointerSlot(pointer->index(), zone());
888     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
889       safepoint.DefinePointerRegister(ToRegister(pointer), zone());
890     }
891   }
892 }
893 
894 
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)895 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
896                                Safepoint::DeoptMode deopt_mode) {
897   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
898 }
899 
900 
RecordSafepoint(Safepoint::DeoptMode deopt_mode)901 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
902   LPointerMap empty_pointers(zone());
903   RecordSafepoint(&empty_pointers, deopt_mode);
904 }
905 
906 
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)907 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
908                                             int arguments,
909                                             Safepoint::DeoptMode deopt_mode) {
910   RecordSafepoint(
911       pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
912 }
913 
914 
LabelType(LLabel * label)915 static const char* LabelType(LLabel* label) {
916   if (label->is_loop_header()) return " (loop header)";
917   if (label->is_osr_entry()) return " (OSR entry)";
918   return "";
919 }
920 
921 
DoLabel(LLabel * label)922 void LCodeGen::DoLabel(LLabel* label) {
923   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
924           current_instruction_,
925           label->hydrogen_value()->id(),
926           label->block_id(),
927           LabelType(label));
928   __ bind(label->label());
929   current_block_ = label->block_id();
930   DoGap(label);
931 }
932 
933 
DoParallelMove(LParallelMove * move)934 void LCodeGen::DoParallelMove(LParallelMove* move) {
935   resolver_.Resolve(move);
936 }
937 
938 
DoGap(LGap * gap)939 void LCodeGen::DoGap(LGap* gap) {
940   for (int i = LGap::FIRST_INNER_POSITION;
941        i <= LGap::LAST_INNER_POSITION;
942        i++) {
943     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
944     LParallelMove* move = gap->GetParallelMove(inner_pos);
945     if (move != NULL) DoParallelMove(move);
946   }
947 }
948 
949 
DoInstructionGap(LInstructionGap * instr)950 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
951   DoGap(instr);
952 }
953 
954 
DoParameter(LParameter * instr)955 void LCodeGen::DoParameter(LParameter* instr) {
956   // Nothing to do.
957 }
958 
959 
DoUnknownOSRValue(LUnknownOSRValue * instr)960 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
961   GenerateOsrPrologue();
962 }
963 
964 
DoModByPowerOf2I(LModByPowerOf2I * instr)965 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
966   Register dividend = ToRegister(instr->dividend());
967   int32_t divisor = instr->divisor();
968   DCHECK(dividend.is(ToRegister(instr->result())));
969 
970   // Theoretically, a variation of the branch-free code for integer division by
971   // a power of 2 (calculating the remainder via an additional multiplication
972   // (which gets simplified to an 'and') and subtraction) should be faster, and
973   // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
974   // indicate that positive dividends are heavily favored, so the branching
975   // version performs better.
976   HMod* hmod = instr->hydrogen();
977   int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
978   Label dividend_is_not_negative, done;
979   if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
980     __ cmp(dividend, Operand::Zero());
981     __ b(pl, &dividend_is_not_negative);
982     // Note that this is correct even for kMinInt operands.
983     __ rsb(dividend, dividend, Operand::Zero());
984     __ and_(dividend, dividend, Operand(mask));
985     __ rsb(dividend, dividend, Operand::Zero(), SetCC);
986     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
987       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
988     }
989     __ b(&done);
990   }
991 
992   __ bind(&dividend_is_not_negative);
993   __ and_(dividend, dividend, Operand(mask));
994   __ bind(&done);
995 }
996 
997 
DoModByConstI(LModByConstI * instr)998 void LCodeGen::DoModByConstI(LModByConstI* instr) {
999   Register dividend = ToRegister(instr->dividend());
1000   int32_t divisor = instr->divisor();
1001   Register result = ToRegister(instr->result());
1002   DCHECK(!dividend.is(result));
1003 
1004   if (divisor == 0) {
1005     DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1006     return;
1007   }
1008 
1009   __ TruncatingDiv(result, dividend, Abs(divisor));
1010   __ mov(ip, Operand(Abs(divisor)));
1011   __ smull(result, ip, result, ip);
1012   __ sub(result, dividend, result, SetCC);
1013 
1014   // Check for negative zero.
1015   HMod* hmod = instr->hydrogen();
1016   if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1017     Label remainder_not_zero;
1018     __ b(ne, &remainder_not_zero);
1019     __ cmp(dividend, Operand::Zero());
1020     DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1021     __ bind(&remainder_not_zero);
1022   }
1023 }
1024 
1025 
DoModI(LModI * instr)1026 void LCodeGen::DoModI(LModI* instr) {
1027   HMod* hmod = instr->hydrogen();
1028   if (CpuFeatures::IsSupported(SUDIV)) {
1029     CpuFeatureScope scope(masm(), SUDIV);
1030 
1031     Register left_reg = ToRegister(instr->left());
1032     Register right_reg = ToRegister(instr->right());
1033     Register result_reg = ToRegister(instr->result());
1034 
1035     Label done;
1036     // Check for x % 0, sdiv might signal an exception. We have to deopt in this
1037     // case because we can't return a NaN.
1038     if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1039       __ cmp(right_reg, Operand::Zero());
1040       DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1041     }
1042 
1043     // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we
1044     // want. We have to deopt if we care about -0, because we can't return that.
1045     if (hmod->CheckFlag(HValue::kCanOverflow)) {
1046       Label no_overflow_possible;
1047       __ cmp(left_reg, Operand(kMinInt));
1048       __ b(ne, &no_overflow_possible);
1049       __ cmp(right_reg, Operand(-1));
1050       if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1051         DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1052       } else {
1053         __ b(ne, &no_overflow_possible);
1054         __ mov(result_reg, Operand::Zero());
1055         __ jmp(&done);
1056       }
1057       __ bind(&no_overflow_possible);
1058     }
1059 
1060     // For 'r3 = r1 % r2' we can have the following ARM code:
1061     //   sdiv r3, r1, r2
1062     //   mls r3, r3, r2, r1
1063 
1064     __ sdiv(result_reg, left_reg, right_reg);
1065     __ Mls(result_reg, result_reg, right_reg, left_reg);
1066 
1067     // If we care about -0, test if the dividend is <0 and the result is 0.
1068     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1069       __ cmp(result_reg, Operand::Zero());
1070       __ b(ne, &done);
1071       __ cmp(left_reg, Operand::Zero());
1072       DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero);
1073     }
1074     __ bind(&done);
1075 
1076   } else {
1077     // General case, without any SDIV support.
1078     Register left_reg = ToRegister(instr->left());
1079     Register right_reg = ToRegister(instr->right());
1080     Register result_reg = ToRegister(instr->result());
1081     Register scratch = scratch0();
1082     DCHECK(!scratch.is(left_reg));
1083     DCHECK(!scratch.is(right_reg));
1084     DCHECK(!scratch.is(result_reg));
1085     DwVfpRegister dividend = ToDoubleRegister(instr->temp());
1086     DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
1087     DCHECK(!divisor.is(dividend));
1088     LowDwVfpRegister quotient = double_scratch0();
1089     DCHECK(!quotient.is(dividend));
1090     DCHECK(!quotient.is(divisor));
1091 
1092     Label done;
1093     // Check for x % 0, we have to deopt in this case because we can't return a
1094     // NaN.
1095     if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1096       __ cmp(right_reg, Operand::Zero());
1097       DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1098     }
1099 
1100     __ Move(result_reg, left_reg);
1101     // Load the arguments in VFP registers. The divisor value is preloaded
1102     // before. Be careful that 'right_reg' is only live on entry.
1103     // TODO(svenpanne) The last comments seems to be wrong nowadays.
1104     __ vmov(double_scratch0().low(), left_reg);
1105     __ vcvt_f64_s32(dividend, double_scratch0().low());
1106     __ vmov(double_scratch0().low(), right_reg);
1107     __ vcvt_f64_s32(divisor, double_scratch0().low());
1108 
1109     // We do not care about the sign of the divisor. Note that we still handle
1110     // the kMinInt % -1 case correctly, though.
1111     __ vabs(divisor, divisor);
1112     // Compute the quotient and round it to a 32bit integer.
1113     __ vdiv(quotient, dividend, divisor);
1114     __ vcvt_s32_f64(quotient.low(), quotient);
1115     __ vcvt_f64_s32(quotient, quotient.low());
1116 
1117     // Compute the remainder in result.
1118     __ vmul(double_scratch0(), divisor, quotient);
1119     __ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
1120     __ vmov(scratch, double_scratch0().low());
1121     __ sub(result_reg, left_reg, scratch, SetCC);
1122 
1123     // If we care about -0, test if the dividend is <0 and the result is 0.
1124     if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1125       __ b(ne, &done);
1126       __ cmp(left_reg, Operand::Zero());
1127       DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
1128     }
1129     __ bind(&done);
1130   }
1131 }
1132 
1133 
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1134 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1135   Register dividend = ToRegister(instr->dividend());
1136   int32_t divisor = instr->divisor();
1137   Register result = ToRegister(instr->result());
1138   DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1139   DCHECK(!result.is(dividend));
1140 
1141   // Check for (0 / -x) that will produce negative zero.
1142   HDiv* hdiv = instr->hydrogen();
1143   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1144     __ cmp(dividend, Operand::Zero());
1145     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1146   }
1147   // Check for (kMinInt / -1).
1148   if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1149     __ cmp(dividend, Operand(kMinInt));
1150     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1151   }
1152   // Deoptimize if remainder will not be 0.
1153   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1154       divisor != 1 && divisor != -1) {
1155     int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1156     __ tst(dividend, Operand(mask));
1157     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1158   }
1159 
1160   if (divisor == -1) {  // Nice shortcut, not needed for correctness.
1161     __ rsb(result, dividend, Operand(0));
1162     return;
1163   }
1164   int32_t shift = WhichPowerOf2Abs(divisor);
1165   if (shift == 0) {
1166     __ mov(result, dividend);
1167   } else if (shift == 1) {
1168     __ add(result, dividend, Operand(dividend, LSR, 31));
1169   } else {
1170     __ mov(result, Operand(dividend, ASR, 31));
1171     __ add(result, dividend, Operand(result, LSR, 32 - shift));
1172   }
1173   if (shift > 0) __ mov(result, Operand(result, ASR, shift));
1174   if (divisor < 0) __ rsb(result, result, Operand(0));
1175 }
1176 
1177 
DoDivByConstI(LDivByConstI * instr)1178 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1179   Register dividend = ToRegister(instr->dividend());
1180   int32_t divisor = instr->divisor();
1181   Register result = ToRegister(instr->result());
1182   DCHECK(!dividend.is(result));
1183 
1184   if (divisor == 0) {
1185     DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1186     return;
1187   }
1188 
1189   // Check for (0 / -x) that will produce negative zero.
1190   HDiv* hdiv = instr->hydrogen();
1191   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1192     __ cmp(dividend, Operand::Zero());
1193     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1194   }
1195 
1196   __ TruncatingDiv(result, dividend, Abs(divisor));
1197   if (divisor < 0) __ rsb(result, result, Operand::Zero());
1198 
1199   if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1200     __ mov(ip, Operand(divisor));
1201     __ smull(scratch0(), ip, result, ip);
1202     __ sub(scratch0(), scratch0(), dividend, SetCC);
1203     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1204   }
1205 }
1206 
1207 
1208 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1209 void LCodeGen::DoDivI(LDivI* instr) {
1210   HBinaryOperation* hdiv = instr->hydrogen();
1211   Register dividend = ToRegister(instr->dividend());
1212   Register divisor = ToRegister(instr->divisor());
1213   Register result = ToRegister(instr->result());
1214 
1215   // Check for x / 0.
1216   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1217     __ cmp(divisor, Operand::Zero());
1218     DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1219   }
1220 
1221   // Check for (0 / -x) that will produce negative zero.
1222   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1223     Label positive;
1224     if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
1225       // Do the test only if it hadn't be done above.
1226       __ cmp(divisor, Operand::Zero());
1227     }
1228     __ b(pl, &positive);
1229     __ cmp(dividend, Operand::Zero());
1230     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1231     __ bind(&positive);
1232   }
1233 
1234   // Check for (kMinInt / -1).
1235   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1236       (!CpuFeatures::IsSupported(SUDIV) ||
1237        !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
1238     // We don't need to check for overflow when truncating with sdiv
1239     // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
1240     __ cmp(dividend, Operand(kMinInt));
1241     __ cmp(divisor, Operand(-1), eq);
1242     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1243   }
1244 
1245   if (CpuFeatures::IsSupported(SUDIV)) {
1246     CpuFeatureScope scope(masm(), SUDIV);
1247     __ sdiv(result, dividend, divisor);
1248   } else {
1249     DoubleRegister vleft = ToDoubleRegister(instr->temp());
1250     DoubleRegister vright = double_scratch0();
1251     __ vmov(double_scratch0().low(), dividend);
1252     __ vcvt_f64_s32(vleft, double_scratch0().low());
1253     __ vmov(double_scratch0().low(), divisor);
1254     __ vcvt_f64_s32(vright, double_scratch0().low());
1255     __ vdiv(vleft, vleft, vright);  // vleft now contains the result.
1256     __ vcvt_s32_f64(double_scratch0().low(), vleft);
1257     __ vmov(result, double_scratch0().low());
1258   }
1259 
1260   if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1261     // Compute remainder and deopt if it's not zero.
1262     Register remainder = scratch0();
1263     __ Mls(remainder, result, divisor, dividend);
1264     __ cmp(remainder, Operand::Zero());
1265     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision);
1266   }
1267 }
1268 
1269 
DoMultiplyAddD(LMultiplyAddD * instr)1270 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1271   DwVfpRegister addend = ToDoubleRegister(instr->addend());
1272   DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1273   DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1274 
1275   // This is computed in-place.
1276   DCHECK(addend.is(ToDoubleRegister(instr->result())));
1277 
1278   __ vmla(addend, multiplier, multiplicand);
1279 }
1280 
1281 
DoMultiplySubD(LMultiplySubD * instr)1282 void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1283   DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
1284   DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1285   DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1286 
1287   // This is computed in-place.
1288   DCHECK(minuend.is(ToDoubleRegister(instr->result())));
1289 
1290   __ vmls(minuend, multiplier, multiplicand);
1291 }
1292 
1293 
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1294 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1295   Register dividend = ToRegister(instr->dividend());
1296   Register result = ToRegister(instr->result());
1297   int32_t divisor = instr->divisor();
1298 
1299   // If the divisor is 1, return the dividend.
1300   if (divisor == 1) {
1301     __ Move(result, dividend);
1302     return;
1303   }
1304 
1305   // If the divisor is positive, things are easy: There can be no deopts and we
1306   // can simply do an arithmetic right shift.
1307   int32_t shift = WhichPowerOf2Abs(divisor);
1308   if (divisor > 1) {
1309     __ mov(result, Operand(dividend, ASR, shift));
1310     return;
1311   }
1312 
1313   // If the divisor is negative, we have to negate and handle edge cases.
1314   __ rsb(result, dividend, Operand::Zero(), SetCC);
1315   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1316     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1317   }
1318 
1319   // Dividing by -1 is basically negation, unless we overflow.
1320   if (divisor == -1) {
1321     if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1322       DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1323     }
1324     return;
1325   }
1326 
1327   // If the negation could not overflow, simply shifting is OK.
1328   if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1329     __ mov(result, Operand(result, ASR, shift));
1330     return;
1331   }
1332 
1333   __ mov(result, Operand(kMinInt / divisor), LeaveCC, vs);
1334   __ mov(result, Operand(result, ASR, shift), LeaveCC, vc);
1335 }
1336 
1337 
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1338 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1339   Register dividend = ToRegister(instr->dividend());
1340   int32_t divisor = instr->divisor();
1341   Register result = ToRegister(instr->result());
1342   DCHECK(!dividend.is(result));
1343 
1344   if (divisor == 0) {
1345     DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero);
1346     return;
1347   }
1348 
1349   // Check for (0 / -x) that will produce negative zero.
1350   HMathFloorOfDiv* hdiv = instr->hydrogen();
1351   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1352     __ cmp(dividend, Operand::Zero());
1353     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1354   }
1355 
1356   // Easy case: We need no dynamic check for the dividend and the flooring
1357   // division is the same as the truncating division.
1358   if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1359       (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1360     __ TruncatingDiv(result, dividend, Abs(divisor));
1361     if (divisor < 0) __ rsb(result, result, Operand::Zero());
1362     return;
1363   }
1364 
1365   // In the general case we may need to adjust before and after the truncating
1366   // division to get a flooring division.
1367   Register temp = ToRegister(instr->temp());
1368   DCHECK(!temp.is(dividend) && !temp.is(result));
1369   Label needs_adjustment, done;
1370   __ cmp(dividend, Operand::Zero());
1371   __ b(divisor > 0 ? lt : gt, &needs_adjustment);
1372   __ TruncatingDiv(result, dividend, Abs(divisor));
1373   if (divisor < 0) __ rsb(result, result, Operand::Zero());
1374   __ jmp(&done);
1375   __ bind(&needs_adjustment);
1376   __ add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1377   __ TruncatingDiv(result, temp, Abs(divisor));
1378   if (divisor < 0) __ rsb(result, result, Operand::Zero());
1379   __ sub(result, result, Operand(1));
1380   __ bind(&done);
1381 }
1382 
1383 
1384 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1385 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1386   HBinaryOperation* hdiv = instr->hydrogen();
1387   Register left = ToRegister(instr->dividend());
1388   Register right = ToRegister(instr->divisor());
1389   Register result = ToRegister(instr->result());
1390 
1391   // Check for x / 0.
1392   if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1393     __ cmp(right, Operand::Zero());
1394     DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero);
1395   }
1396 
1397   // Check for (0 / -x) that will produce negative zero.
1398   if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1399     Label positive;
1400     if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
1401       // Do the test only if it hadn't be done above.
1402       __ cmp(right, Operand::Zero());
1403     }
1404     __ b(pl, &positive);
1405     __ cmp(left, Operand::Zero());
1406     DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1407     __ bind(&positive);
1408   }
1409 
1410   // Check for (kMinInt / -1).
1411   if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1412       (!CpuFeatures::IsSupported(SUDIV) ||
1413        !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
1414     // We don't need to check for overflow when truncating with sdiv
1415     // support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
1416     __ cmp(left, Operand(kMinInt));
1417     __ cmp(right, Operand(-1), eq);
1418     DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow);
1419   }
1420 
1421   if (CpuFeatures::IsSupported(SUDIV)) {
1422     CpuFeatureScope scope(masm(), SUDIV);
1423     __ sdiv(result, left, right);
1424   } else {
1425     DoubleRegister vleft = ToDoubleRegister(instr->temp());
1426     DoubleRegister vright = double_scratch0();
1427     __ vmov(double_scratch0().low(), left);
1428     __ vcvt_f64_s32(vleft, double_scratch0().low());
1429     __ vmov(double_scratch0().low(), right);
1430     __ vcvt_f64_s32(vright, double_scratch0().low());
1431     __ vdiv(vleft, vleft, vright);  // vleft now contains the result.
1432     __ vcvt_s32_f64(double_scratch0().low(), vleft);
1433     __ vmov(result, double_scratch0().low());
1434   }
1435 
1436   Label done;
1437   Register remainder = scratch0();
1438   __ Mls(remainder, result, right, left);
1439   __ cmp(remainder, Operand::Zero());
1440   __ b(eq, &done);
1441   __ eor(remainder, remainder, Operand(right));
1442   __ add(result, result, Operand(remainder, ASR, 31));
1443   __ bind(&done);
1444 }
1445 
1446 
DoMulI(LMulI * instr)1447 void LCodeGen::DoMulI(LMulI* instr) {
1448   Register result = ToRegister(instr->result());
1449   // Note that result may alias left.
1450   Register left = ToRegister(instr->left());
1451   LOperand* right_op = instr->right();
1452 
1453   bool bailout_on_minus_zero =
1454     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1455   bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1456 
1457   if (right_op->IsConstantOperand()) {
1458     int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1459 
1460     if (bailout_on_minus_zero && (constant < 0)) {
1461       // The case of a null constant will be handled separately.
1462       // If constant is negative and left is null, the result should be -0.
1463       __ cmp(left, Operand::Zero());
1464       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1465     }
1466 
1467     switch (constant) {
1468       case -1:
1469         if (overflow) {
1470           __ rsb(result, left, Operand::Zero(), SetCC);
1471           DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1472         } else {
1473           __ rsb(result, left, Operand::Zero());
1474         }
1475         break;
1476       case 0:
1477         if (bailout_on_minus_zero) {
1478           // If left is strictly negative and the constant is null, the
1479           // result is -0. Deoptimize if required, otherwise return 0.
1480           __ cmp(left, Operand::Zero());
1481           DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
1482         }
1483         __ mov(result, Operand::Zero());
1484         break;
1485       case 1:
1486         __ Move(result, left);
1487         break;
1488       default:
1489         // Multiplying by powers of two and powers of two plus or minus
1490         // one can be done faster with shifted operands.
1491         // For other constants we emit standard code.
1492         int32_t mask = constant >> 31;
1493         uint32_t constant_abs = (constant + mask) ^ mask;
1494 
1495         if (base::bits::IsPowerOfTwo32(constant_abs)) {
1496           int32_t shift = WhichPowerOf2(constant_abs);
1497           __ mov(result, Operand(left, LSL, shift));
1498           // Correct the sign of the result is the constant is negative.
1499           if (constant < 0)  __ rsb(result, result, Operand::Zero());
1500         } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1501           int32_t shift = WhichPowerOf2(constant_abs - 1);
1502           __ add(result, left, Operand(left, LSL, shift));
1503           // Correct the sign of the result is the constant is negative.
1504           if (constant < 0)  __ rsb(result, result, Operand::Zero());
1505         } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1506           int32_t shift = WhichPowerOf2(constant_abs + 1);
1507           __ rsb(result, left, Operand(left, LSL, shift));
1508           // Correct the sign of the result is the constant is negative.
1509           if (constant < 0)  __ rsb(result, result, Operand::Zero());
1510         } else {
1511           // Generate standard code.
1512           __ mov(ip, Operand(constant));
1513           __ mul(result, left, ip);
1514         }
1515     }
1516 
1517   } else {
1518     DCHECK(right_op->IsRegister());
1519     Register right = ToRegister(right_op);
1520 
1521     if (overflow) {
1522       Register scratch = scratch0();
1523       // scratch:result = left * right.
1524       if (instr->hydrogen()->representation().IsSmi()) {
1525         __ SmiUntag(result, left);
1526         __ smull(result, scratch, result, right);
1527       } else {
1528         __ smull(result, scratch, left, right);
1529       }
1530       __ cmp(scratch, Operand(result, ASR, 31));
1531       DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
1532     } else {
1533       if (instr->hydrogen()->representation().IsSmi()) {
1534         __ SmiUntag(result, left);
1535         __ mul(result, result, right);
1536       } else {
1537         __ mul(result, left, right);
1538       }
1539     }
1540 
1541     if (bailout_on_minus_zero) {
1542       Label done;
1543       __ teq(left, Operand(right));
1544       __ b(pl, &done);
1545       // Bail out if the result is minus zero.
1546       __ cmp(result, Operand::Zero());
1547       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
1548       __ bind(&done);
1549     }
1550   }
1551 }
1552 
1553 
DoBitI(LBitI * instr)1554 void LCodeGen::DoBitI(LBitI* instr) {
1555   LOperand* left_op = instr->left();
1556   LOperand* right_op = instr->right();
1557   DCHECK(left_op->IsRegister());
1558   Register left = ToRegister(left_op);
1559   Register result = ToRegister(instr->result());
1560   Operand right(no_reg);
1561 
1562   if (right_op->IsStackSlot()) {
1563     right = Operand(EmitLoadRegister(right_op, ip));
1564   } else {
1565     DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1566     right = ToOperand(right_op);
1567   }
1568 
1569   switch (instr->op()) {
1570     case Token::BIT_AND:
1571       __ and_(result, left, right);
1572       break;
1573     case Token::BIT_OR:
1574       __ orr(result, left, right);
1575       break;
1576     case Token::BIT_XOR:
1577       if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1578         __ mvn(result, Operand(left));
1579       } else {
1580         __ eor(result, left, right);
1581       }
1582       break;
1583     default:
1584       UNREACHABLE();
1585       break;
1586   }
1587 }
1588 
1589 
DoShiftI(LShiftI * instr)1590 void LCodeGen::DoShiftI(LShiftI* instr) {
1591   // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1592   // result may alias either of them.
1593   LOperand* right_op = instr->right();
1594   Register left = ToRegister(instr->left());
1595   Register result = ToRegister(instr->result());
1596   Register scratch = scratch0();
1597   if (right_op->IsRegister()) {
1598     // Mask the right_op operand.
1599     __ and_(scratch, ToRegister(right_op), Operand(0x1F));
1600     switch (instr->op()) {
1601       case Token::ROR:
1602         __ mov(result, Operand(left, ROR, scratch));
1603         break;
1604       case Token::SAR:
1605         __ mov(result, Operand(left, ASR, scratch));
1606         break;
1607       case Token::SHR:
1608         if (instr->can_deopt()) {
1609           __ mov(result, Operand(left, LSR, scratch), SetCC);
1610           DeoptimizeIf(mi, instr, DeoptimizeReason::kNegativeValue);
1611         } else {
1612           __ mov(result, Operand(left, LSR, scratch));
1613         }
1614         break;
1615       case Token::SHL:
1616         __ mov(result, Operand(left, LSL, scratch));
1617         break;
1618       default:
1619         UNREACHABLE();
1620         break;
1621     }
1622   } else {
1623     // Mask the right_op operand.
1624     int value = ToInteger32(LConstantOperand::cast(right_op));
1625     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1626     switch (instr->op()) {
1627       case Token::ROR:
1628           if (shift_count != 0) {
1629           __ mov(result, Operand(left, ROR, shift_count));
1630         } else {
1631           __ Move(result, left);
1632         }
1633         break;
1634       case Token::SAR:
1635         if (shift_count != 0) {
1636           __ mov(result, Operand(left, ASR, shift_count));
1637         } else {
1638           __ Move(result, left);
1639         }
1640         break;
1641       case Token::SHR:
1642         if (shift_count != 0) {
1643           __ mov(result, Operand(left, LSR, shift_count));
1644         } else {
1645           if (instr->can_deopt()) {
1646             __ tst(left, Operand(0x80000000));
1647             DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue);
1648           }
1649           __ Move(result, left);
1650         }
1651         break;
1652       case Token::SHL:
1653         if (shift_count != 0) {
1654           if (instr->hydrogen_value()->representation().IsSmi() &&
1655               instr->can_deopt()) {
1656             if (shift_count != 1) {
1657               __ mov(result, Operand(left, LSL, shift_count - 1));
1658               __ SmiTag(result, result, SetCC);
1659             } else {
1660               __ SmiTag(result, left, SetCC);
1661             }
1662             DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1663           } else {
1664             __ mov(result, Operand(left, LSL, shift_count));
1665           }
1666         } else {
1667           __ Move(result, left);
1668         }
1669         break;
1670       default:
1671         UNREACHABLE();
1672         break;
1673     }
1674   }
1675 }
1676 
1677 
DoSubI(LSubI * instr)1678 void LCodeGen::DoSubI(LSubI* instr) {
1679   LOperand* left = instr->left();
1680   LOperand* right = instr->right();
1681   LOperand* result = instr->result();
1682   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1683   SBit set_cond = can_overflow ? SetCC : LeaveCC;
1684 
1685   if (right->IsStackSlot()) {
1686     Register right_reg = EmitLoadRegister(right, ip);
1687     __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1688   } else {
1689     DCHECK(right->IsRegister() || right->IsConstantOperand());
1690     __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1691   }
1692 
1693   if (can_overflow) {
1694     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1695   }
1696 }
1697 
1698 
DoRSubI(LRSubI * instr)1699 void LCodeGen::DoRSubI(LRSubI* instr) {
1700   LOperand* left = instr->left();
1701   LOperand* right = instr->right();
1702   LOperand* result = instr->result();
1703   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1704   SBit set_cond = can_overflow ? SetCC : LeaveCC;
1705 
1706   if (right->IsStackSlot()) {
1707     Register right_reg = EmitLoadRegister(right, ip);
1708     __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1709   } else {
1710     DCHECK(right->IsRegister() || right->IsConstantOperand());
1711     __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1712   }
1713 
1714   if (can_overflow) {
1715     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1716   }
1717 }
1718 
1719 
DoConstantI(LConstantI * instr)1720 void LCodeGen::DoConstantI(LConstantI* instr) {
1721   __ mov(ToRegister(instr->result()), Operand(instr->value()));
1722 }
1723 
1724 
DoConstantS(LConstantS * instr)1725 void LCodeGen::DoConstantS(LConstantS* instr) {
1726   __ mov(ToRegister(instr->result()), Operand(instr->value()));
1727 }
1728 
1729 
DoConstantD(LConstantD * instr)1730 void LCodeGen::DoConstantD(LConstantD* instr) {
1731   DCHECK(instr->result()->IsDoubleRegister());
1732   DwVfpRegister result = ToDoubleRegister(instr->result());
1733 #if V8_HOST_ARCH_IA32
1734   // Need some crappy work-around for x87 sNaN -> qNaN breakage in simulator
1735   // builds.
1736   uint64_t bits = instr->bits();
1737   if ((bits & V8_UINT64_C(0x7FF8000000000000)) ==
1738       V8_UINT64_C(0x7FF0000000000000)) {
1739     uint32_t lo = static_cast<uint32_t>(bits);
1740     uint32_t hi = static_cast<uint32_t>(bits >> 32);
1741     __ mov(ip, Operand(lo));
1742     __ mov(scratch0(), Operand(hi));
1743     __ vmov(result, ip, scratch0());
1744     return;
1745   }
1746 #endif
1747   double v = instr->value();
1748   __ Vmov(result, v, scratch0());
1749 }
1750 
1751 
DoConstantE(LConstantE * instr)1752 void LCodeGen::DoConstantE(LConstantE* instr) {
1753   __ mov(ToRegister(instr->result()), Operand(instr->value()));
1754 }
1755 
1756 
DoConstantT(LConstantT * instr)1757 void LCodeGen::DoConstantT(LConstantT* instr) {
1758   Handle<Object> object = instr->value(isolate());
1759   AllowDeferredHandleDereference smi_check;
1760   __ Move(ToRegister(instr->result()), object);
1761 }
1762 
1763 
BuildSeqStringOperand(Register string,LOperand * index,String::Encoding encoding)1764 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1765                                            LOperand* index,
1766                                            String::Encoding encoding) {
1767   if (index->IsConstantOperand()) {
1768     int offset = ToInteger32(LConstantOperand::cast(index));
1769     if (encoding == String::TWO_BYTE_ENCODING) {
1770       offset *= kUC16Size;
1771     }
1772     STATIC_ASSERT(kCharSize == 1);
1773     return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1774   }
1775   Register scratch = scratch0();
1776   DCHECK(!scratch.is(string));
1777   DCHECK(!scratch.is(ToRegister(index)));
1778   if (encoding == String::ONE_BYTE_ENCODING) {
1779     __ add(scratch, string, Operand(ToRegister(index)));
1780   } else {
1781     STATIC_ASSERT(kUC16Size == 2);
1782     __ add(scratch, string, Operand(ToRegister(index), LSL, 1));
1783   }
1784   return FieldMemOperand(scratch, SeqString::kHeaderSize);
1785 }
1786 
1787 
DoSeqStringGetChar(LSeqStringGetChar * instr)1788 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1789   String::Encoding encoding = instr->hydrogen()->encoding();
1790   Register string = ToRegister(instr->string());
1791   Register result = ToRegister(instr->result());
1792 
1793   if (FLAG_debug_code) {
1794     Register scratch = scratch0();
1795     __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1796     __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1797 
1798     __ and_(scratch, scratch,
1799             Operand(kStringRepresentationMask | kStringEncodingMask));
1800     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1801     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1802     __ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1803                             ? one_byte_seq_type : two_byte_seq_type));
1804     __ Check(eq, kUnexpectedStringType);
1805   }
1806 
1807   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1808   if (encoding == String::ONE_BYTE_ENCODING) {
1809     __ ldrb(result, operand);
1810   } else {
1811     __ ldrh(result, operand);
1812   }
1813 }
1814 
1815 
DoSeqStringSetChar(LSeqStringSetChar * instr)1816 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1817   String::Encoding encoding = instr->hydrogen()->encoding();
1818   Register string = ToRegister(instr->string());
1819   Register value = ToRegister(instr->value());
1820 
1821   if (FLAG_debug_code) {
1822     Register index = ToRegister(instr->index());
1823     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1824     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1825     int encoding_mask =
1826         instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1827         ? one_byte_seq_type : two_byte_seq_type;
1828     __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1829   }
1830 
1831   MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1832   if (encoding == String::ONE_BYTE_ENCODING) {
1833     __ strb(value, operand);
1834   } else {
1835     __ strh(value, operand);
1836   }
1837 }
1838 
1839 
DoAddI(LAddI * instr)1840 void LCodeGen::DoAddI(LAddI* instr) {
1841   LOperand* left = instr->left();
1842   LOperand* right = instr->right();
1843   LOperand* result = instr->result();
1844   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1845   SBit set_cond = can_overflow ? SetCC : LeaveCC;
1846 
1847   if (right->IsStackSlot()) {
1848     Register right_reg = EmitLoadRegister(right, ip);
1849     __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1850   } else {
1851     DCHECK(right->IsRegister() || right->IsConstantOperand());
1852     __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1853   }
1854 
1855   if (can_overflow) {
1856     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
1857   }
1858 }
1859 
1860 
DoMathMinMax(LMathMinMax * instr)1861 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1862   LOperand* left = instr->left();
1863   LOperand* right = instr->right();
1864   HMathMinMax::Operation operation = instr->hydrogen()->operation();
1865   if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1866     Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1867     Register left_reg = ToRegister(left);
1868     Operand right_op = (right->IsRegister() || right->IsConstantOperand())
1869         ? ToOperand(right)
1870         : Operand(EmitLoadRegister(right, ip));
1871     Register result_reg = ToRegister(instr->result());
1872     __ cmp(left_reg, right_op);
1873     __ Move(result_reg, left_reg, condition);
1874     __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
1875   } else {
1876     DCHECK(instr->hydrogen()->representation().IsDouble());
1877     DwVfpRegister left_reg = ToDoubleRegister(left);
1878     DwVfpRegister right_reg = ToDoubleRegister(right);
1879     DwVfpRegister result_reg = ToDoubleRegister(instr->result());
1880     Label result_is_nan, return_left, return_right, check_zero, done;
1881     __ VFPCompareAndSetFlags(left_reg, right_reg);
1882     if (operation == HMathMinMax::kMathMin) {
1883       __ b(mi, &return_left);
1884       __ b(gt, &return_right);
1885     } else {
1886       __ b(mi, &return_right);
1887       __ b(gt, &return_left);
1888     }
1889     __ b(vs, &result_is_nan);
1890     // Left equals right => check for -0.
1891     __ VFPCompareAndSetFlags(left_reg, 0.0);
1892     if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
1893       __ b(ne, &done);  // left == right != 0.
1894     } else {
1895       __ b(ne, &return_left);  // left == right != 0.
1896     }
1897     // At this point, both left and right are either 0 or -0.
1898     if (operation == HMathMinMax::kMathMin) {
1899       // We could use a single 'vorr' instruction here if we had NEON support.
1900       // The algorithm is: -((-L) + (-R)), which in case of L and R being
1901       // different registers is most efficiently expressed as -((-L) - R).
1902       __ vneg(left_reg, left_reg);
1903       if (left_reg.is(right_reg)) {
1904         __ vadd(result_reg, left_reg, right_reg);
1905       } else {
1906         __ vsub(result_reg, left_reg, right_reg);
1907       }
1908       __ vneg(result_reg, result_reg);
1909     } else {
1910       // Since we operate on +0 and/or -0, vadd and vand have the same effect;
1911       // the decision for vadd is easy because vand is a NEON instruction.
1912       __ vadd(result_reg, left_reg, right_reg);
1913     }
1914     __ b(&done);
1915 
1916     __ bind(&result_is_nan);
1917     __ vadd(result_reg, left_reg, right_reg);
1918     __ b(&done);
1919 
1920     __ bind(&return_right);
1921     __ Move(result_reg, right_reg);
1922     if (!left_reg.is(result_reg)) {
1923       __ b(&done);
1924     }
1925 
1926     __ bind(&return_left);
1927     __ Move(result_reg, left_reg);
1928 
1929     __ bind(&done);
1930   }
1931 }
1932 
1933 
DoArithmeticD(LArithmeticD * instr)1934 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1935   DwVfpRegister left = ToDoubleRegister(instr->left());
1936   DwVfpRegister right = ToDoubleRegister(instr->right());
1937   DwVfpRegister result = ToDoubleRegister(instr->result());
1938   switch (instr->op()) {
1939     case Token::ADD:
1940       __ vadd(result, left, right);
1941       break;
1942     case Token::SUB:
1943       __ vsub(result, left, right);
1944       break;
1945     case Token::MUL:
1946       __ vmul(result, left, right);
1947       break;
1948     case Token::DIV:
1949       __ vdiv(result, left, right);
1950       break;
1951     case Token::MOD: {
1952       __ PrepareCallCFunction(0, 2, scratch0());
1953       __ MovToFloatParameters(left, right);
1954       __ CallCFunction(
1955           ExternalReference::mod_two_doubles_operation(isolate()),
1956           0, 2);
1957       // Move the result in the double result register.
1958       __ MovFromFloatResult(result);
1959       break;
1960     }
1961     default:
1962       UNREACHABLE();
1963       break;
1964   }
1965 }
1966 
1967 
DoArithmeticT(LArithmeticT * instr)1968 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1969   DCHECK(ToRegister(instr->context()).is(cp));
1970   DCHECK(ToRegister(instr->left()).is(r1));
1971   DCHECK(ToRegister(instr->right()).is(r0));
1972   DCHECK(ToRegister(instr->result()).is(r0));
1973 
1974   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
1975   // Block literal pool emission to ensure nop indicating no inlined smi code
1976   // is in the correct position.
1977   Assembler::BlockConstPoolScope block_const_pool(masm());
1978   CallCode(code, RelocInfo::CODE_TARGET, instr);
1979 }
1980 
1981 
1982 template<class InstrType>
EmitBranch(InstrType instr,Condition condition)1983 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1984   int left_block = instr->TrueDestination(chunk_);
1985   int right_block = instr->FalseDestination(chunk_);
1986 
1987   int next_block = GetNextEmittedBlock();
1988 
1989   if (right_block == left_block || condition == al) {
1990     EmitGoto(left_block);
1991   } else if (left_block == next_block) {
1992     __ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block));
1993   } else if (right_block == next_block) {
1994     __ b(condition, chunk_->GetAssemblyLabel(left_block));
1995   } else {
1996     __ b(condition, chunk_->GetAssemblyLabel(left_block));
1997     __ b(chunk_->GetAssemblyLabel(right_block));
1998   }
1999 }
2000 
2001 
2002 template <class InstrType>
EmitTrueBranch(InstrType instr,Condition condition)2003 void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition) {
2004   int true_block = instr->TrueDestination(chunk_);
2005   __ b(condition, chunk_->GetAssemblyLabel(true_block));
2006 }
2007 
2008 
2009 template <class InstrType>
EmitFalseBranch(InstrType instr,Condition condition)2010 void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) {
2011   int false_block = instr->FalseDestination(chunk_);
2012   __ b(condition, chunk_->GetAssemblyLabel(false_block));
2013 }
2014 
2015 
DoDebugBreak(LDebugBreak * instr)2016 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
2017   __ stop("LBreak");
2018 }
2019 
2020 
DoBranch(LBranch * instr)2021 void LCodeGen::DoBranch(LBranch* instr) {
2022   Representation r = instr->hydrogen()->value()->representation();
2023   if (r.IsInteger32() || r.IsSmi()) {
2024     DCHECK(!info()->IsStub());
2025     Register reg = ToRegister(instr->value());
2026     __ cmp(reg, Operand::Zero());
2027     EmitBranch(instr, ne);
2028   } else if (r.IsDouble()) {
2029     DCHECK(!info()->IsStub());
2030     DwVfpRegister reg = ToDoubleRegister(instr->value());
2031     // Test the double value. Zero and NaN are false.
2032     __ VFPCompareAndSetFlags(reg, 0.0);
2033     __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN -> false)
2034     EmitBranch(instr, ne);
2035   } else {
2036     DCHECK(r.IsTagged());
2037     Register reg = ToRegister(instr->value());
2038     HType type = instr->hydrogen()->value()->type();
2039     if (type.IsBoolean()) {
2040       DCHECK(!info()->IsStub());
2041       __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2042       EmitBranch(instr, eq);
2043     } else if (type.IsSmi()) {
2044       DCHECK(!info()->IsStub());
2045       __ cmp(reg, Operand::Zero());
2046       EmitBranch(instr, ne);
2047     } else if (type.IsJSArray()) {
2048       DCHECK(!info()->IsStub());
2049       EmitBranch(instr, al);
2050     } else if (type.IsHeapNumber()) {
2051       DCHECK(!info()->IsStub());
2052       DwVfpRegister dbl_scratch = double_scratch0();
2053       __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2054       // Test the double value. Zero and NaN are false.
2055       __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
2056       __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN)
2057       EmitBranch(instr, ne);
2058     } else if (type.IsString()) {
2059       DCHECK(!info()->IsStub());
2060       __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
2061       __ cmp(ip, Operand::Zero());
2062       EmitBranch(instr, ne);
2063     } else {
2064       ToBooleanHints expected = instr->hydrogen()->expected_input_types();
2065       // Avoid deopts in the case where we've never executed this path before.
2066       if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
2067 
2068       if (expected & ToBooleanHint::kUndefined) {
2069         // undefined -> false.
2070         __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2071         __ b(eq, instr->FalseLabel(chunk_));
2072       }
2073       if (expected & ToBooleanHint::kBoolean) {
2074         // Boolean -> its value.
2075         __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2076         __ b(eq, instr->TrueLabel(chunk_));
2077         __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2078         __ b(eq, instr->FalseLabel(chunk_));
2079       }
2080       if (expected & ToBooleanHint::kNull) {
2081         // 'null' -> false.
2082         __ CompareRoot(reg, Heap::kNullValueRootIndex);
2083         __ b(eq, instr->FalseLabel(chunk_));
2084       }
2085 
2086       if (expected & ToBooleanHint::kSmallInteger) {
2087         // Smis: 0 -> false, all other -> true.
2088         __ cmp(reg, Operand::Zero());
2089         __ b(eq, instr->FalseLabel(chunk_));
2090         __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2091       } else if (expected & ToBooleanHint::kNeedsMap) {
2092         // If we need a map later and have a Smi -> deopt.
2093         __ SmiTst(reg);
2094         DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
2095       }
2096 
2097       const Register map = scratch0();
2098       if (expected & ToBooleanHint::kNeedsMap) {
2099         __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2100 
2101         if (expected & ToBooleanHint::kCanBeUndetectable) {
2102           // Undetectable -> false.
2103           __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
2104           __ tst(ip, Operand(1 << Map::kIsUndetectable));
2105           __ b(ne, instr->FalseLabel(chunk_));
2106         }
2107       }
2108 
2109       if (expected & ToBooleanHint::kReceiver) {
2110         // spec object -> true.
2111         __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
2112         __ b(ge, instr->TrueLabel(chunk_));
2113       }
2114 
2115       if (expected & ToBooleanHint::kString) {
2116         // String value -> false iff empty.
2117         Label not_string;
2118         __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
2119         __ b(ge, &not_string);
2120         __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
2121         __ cmp(ip, Operand::Zero());
2122         __ b(ne, instr->TrueLabel(chunk_));
2123         __ b(instr->FalseLabel(chunk_));
2124         __ bind(&not_string);
2125       }
2126 
2127       if (expected & ToBooleanHint::kSymbol) {
2128         // Symbol value -> true.
2129         __ CompareInstanceType(map, ip, SYMBOL_TYPE);
2130         __ b(eq, instr->TrueLabel(chunk_));
2131       }
2132 
2133       if (expected & ToBooleanHint::kHeapNumber) {
2134         // heap number -> false iff +0, -0, or NaN.
2135         DwVfpRegister dbl_scratch = double_scratch0();
2136         Label not_heap_number;
2137         __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2138         __ b(ne, &not_heap_number);
2139         __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2140         __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
2141         __ cmp(r0, r0, vs);  // NaN -> false.
2142         __ b(eq, instr->FalseLabel(chunk_));  // +0, -0 -> false.
2143         __ b(instr->TrueLabel(chunk_));
2144         __ bind(&not_heap_number);
2145       }
2146 
2147       if (expected != ToBooleanHint::kAny) {
2148         // We've seen something for the first time -> deopt.
2149         // This can only happen if we are not generic already.
2150         DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject);
2151       }
2152     }
2153   }
2154 }
2155 
2156 
EmitGoto(int block)2157 void LCodeGen::EmitGoto(int block) {
2158   if (!IsNextEmittedBlock(block)) {
2159     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2160   }
2161 }
2162 
2163 
DoGoto(LGoto * instr)2164 void LCodeGen::DoGoto(LGoto* instr) {
2165   EmitGoto(instr->block_id());
2166 }
2167 
2168 
TokenToCondition(Token::Value op,bool is_unsigned)2169 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2170   Condition cond = kNoCondition;
2171   switch (op) {
2172     case Token::EQ:
2173     case Token::EQ_STRICT:
2174       cond = eq;
2175       break;
2176     case Token::NE:
2177     case Token::NE_STRICT:
2178       cond = ne;
2179       break;
2180     case Token::LT:
2181       cond = is_unsigned ? lo : lt;
2182       break;
2183     case Token::GT:
2184       cond = is_unsigned ? hi : gt;
2185       break;
2186     case Token::LTE:
2187       cond = is_unsigned ? ls : le;
2188       break;
2189     case Token::GTE:
2190       cond = is_unsigned ? hs : ge;
2191       break;
2192     case Token::IN:
2193     case Token::INSTANCEOF:
2194     default:
2195       UNREACHABLE();
2196   }
2197   return cond;
2198 }
2199 
2200 
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2201 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2202   LOperand* left = instr->left();
2203   LOperand* right = instr->right();
2204   bool is_unsigned =
2205       instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2206       instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2207   Condition cond = TokenToCondition(instr->op(), is_unsigned);
2208 
2209   if (left->IsConstantOperand() && right->IsConstantOperand()) {
2210     // We can statically evaluate the comparison.
2211     double left_val = ToDouble(LConstantOperand::cast(left));
2212     double right_val = ToDouble(LConstantOperand::cast(right));
2213     int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2214                          ? instr->TrueDestination(chunk_)
2215                          : instr->FalseDestination(chunk_);
2216     EmitGoto(next_block);
2217   } else {
2218     if (instr->is_double()) {
2219       // Compare left and right operands as doubles and load the
2220       // resulting flags into the normal status register.
2221       __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
2222       // If a NaN is involved, i.e. the result is unordered (V set),
2223       // jump to false block label.
2224       __ b(vs, instr->FalseLabel(chunk_));
2225     } else {
2226       if (right->IsConstantOperand()) {
2227         int32_t value = ToInteger32(LConstantOperand::cast(right));
2228         if (instr->hydrogen_value()->representation().IsSmi()) {
2229           __ cmp(ToRegister(left), Operand(Smi::FromInt(value)));
2230         } else {
2231           __ cmp(ToRegister(left), Operand(value));
2232         }
2233       } else if (left->IsConstantOperand()) {
2234         int32_t value = ToInteger32(LConstantOperand::cast(left));
2235         if (instr->hydrogen_value()->representation().IsSmi()) {
2236           __ cmp(ToRegister(right), Operand(Smi::FromInt(value)));
2237         } else {
2238           __ cmp(ToRegister(right), Operand(value));
2239         }
2240         // We commuted the operands, so commute the condition.
2241         cond = CommuteCondition(cond);
2242       } else {
2243         __ cmp(ToRegister(left), ToRegister(right));
2244       }
2245     }
2246     EmitBranch(instr, cond);
2247   }
2248 }
2249 
2250 
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2251 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2252   Register left = ToRegister(instr->left());
2253   Register right = ToRegister(instr->right());
2254 
2255   __ cmp(left, Operand(right));
2256   EmitBranch(instr, eq);
2257 }
2258 
2259 
DoCmpHoleAndBranch(LCmpHoleAndBranch * instr)2260 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2261   if (instr->hydrogen()->representation().IsTagged()) {
2262     Register input_reg = ToRegister(instr->object());
2263     __ mov(ip, Operand(factory()->the_hole_value()));
2264     __ cmp(input_reg, ip);
2265     EmitBranch(instr, eq);
2266     return;
2267   }
2268 
2269   DwVfpRegister input_reg = ToDoubleRegister(instr->object());
2270   __ VFPCompareAndSetFlags(input_reg, input_reg);
2271   EmitFalseBranch(instr, vc);
2272 
2273   Register scratch = scratch0();
2274   __ VmovHigh(scratch, input_reg);
2275   __ cmp(scratch, Operand(kHoleNanUpper32));
2276   EmitBranch(instr, eq);
2277 }
2278 
2279 
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)2280 Condition LCodeGen::EmitIsString(Register input,
2281                                  Register temp1,
2282                                  Label* is_not_string,
2283                                  SmiCheck check_needed = INLINE_SMI_CHECK) {
2284   if (check_needed == INLINE_SMI_CHECK) {
2285     __ JumpIfSmi(input, is_not_string);
2286   }
2287   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2288 
2289   return lt;
2290 }
2291 
2292 
DoIsStringAndBranch(LIsStringAndBranch * instr)2293 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2294   Register reg = ToRegister(instr->value());
2295   Register temp1 = ToRegister(instr->temp());
2296 
2297   SmiCheck check_needed =
2298       instr->hydrogen()->value()->type().IsHeapObject()
2299           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2300   Condition true_cond =
2301       EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2302 
2303   EmitBranch(instr, true_cond);
2304 }
2305 
2306 
DoIsSmiAndBranch(LIsSmiAndBranch * instr)2307 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2308   Register input_reg = EmitLoadRegister(instr->value(), ip);
2309   __ SmiTst(input_reg);
2310   EmitBranch(instr, eq);
2311 }
2312 
2313 
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)2314 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2315   Register input = ToRegister(instr->value());
2316   Register temp = ToRegister(instr->temp());
2317 
2318   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2319     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2320   }
2321   __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2322   __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2323   __ tst(temp, Operand(1 << Map::kIsUndetectable));
2324   EmitBranch(instr, ne);
2325 }
2326 
2327 
ComputeCompareCondition(Token::Value op)2328 static Condition ComputeCompareCondition(Token::Value op) {
2329   switch (op) {
2330     case Token::EQ_STRICT:
2331     case Token::EQ:
2332       return eq;
2333     case Token::LT:
2334       return lt;
2335     case Token::GT:
2336       return gt;
2337     case Token::LTE:
2338       return le;
2339     case Token::GTE:
2340       return ge;
2341     default:
2342       UNREACHABLE();
2343       return kNoCondition;
2344   }
2345 }
2346 
2347 
DoStringCompareAndBranch(LStringCompareAndBranch * instr)2348 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2349   DCHECK(ToRegister(instr->context()).is(cp));
2350   DCHECK(ToRegister(instr->left()).is(r1));
2351   DCHECK(ToRegister(instr->right()).is(r0));
2352 
2353   Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
2354   CallCode(code, RelocInfo::CODE_TARGET, instr);
2355   __ CompareRoot(r0, Heap::kTrueValueRootIndex);
2356   EmitBranch(instr, eq);
2357 }
2358 
2359 
TestType(HHasInstanceTypeAndBranch * instr)2360 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2361   InstanceType from = instr->from();
2362   InstanceType to = instr->to();
2363   if (from == FIRST_TYPE) return to;
2364   DCHECK(from == to || to == LAST_TYPE);
2365   return from;
2366 }
2367 
2368 
BranchCondition(HHasInstanceTypeAndBranch * instr)2369 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2370   InstanceType from = instr->from();
2371   InstanceType to = instr->to();
2372   if (from == to) return eq;
2373   if (to == LAST_TYPE) return hs;
2374   if (from == FIRST_TYPE) return ls;
2375   UNREACHABLE();
2376   return eq;
2377 }
2378 
2379 
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)2380 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2381   Register scratch = scratch0();
2382   Register input = ToRegister(instr->value());
2383 
2384   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2385     __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2386   }
2387 
2388   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2389   EmitBranch(instr, BranchCondition(instr->hydrogen()));
2390 }
2391 
2392 // Branches to a label or falls through with the answer in flags.  Trashes
2393 // the temp registers, but not the input.
EmitClassOfTest(Label * is_true,Label * is_false,Handle<String> class_name,Register input,Register temp,Register temp2)2394 void LCodeGen::EmitClassOfTest(Label* is_true,
2395                                Label* is_false,
2396                                Handle<String>class_name,
2397                                Register input,
2398                                Register temp,
2399                                Register temp2) {
2400   DCHECK(!input.is(temp));
2401   DCHECK(!input.is(temp2));
2402   DCHECK(!temp.is(temp2));
2403 
2404   __ JumpIfSmi(input, is_false);
2405 
2406   __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
2407   STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
2408   if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2409     __ b(hs, is_true);
2410   } else {
2411     __ b(hs, is_false);
2412   }
2413 
2414   // Check if the constructor in the map is a function.
2415   Register instance_type = ip;
2416   __ GetMapConstructor(temp, temp, temp2, instance_type);
2417 
2418   // Objects with a non-function constructor have class 'Object'.
2419   __ cmp(instance_type, Operand(JS_FUNCTION_TYPE));
2420   if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
2421     __ b(ne, is_true);
2422   } else {
2423     __ b(ne, is_false);
2424   }
2425 
2426   // temp now contains the constructor function. Grab the
2427   // instance class name from there.
2428   __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2429   __ ldr(temp, FieldMemOperand(temp,
2430                                SharedFunctionInfo::kInstanceClassNameOffset));
2431   // The class name we are testing against is internalized since it's a literal.
2432   // The name in the constructor is internalized because of the way the context
2433   // is booted.  This routine isn't expected to work for random API-created
2434   // classes and it doesn't have to because you can't access it with natives
2435   // syntax.  Since both sides are internalized it is sufficient to use an
2436   // identity comparison.
2437   __ cmp(temp, Operand(class_name));
2438   // End with the answer in flags.
2439 }
2440 
2441 
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2442 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2443   Register input = ToRegister(instr->value());
2444   Register temp = scratch0();
2445   Register temp2 = ToRegister(instr->temp());
2446   Handle<String> class_name = instr->hydrogen()->class_name();
2447 
2448   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2449       class_name, input, temp, temp2);
2450 
2451   EmitBranch(instr, eq);
2452 }
2453 
2454 
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2455 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2456   Register reg = ToRegister(instr->value());
2457   Register temp = ToRegister(instr->temp());
2458 
2459   __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2460   __ cmp(temp, Operand(instr->map()));
2461   EmitBranch(instr, eq);
2462 }
2463 
2464 
DoHasInPrototypeChainAndBranch(LHasInPrototypeChainAndBranch * instr)2465 void LCodeGen::DoHasInPrototypeChainAndBranch(
2466     LHasInPrototypeChainAndBranch* instr) {
2467   Register const object = ToRegister(instr->object());
2468   Register const object_map = scratch0();
2469   Register const object_instance_type = ip;
2470   Register const object_prototype = object_map;
2471   Register const prototype = ToRegister(instr->prototype());
2472 
2473   // The {object} must be a spec object.  It's sufficient to know that {object}
2474   // is not a smi, since all other non-spec objects have {null} prototypes and
2475   // will be ruled out below.
2476   if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2477     __ SmiTst(object);
2478     EmitFalseBranch(instr, eq);
2479   }
2480 
2481   // Loop through the {object}s prototype chain looking for the {prototype}.
2482   __ ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2483   Label loop;
2484   __ bind(&loop);
2485 
2486   // Deoptimize if the object needs to be access checked.
2487   __ ldrb(object_instance_type,
2488           FieldMemOperand(object_map, Map::kBitFieldOffset));
2489   __ tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded));
2490   DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck);
2491   // Deoptimize for proxies.
2492   __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2493   DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy);
2494 
2495   __ ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2496   __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2497   EmitFalseBranch(instr, eq);
2498   __ cmp(object_prototype, prototype);
2499   EmitTrueBranch(instr, eq);
2500   __ ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2501   __ b(&loop);
2502 }
2503 
2504 
DoCmpT(LCmpT * instr)2505 void LCodeGen::DoCmpT(LCmpT* instr) {
2506   DCHECK(ToRegister(instr->context()).is(cp));
2507   Token::Value op = instr->op();
2508 
2509   Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2510   CallCode(ic, RelocInfo::CODE_TARGET, instr);
2511   // This instruction also signals no smi code inlined.
2512   __ cmp(r0, Operand::Zero());
2513 
2514   Condition condition = ComputeCompareCondition(op);
2515   __ LoadRoot(ToRegister(instr->result()),
2516               Heap::kTrueValueRootIndex,
2517               condition);
2518   __ LoadRoot(ToRegister(instr->result()),
2519               Heap::kFalseValueRootIndex,
2520               NegateCondition(condition));
2521 }
2522 
2523 
DoReturn(LReturn * instr)2524 void LCodeGen::DoReturn(LReturn* instr) {
2525   if (FLAG_trace && info()->IsOptimizing()) {
2526     // Push the return value on the stack as the parameter.
2527     // Runtime::TraceExit returns its parameter in r0.  We're leaving the code
2528     // managed by the register allocator and tearing down the frame, it's
2529     // safe to write to the context register.
2530     __ push(r0);
2531     __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2532     __ CallRuntime(Runtime::kTraceExit);
2533   }
2534   if (info()->saves_caller_doubles()) {
2535     RestoreCallerDoubles();
2536   }
2537   if (NeedsEagerFrame()) {
2538     masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
2539   }
2540   { ConstantPoolUnavailableScope constant_pool_unavailable(masm());
2541     if (instr->has_constant_parameter_count()) {
2542       int parameter_count = ToInteger32(instr->constant_parameter_count());
2543       int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2544       if (sp_delta != 0) {
2545         __ add(sp, sp, Operand(sp_delta));
2546       }
2547     } else {
2548       DCHECK(info()->IsStub());  // Functions would need to drop one more value.
2549       Register reg = ToRegister(instr->parameter_count());
2550       // The argument count parameter is a smi
2551       __ SmiUntag(reg);
2552       __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2));
2553     }
2554 
2555     __ Jump(lr);
2556   }
2557 }
2558 
2559 
DoLoadContextSlot(LLoadContextSlot * instr)2560 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2561   Register context = ToRegister(instr->context());
2562   Register result = ToRegister(instr->result());
2563   __ ldr(result, ContextMemOperand(context, instr->slot_index()));
2564   if (instr->hydrogen()->RequiresHoleCheck()) {
2565     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2566     __ cmp(result, ip);
2567     if (instr->hydrogen()->DeoptimizesOnHole()) {
2568       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2569     } else {
2570       __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq);
2571     }
2572   }
2573 }
2574 
2575 
DoStoreContextSlot(LStoreContextSlot * instr)2576 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2577   Register context = ToRegister(instr->context());
2578   Register value = ToRegister(instr->value());
2579   Register scratch = scratch0();
2580   MemOperand target = ContextMemOperand(context, instr->slot_index());
2581 
2582   Label skip_assignment;
2583 
2584   if (instr->hydrogen()->RequiresHoleCheck()) {
2585     __ ldr(scratch, target);
2586     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2587     __ cmp(scratch, ip);
2588     if (instr->hydrogen()->DeoptimizesOnHole()) {
2589       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2590     } else {
2591       __ b(ne, &skip_assignment);
2592     }
2593   }
2594 
2595   __ str(value, target);
2596   if (instr->hydrogen()->NeedsWriteBarrier()) {
2597     SmiCheck check_needed =
2598         instr->hydrogen()->value()->type().IsHeapObject()
2599             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2600     __ RecordWriteContextSlot(context,
2601                               target.offset(),
2602                               value,
2603                               scratch,
2604                               GetLinkRegisterState(),
2605                               kSaveFPRegs,
2606                               EMIT_REMEMBERED_SET,
2607                               check_needed);
2608   }
2609 
2610   __ bind(&skip_assignment);
2611 }
2612 
2613 
DoLoadNamedField(LLoadNamedField * instr)2614 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2615   HObjectAccess access = instr->hydrogen()->access();
2616   int offset = access.offset();
2617   Register object = ToRegister(instr->object());
2618 
2619   if (access.IsExternalMemory()) {
2620     Register result = ToRegister(instr->result());
2621     MemOperand operand = MemOperand(object, offset);
2622     __ Load(result, operand, access.representation());
2623     return;
2624   }
2625 
2626   if (instr->hydrogen()->representation().IsDouble()) {
2627     DwVfpRegister result = ToDoubleRegister(instr->result());
2628     __ vldr(result, FieldMemOperand(object, offset));
2629     return;
2630   }
2631 
2632   Register result = ToRegister(instr->result());
2633   if (!access.IsInobject()) {
2634     __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2635     object = result;
2636   }
2637   MemOperand operand = FieldMemOperand(object, offset);
2638   __ Load(result, operand, access.representation());
2639 }
2640 
2641 
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)2642 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2643   Register scratch = scratch0();
2644   Register function = ToRegister(instr->function());
2645   Register result = ToRegister(instr->result());
2646 
2647   // Get the prototype or initial map from the function.
2648   __ ldr(result,
2649          FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2650 
2651   // Check that the function has a prototype or an initial map.
2652   __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2653   __ cmp(result, ip);
2654   DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2655 
2656   // If the function does not have an initial map, we're done.
2657   Label done;
2658   __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2659   __ b(ne, &done);
2660 
2661   // Get the prototype from the initial map.
2662   __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
2663 
2664   // All done.
2665   __ bind(&done);
2666 }
2667 
2668 
DoLoadRoot(LLoadRoot * instr)2669 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2670   Register result = ToRegister(instr->result());
2671   __ LoadRoot(result, instr->index());
2672 }
2673 
2674 
DoAccessArgumentsAt(LAccessArgumentsAt * instr)2675 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2676   Register arguments = ToRegister(instr->arguments());
2677   Register result = ToRegister(instr->result());
2678   // There are two words between the frame pointer and the last argument.
2679   // Subtracting from length accounts for one of them add one more.
2680   if (instr->length()->IsConstantOperand()) {
2681     int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2682     if (instr->index()->IsConstantOperand()) {
2683       int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2684       int index = (const_length - const_index) + 1;
2685       __ ldr(result, MemOperand(arguments, index * kPointerSize));
2686     } else {
2687       Register index = ToRegister(instr->index());
2688       __ rsb(result, index, Operand(const_length + 1));
2689       __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2690     }
2691   } else if (instr->index()->IsConstantOperand()) {
2692       Register length = ToRegister(instr->length());
2693       int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2694       int loc = const_index - 1;
2695       if (loc != 0) {
2696         __ sub(result, length, Operand(loc));
2697         __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2698       } else {
2699         __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
2700       }
2701     } else {
2702     Register length = ToRegister(instr->length());
2703     Register index = ToRegister(instr->index());
2704     __ sub(result, length, index);
2705     __ add(result, result, Operand(1));
2706     __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2));
2707   }
2708 }
2709 
2710 
DoLoadKeyedExternalArray(LLoadKeyed * instr)2711 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2712   Register external_pointer = ToRegister(instr->elements());
2713   Register key = no_reg;
2714   ElementsKind elements_kind = instr->elements_kind();
2715   bool key_is_constant = instr->key()->IsConstantOperand();
2716   int constant_key = 0;
2717   if (key_is_constant) {
2718     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2719     if (constant_key & 0xF0000000) {
2720       Abort(kArrayIndexConstantValueTooBig);
2721     }
2722   } else {
2723     key = ToRegister(instr->key());
2724   }
2725   int element_size_shift = ElementsKindToShiftSize(elements_kind);
2726   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2727       ? (element_size_shift - kSmiTagSize) : element_size_shift;
2728   int base_offset = instr->base_offset();
2729 
2730   if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2731     DwVfpRegister result = ToDoubleRegister(instr->result());
2732     Operand operand = key_is_constant
2733         ? Operand(constant_key << element_size_shift)
2734         : Operand(key, LSL, shift_size);
2735     __ add(scratch0(), external_pointer, operand);
2736     if (elements_kind == FLOAT32_ELEMENTS) {
2737       __ vldr(double_scratch0().low(), scratch0(), base_offset);
2738       __ vcvt_f64_f32(result, double_scratch0().low());
2739     } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2740       __ vldr(result, scratch0(), base_offset);
2741     }
2742   } else {
2743     Register result = ToRegister(instr->result());
2744     MemOperand mem_operand = PrepareKeyedOperand(
2745         key, external_pointer, key_is_constant, constant_key,
2746         element_size_shift, shift_size, base_offset);
2747     switch (elements_kind) {
2748       case INT8_ELEMENTS:
2749         __ ldrsb(result, mem_operand);
2750         break;
2751       case UINT8_ELEMENTS:
2752       case UINT8_CLAMPED_ELEMENTS:
2753         __ ldrb(result, mem_operand);
2754         break;
2755       case INT16_ELEMENTS:
2756         __ ldrsh(result, mem_operand);
2757         break;
2758       case UINT16_ELEMENTS:
2759         __ ldrh(result, mem_operand);
2760         break;
2761       case INT32_ELEMENTS:
2762         __ ldr(result, mem_operand);
2763         break;
2764       case UINT32_ELEMENTS:
2765         __ ldr(result, mem_operand);
2766         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2767           __ cmp(result, Operand(0x80000000));
2768           DeoptimizeIf(cs, instr, DeoptimizeReason::kNegativeValue);
2769         }
2770         break;
2771       case FLOAT32_ELEMENTS:
2772       case FLOAT64_ELEMENTS:
2773       case FAST_HOLEY_DOUBLE_ELEMENTS:
2774       case FAST_HOLEY_ELEMENTS:
2775       case FAST_HOLEY_SMI_ELEMENTS:
2776       case FAST_DOUBLE_ELEMENTS:
2777       case FAST_ELEMENTS:
2778       case FAST_SMI_ELEMENTS:
2779       case DICTIONARY_ELEMENTS:
2780       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2781       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2782       case FAST_STRING_WRAPPER_ELEMENTS:
2783       case SLOW_STRING_WRAPPER_ELEMENTS:
2784       case NO_ELEMENTS:
2785         UNREACHABLE();
2786         break;
2787     }
2788   }
2789 }
2790 
2791 
DoLoadKeyedFixedDoubleArray(LLoadKeyed * instr)2792 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2793   Register elements = ToRegister(instr->elements());
2794   bool key_is_constant = instr->key()->IsConstantOperand();
2795   Register key = no_reg;
2796   DwVfpRegister result = ToDoubleRegister(instr->result());
2797   Register scratch = scratch0();
2798 
2799   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2800 
2801   int base_offset = instr->base_offset();
2802   if (key_is_constant) {
2803     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2804     if (constant_key & 0xF0000000) {
2805       Abort(kArrayIndexConstantValueTooBig);
2806     }
2807     base_offset += constant_key * kDoubleSize;
2808   }
2809   __ add(scratch, elements, Operand(base_offset));
2810 
2811   if (!key_is_constant) {
2812     key = ToRegister(instr->key());
2813     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2814         ? (element_size_shift - kSmiTagSize) : element_size_shift;
2815     __ add(scratch, scratch, Operand(key, LSL, shift_size));
2816   }
2817 
2818   __ vldr(result, scratch, 0);
2819 
2820   if (instr->hydrogen()->RequiresHoleCheck()) {
2821     __ ldr(scratch, MemOperand(scratch, sizeof(kHoleNanLower32)));
2822     __ cmp(scratch, Operand(kHoleNanUpper32));
2823     DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2824   }
2825 }
2826 
2827 
DoLoadKeyedFixedArray(LLoadKeyed * instr)2828 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2829   Register elements = ToRegister(instr->elements());
2830   Register result = ToRegister(instr->result());
2831   Register scratch = scratch0();
2832   Register store_base = scratch;
2833   int offset = instr->base_offset();
2834 
2835   if (instr->key()->IsConstantOperand()) {
2836     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
2837     offset += ToInteger32(const_operand) * kPointerSize;
2838     store_base = elements;
2839   } else {
2840     Register key = ToRegister(instr->key());
2841     // Even though the HLoadKeyed instruction forces the input
2842     // representation for the key to be an integer, the input gets replaced
2843     // during bound check elimination with the index argument to the bounds
2844     // check, which can be tagged, so that case must be handled here, too.
2845     if (instr->hydrogen()->key()->representation().IsSmi()) {
2846       __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
2847     } else {
2848       __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
2849     }
2850   }
2851   __ ldr(result, MemOperand(store_base, offset));
2852 
2853   // Check for the hole value.
2854   if (instr->hydrogen()->RequiresHoleCheck()) {
2855     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
2856       __ SmiTst(result);
2857       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi);
2858     } else {
2859       __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2860       __ cmp(result, scratch);
2861       DeoptimizeIf(eq, instr, DeoptimizeReason::kHole);
2862     }
2863   } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2864     DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
2865     Label done;
2866     __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2867     __ cmp(result, scratch);
2868     __ b(ne, &done);
2869     if (info()->IsStub()) {
2870       // A stub can safely convert the hole to undefined only if the array
2871       // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
2872       // it needs to bail out.
2873       __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2874       __ ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset));
2875       __ cmp(result, Operand(Smi::FromInt(Isolate::kProtectorValid)));
2876       DeoptimizeIf(ne, instr, DeoptimizeReason::kHole);
2877     }
2878     __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2879     __ bind(&done);
2880   }
2881 }
2882 
2883 
DoLoadKeyed(LLoadKeyed * instr)2884 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2885   if (instr->is_fixed_typed_array()) {
2886     DoLoadKeyedExternalArray(instr);
2887   } else if (instr->hydrogen()->representation().IsDouble()) {
2888     DoLoadKeyedFixedDoubleArray(instr);
2889   } else {
2890     DoLoadKeyedFixedArray(instr);
2891   }
2892 }
2893 
2894 
PrepareKeyedOperand(Register key,Register base,bool key_is_constant,int constant_key,int element_size,int shift_size,int base_offset)2895 MemOperand LCodeGen::PrepareKeyedOperand(Register key,
2896                                          Register base,
2897                                          bool key_is_constant,
2898                                          int constant_key,
2899                                          int element_size,
2900                                          int shift_size,
2901                                          int base_offset) {
2902   if (key_is_constant) {
2903     return MemOperand(base, (constant_key << element_size) + base_offset);
2904   }
2905 
2906   if (base_offset == 0) {
2907     if (shift_size >= 0) {
2908       return MemOperand(base, key, LSL, shift_size);
2909     } else {
2910       DCHECK_EQ(-1, shift_size);
2911       return MemOperand(base, key, LSR, 1);
2912     }
2913   }
2914 
2915   if (shift_size >= 0) {
2916     __ add(scratch0(), base, Operand(key, LSL, shift_size));
2917     return MemOperand(scratch0(), base_offset);
2918   } else {
2919     DCHECK_EQ(-1, shift_size);
2920     __ add(scratch0(), base, Operand(key, ASR, 1));
2921     return MemOperand(scratch0(), base_offset);
2922   }
2923 }
2924 
2925 
DoArgumentsElements(LArgumentsElements * instr)2926 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2927   Register scratch = scratch0();
2928   Register result = ToRegister(instr->result());
2929 
2930   if (instr->hydrogen()->from_inlined()) {
2931     __ sub(result, sp, Operand(2 * kPointerSize));
2932   } else if (instr->hydrogen()->arguments_adaptor()) {
2933     // Check if the calling frame is an arguments adaptor frame.
2934     Label done, adapted;
2935     __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2936     __ ldr(result, MemOperand(scratch,
2937                               CommonFrameConstants::kContextOrFrameTypeOffset));
2938     __ cmp(result,
2939            Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
2940 
2941     // Result is the frame pointer for the frame if not adapted and for the real
2942     // frame below the adaptor frame if adapted.
2943     __ mov(result, fp, LeaveCC, ne);
2944     __ mov(result, scratch, LeaveCC, eq);
2945   } else {
2946     __ mov(result, fp);
2947   }
2948 }
2949 
2950 
DoArgumentsLength(LArgumentsLength * instr)2951 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2952   Register elem = ToRegister(instr->elements());
2953   Register result = ToRegister(instr->result());
2954 
2955   Label done;
2956 
2957   // If no arguments adaptor frame the number of arguments is fixed.
2958   __ cmp(fp, elem);
2959   __ mov(result, Operand(scope()->num_parameters()));
2960   __ b(eq, &done);
2961 
2962   // Arguments adaptor frame present. Get argument length from there.
2963   __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2964   __ ldr(result,
2965          MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
2966   __ SmiUntag(result);
2967 
2968   // Argument length is in result register.
2969   __ bind(&done);
2970 }
2971 
2972 
DoWrapReceiver(LWrapReceiver * instr)2973 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
2974   Register receiver = ToRegister(instr->receiver());
2975   Register function = ToRegister(instr->function());
2976   Register result = ToRegister(instr->result());
2977   Register scratch = scratch0();
2978 
2979   // If the receiver is null or undefined, we have to pass the global
2980   // object as a receiver to normal functions. Values have to be
2981   // passed unchanged to builtins and strict-mode functions.
2982   Label global_object, result_in_receiver;
2983 
2984   if (!instr->hydrogen()->known_function()) {
2985     // Do not transform the receiver to object for strict mode
2986     // functions.
2987     __ ldr(scratch,
2988            FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2989     __ ldr(scratch,
2990            FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2991     int mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
2992     __ tst(scratch, Operand(mask));
2993     __ b(ne, &result_in_receiver);
2994 
2995     // Do not transform the receiver to object for builtins.
2996     __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
2997     __ b(ne, &result_in_receiver);
2998   }
2999 
3000   // Normal function. Replace undefined or null with global receiver.
3001   __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3002   __ cmp(receiver, scratch);
3003   __ b(eq, &global_object);
3004   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3005   __ cmp(receiver, scratch);
3006   __ b(eq, &global_object);
3007 
3008   // Deoptimize if the receiver is not a JS object.
3009   __ SmiTst(receiver);
3010   DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
3011   __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
3012   DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject);
3013 
3014   __ b(&result_in_receiver);
3015   __ bind(&global_object);
3016   __ ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
3017   __ ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3018   __ ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3019 
3020   if (result.is(receiver)) {
3021     __ bind(&result_in_receiver);
3022   } else {
3023     Label result_ok;
3024     __ b(&result_ok);
3025     __ bind(&result_in_receiver);
3026     __ mov(result, receiver);
3027     __ bind(&result_ok);
3028   }
3029 }
3030 
3031 
DoApplyArguments(LApplyArguments * instr)3032 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3033   Register receiver = ToRegister(instr->receiver());
3034   Register function = ToRegister(instr->function());
3035   Register length = ToRegister(instr->length());
3036   Register elements = ToRegister(instr->elements());
3037   Register scratch = scratch0();
3038   DCHECK(receiver.is(r0));  // Used for parameter count.
3039   DCHECK(function.is(r1));  // Required by InvokeFunction.
3040   DCHECK(ToRegister(instr->result()).is(r0));
3041 
3042   // Copy the arguments to this function possibly from the
3043   // adaptor frame below it.
3044   const uint32_t kArgumentsLimit = 1 * KB;
3045   __ cmp(length, Operand(kArgumentsLimit));
3046   DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments);
3047 
3048   // Push the receiver and use the register to keep the original
3049   // number of arguments.
3050   __ push(receiver);
3051   __ mov(receiver, length);
3052   // The arguments are at a one pointer size offset from elements.
3053   __ add(elements, elements, Operand(1 * kPointerSize));
3054 
3055   // Loop through the arguments pushing them onto the execution
3056   // stack.
3057   Label invoke, loop;
3058   // length is a small non-negative integer, due to the test above.
3059   __ cmp(length, Operand::Zero());
3060   __ b(eq, &invoke);
3061   __ bind(&loop);
3062   __ ldr(scratch, MemOperand(elements, length, LSL, 2));
3063   __ push(scratch);
3064   __ sub(length, length, Operand(1), SetCC);
3065   __ b(ne, &loop);
3066 
3067   __ bind(&invoke);
3068 
3069   InvokeFlag flag = CALL_FUNCTION;
3070   if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
3071     DCHECK(!info()->saves_caller_doubles());
3072     // TODO(ishell): drop current frame before pushing arguments to the stack.
3073     flag = JUMP_FUNCTION;
3074     ParameterCount actual(r0);
3075     // It is safe to use r3, r4 and r5 as scratch registers here given that
3076     // 1) we are not going to return to caller function anyway,
3077     // 2) r3 (new.target) will be initialized below.
3078     PrepareForTailCall(actual, r3, r4, r5);
3079   }
3080 
3081   DCHECK(instr->HasPointerMap());
3082   LPointerMap* pointers = instr->pointer_map();
3083   SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3084   // The number of arguments is stored in receiver which is r0, as expected
3085   // by InvokeFunction.
3086   ParameterCount actual(receiver);
3087   __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
3088 }
3089 
3090 
DoPushArgument(LPushArgument * instr)3091 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3092   LOperand* argument = instr->value();
3093   if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3094     Abort(kDoPushArgumentNotImplementedForDoubleType);
3095   } else {
3096     Register argument_reg = EmitLoadRegister(argument, ip);
3097     __ push(argument_reg);
3098   }
3099 }
3100 
3101 
DoDrop(LDrop * instr)3102 void LCodeGen::DoDrop(LDrop* instr) {
3103   __ Drop(instr->count());
3104 }
3105 
3106 
DoThisFunction(LThisFunction * instr)3107 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3108   Register result = ToRegister(instr->result());
3109   __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3110 }
3111 
3112 
DoContext(LContext * instr)3113 void LCodeGen::DoContext(LContext* instr) {
3114   // If there is a non-return use, the context must be moved to a register.
3115   Register result = ToRegister(instr->result());
3116   if (info()->IsOptimizing()) {
3117     __ ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3118   } else {
3119     // If there is no frame, the context must be in cp.
3120     DCHECK(result.is(cp));
3121   }
3122 }
3123 
3124 
DoDeclareGlobals(LDeclareGlobals * instr)3125 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3126   DCHECK(ToRegister(instr->context()).is(cp));
3127   __ Move(scratch0(), instr->hydrogen()->declarations());
3128   __ push(scratch0());
3129   __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3130   __ push(scratch0());
3131   __ Move(scratch0(), instr->hydrogen()->feedback_vector());
3132   __ push(scratch0());
3133   CallRuntime(Runtime::kDeclareGlobals, instr);
3134 }
3135 
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,bool is_tail_call,LInstruction * instr)3136 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3137                                  int formal_parameter_count, int arity,
3138                                  bool is_tail_call, LInstruction* instr) {
3139   bool dont_adapt_arguments =
3140       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3141   bool can_invoke_directly =
3142       dont_adapt_arguments || formal_parameter_count == arity;
3143 
3144   Register function_reg = r1;
3145 
3146   LPointerMap* pointers = instr->pointer_map();
3147 
3148   if (can_invoke_directly) {
3149     // Change context.
3150     __ ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3151 
3152     // Always initialize new target and number of actual arguments.
3153     __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
3154     __ mov(r0, Operand(arity));
3155 
3156     bool is_self_call = function.is_identical_to(info()->closure());
3157 
3158     // Invoke function.
3159     if (is_self_call) {
3160       Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
3161       if (is_tail_call) {
3162         __ Jump(self, RelocInfo::CODE_TARGET);
3163       } else {
3164         __ Call(self, RelocInfo::CODE_TARGET);
3165       }
3166     } else {
3167       __ ldr(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3168       if (is_tail_call) {
3169         __ Jump(ip);
3170       } else {
3171         __ Call(ip);
3172       }
3173     }
3174 
3175     if (!is_tail_call) {
3176       // Set up deoptimization.
3177       RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3178     }
3179   } else {
3180     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3181     ParameterCount actual(arity);
3182     ParameterCount expected(formal_parameter_count);
3183     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3184     __ InvokeFunction(function_reg, expected, actual, flag, generator);
3185   }
3186 }
3187 
3188 
DoDeferredMathAbsTaggedHeapNumber(LMathAbs * instr)3189 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3190   DCHECK(instr->context() != NULL);
3191   DCHECK(ToRegister(instr->context()).is(cp));
3192   Register input = ToRegister(instr->value());
3193   Register result = ToRegister(instr->result());
3194   Register scratch = scratch0();
3195 
3196   // Deoptimize if not a heap number.
3197   __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3198   __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3199   __ cmp(scratch, Operand(ip));
3200   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3201 
3202   Label done;
3203   Register exponent = scratch0();
3204   scratch = no_reg;
3205   __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3206   // Check the sign of the argument. If the argument is positive, just
3207   // return it.
3208   __ tst(exponent, Operand(HeapNumber::kSignMask));
3209   // Move the input to the result if necessary.
3210   __ Move(result, input);
3211   __ b(eq, &done);
3212 
3213   // Input is negative. Reverse its sign.
3214   // Preserve the value of all registers.
3215   {
3216     PushSafepointRegistersScope scope(this);
3217 
3218     // Registers were saved at the safepoint, so we can use
3219     // many scratch registers.
3220     Register tmp1 = input.is(r1) ? r0 : r1;
3221     Register tmp2 = input.is(r2) ? r0 : r2;
3222     Register tmp3 = input.is(r3) ? r0 : r3;
3223     Register tmp4 = input.is(r4) ? r0 : r4;
3224 
3225     // exponent: floating point exponent value.
3226 
3227     Label allocated, slow;
3228     __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3229     __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3230     __ b(&allocated);
3231 
3232     // Slow case: Call the runtime system to do the number allocation.
3233     __ bind(&slow);
3234 
3235     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3236                             instr->context());
3237     // Set the pointer to the new heap number in tmp.
3238     if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
3239     // Restore input_reg after call to runtime.
3240     __ LoadFromSafepointRegisterSlot(input, input);
3241     __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3242 
3243     __ bind(&allocated);
3244     // exponent: floating point exponent value.
3245     // tmp1: allocated heap number.
3246     __ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
3247     __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3248     __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3249     __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3250 
3251     __ StoreToSafepointRegisterSlot(tmp1, result);
3252   }
3253 
3254   __ bind(&done);
3255 }
3256 
3257 
EmitIntegerMathAbs(LMathAbs * instr)3258 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3259   Register input = ToRegister(instr->value());
3260   Register result = ToRegister(instr->result());
3261   __ cmp(input, Operand::Zero());
3262   __ Move(result, input, pl);
3263   // We can make rsb conditional because the previous cmp instruction
3264   // will clear the V (overflow) flag and rsb won't set this flag
3265   // if input is positive.
3266   __ rsb(result, input, Operand::Zero(), SetCC, mi);
3267   // Deoptimize on overflow.
3268   DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
3269 }
3270 
3271 
DoMathAbs(LMathAbs * instr)3272 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3273   // Class for deferred case.
3274   class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3275    public:
3276     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3277         : LDeferredCode(codegen), instr_(instr) { }
3278     void Generate() override {
3279       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3280     }
3281     LInstruction* instr() override { return instr_; }
3282 
3283    private:
3284     LMathAbs* instr_;
3285   };
3286 
3287   Representation r = instr->hydrogen()->value()->representation();
3288   if (r.IsDouble()) {
3289     DwVfpRegister input = ToDoubleRegister(instr->value());
3290     DwVfpRegister result = ToDoubleRegister(instr->result());
3291     __ vabs(result, input);
3292   } else if (r.IsSmiOrInteger32()) {
3293     EmitIntegerMathAbs(instr);
3294   } else {
3295     // Representation is tagged.
3296     DeferredMathAbsTaggedHeapNumber* deferred =
3297         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3298     Register input = ToRegister(instr->value());
3299     // Smi check.
3300     __ JumpIfNotSmi(input, deferred->entry());
3301     // If smi, handle it directly.
3302     EmitIntegerMathAbs(instr);
3303     __ bind(deferred->exit());
3304   }
3305 }
3306 
3307 
DoMathFloor(LMathFloor * instr)3308 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3309   DwVfpRegister input = ToDoubleRegister(instr->value());
3310   Register result = ToRegister(instr->result());
3311   Register input_high = scratch0();
3312   Label done, exact;
3313 
3314   __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact);
3315   DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3316 
3317   __ bind(&exact);
3318   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3319     // Test for -0.
3320     __ cmp(result, Operand::Zero());
3321     __ b(ne, &done);
3322     __ cmp(input_high, Operand::Zero());
3323     DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
3324   }
3325   __ bind(&done);
3326 }
3327 
3328 
DoMathRound(LMathRound * instr)3329 void LCodeGen::DoMathRound(LMathRound* instr) {
3330   DwVfpRegister input = ToDoubleRegister(instr->value());
3331   Register result = ToRegister(instr->result());
3332   DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp());
3333   DwVfpRegister input_plus_dot_five = double_scratch1;
3334   Register input_high = scratch0();
3335   DwVfpRegister dot_five = double_scratch0();
3336   Label convert, done;
3337 
3338   __ Vmov(dot_five, 0.5, scratch0());
3339   __ vabs(double_scratch1, input);
3340   __ VFPCompareAndSetFlags(double_scratch1, dot_five);
3341   // If input is in [-0.5, -0], the result is -0.
3342   // If input is in [+0, +0.5[, the result is +0.
3343   // If the input is +0.5, the result is 1.
3344   __ b(hi, &convert);  // Out of [-0.5, +0.5].
3345   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3346     __ VmovHigh(input_high, input);
3347     __ cmp(input_high, Operand::Zero());
3348     // [-0.5, -0].
3349     DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero);
3350   }
3351   __ VFPCompareAndSetFlags(input, dot_five);
3352   __ mov(result, Operand(1), LeaveCC, eq);  // +0.5.
3353   // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
3354   // flag kBailoutOnMinusZero.
3355   __ mov(result, Operand::Zero(), LeaveCC, ne);
3356   __ b(&done);
3357 
3358   __ bind(&convert);
3359   __ vadd(input_plus_dot_five, input, dot_five);
3360   // Reuse dot_five (double_scratch0) as we no longer need this value.
3361   __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(),
3362                    &done, &done);
3363   DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN);
3364   __ bind(&done);
3365 }
3366 
3367 
DoMathFround(LMathFround * instr)3368 void LCodeGen::DoMathFround(LMathFround* instr) {
3369   DwVfpRegister input_reg = ToDoubleRegister(instr->value());
3370   DwVfpRegister output_reg = ToDoubleRegister(instr->result());
3371   LowDwVfpRegister scratch = double_scratch0();
3372   __ vcvt_f32_f64(scratch.low(), input_reg);
3373   __ vcvt_f64_f32(output_reg, scratch.low());
3374 }
3375 
3376 
DoMathSqrt(LMathSqrt * instr)3377 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3378   DwVfpRegister input = ToDoubleRegister(instr->value());
3379   DwVfpRegister result = ToDoubleRegister(instr->result());
3380   __ vsqrt(result, input);
3381 }
3382 
3383 
DoMathPowHalf(LMathPowHalf * instr)3384 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3385   DwVfpRegister input = ToDoubleRegister(instr->value());
3386   DwVfpRegister result = ToDoubleRegister(instr->result());
3387   DwVfpRegister temp = double_scratch0();
3388 
3389   // Note that according to ECMA-262 15.8.2.13:
3390   // Math.pow(-Infinity, 0.5) == Infinity
3391   // Math.sqrt(-Infinity) == NaN
3392   Label done;
3393   __ vmov(temp, -V8_INFINITY, scratch0());
3394   __ VFPCompareAndSetFlags(input, temp);
3395   __ vneg(result, temp, eq);
3396   __ b(&done, eq);
3397 
3398   // Add +0 to convert -0 to +0.
3399   __ vadd(result, input, kDoubleRegZero);
3400   __ vsqrt(result, result);
3401   __ bind(&done);
3402 }
3403 
3404 
DoPower(LPower * instr)3405 void LCodeGen::DoPower(LPower* instr) {
3406   Representation exponent_type = instr->hydrogen()->right()->representation();
3407   // Having marked this as a call, we can use any registers.
3408   // Just make sure that the input/output registers are the expected ones.
3409   Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3410   DCHECK(!instr->right()->IsDoubleRegister() ||
3411          ToDoubleRegister(instr->right()).is(d1));
3412   DCHECK(!instr->right()->IsRegister() ||
3413          ToRegister(instr->right()).is(tagged_exponent));
3414   DCHECK(ToDoubleRegister(instr->left()).is(d0));
3415   DCHECK(ToDoubleRegister(instr->result()).is(d2));
3416 
3417   if (exponent_type.IsSmi()) {
3418     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3419     __ CallStub(&stub);
3420   } else if (exponent_type.IsTagged()) {
3421     Label no_deopt;
3422     __ JumpIfSmi(tagged_exponent, &no_deopt);
3423     DCHECK(!r6.is(tagged_exponent));
3424     __ ldr(r6, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3425     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3426     __ cmp(r6, Operand(ip));
3427     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
3428     __ bind(&no_deopt);
3429     MathPowStub stub(isolate(), MathPowStub::TAGGED);
3430     __ CallStub(&stub);
3431   } else if (exponent_type.IsInteger32()) {
3432     MathPowStub stub(isolate(), MathPowStub::INTEGER);
3433     __ CallStub(&stub);
3434   } else {
3435     DCHECK(exponent_type.IsDouble());
3436     MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3437     __ CallStub(&stub);
3438   }
3439 }
3440 
DoMathCos(LMathCos * instr)3441 void LCodeGen::DoMathCos(LMathCos* instr) {
3442   __ PrepareCallCFunction(0, 1, scratch0());
3443   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3444   __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
3445   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3446 }
3447 
DoMathSin(LMathSin * instr)3448 void LCodeGen::DoMathSin(LMathSin* instr) {
3449   __ PrepareCallCFunction(0, 1, scratch0());
3450   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3451   __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
3452   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3453 }
3454 
DoMathExp(LMathExp * instr)3455 void LCodeGen::DoMathExp(LMathExp* instr) {
3456   __ PrepareCallCFunction(0, 1, scratch0());
3457   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3458   __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
3459   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3460 }
3461 
3462 
DoMathLog(LMathLog * instr)3463 void LCodeGen::DoMathLog(LMathLog* instr) {
3464   __ PrepareCallCFunction(0, 1, scratch0());
3465   __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3466   __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
3467   __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3468 }
3469 
3470 
DoMathClz32(LMathClz32 * instr)3471 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3472   Register input = ToRegister(instr->value());
3473   Register result = ToRegister(instr->result());
3474   __ clz(result, input);
3475 }
3476 
PrepareForTailCall(const ParameterCount & actual,Register scratch1,Register scratch2,Register scratch3)3477 void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
3478                                   Register scratch1, Register scratch2,
3479                                   Register scratch3) {
3480 #if DEBUG
3481   if (actual.is_reg()) {
3482     DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
3483   } else {
3484     DCHECK(!AreAliased(scratch1, scratch2, scratch3));
3485   }
3486 #endif
3487   if (FLAG_code_comments) {
3488     if (actual.is_reg()) {
3489       Comment(";;; PrepareForTailCall, actual: %s {",
3490               RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
3491                   actual.reg().code()));
3492     } else {
3493       Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
3494     }
3495   }
3496 
3497   // Check if next frame is an arguments adaptor frame.
3498   Register caller_args_count_reg = scratch1;
3499   Label no_arguments_adaptor, formal_parameter_count_loaded;
3500   __ ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3501   __ ldr(scratch3,
3502          MemOperand(scratch2, StandardFrameConstants::kContextOffset));
3503   __ cmp(scratch3,
3504          Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
3505   __ b(ne, &no_arguments_adaptor);
3506 
3507   // Drop current frame and load arguments count from arguments adaptor frame.
3508   __ mov(fp, scratch2);
3509   __ ldr(caller_args_count_reg,
3510          MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
3511   __ SmiUntag(caller_args_count_reg);
3512   __ b(&formal_parameter_count_loaded);
3513 
3514   __ bind(&no_arguments_adaptor);
3515   // Load caller's formal parameter count
3516   __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
3517 
3518   __ bind(&formal_parameter_count_loaded);
3519   __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
3520 
3521   Comment(";;; }");
3522 }
3523 
DoInvokeFunction(LInvokeFunction * instr)3524 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3525   HInvokeFunction* hinstr = instr->hydrogen();
3526   DCHECK(ToRegister(instr->context()).is(cp));
3527   DCHECK(ToRegister(instr->function()).is(r1));
3528   DCHECK(instr->HasPointerMap());
3529 
3530   bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
3531 
3532   if (is_tail_call) {
3533     DCHECK(!info()->saves_caller_doubles());
3534     ParameterCount actual(instr->arity());
3535     // It is safe to use r3, r4 and r5 as scratch registers here given that
3536     // 1) we are not going to return to caller function anyway,
3537     // 2) r3 (new.target) will be initialized below.
3538     PrepareForTailCall(actual, r3, r4, r5);
3539   }
3540 
3541   Handle<JSFunction> known_function = hinstr->known_function();
3542   if (known_function.is_null()) {
3543     LPointerMap* pointers = instr->pointer_map();
3544     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3545     ParameterCount actual(instr->arity());
3546     InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
3547     __ InvokeFunction(r1, no_reg, actual, flag, generator);
3548   } else {
3549     CallKnownFunction(known_function, hinstr->formal_parameter_count(),
3550                       instr->arity(), is_tail_call, instr);
3551   }
3552 }
3553 
3554 
DoCallWithDescriptor(LCallWithDescriptor * instr)3555 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3556   DCHECK(ToRegister(instr->result()).is(r0));
3557 
3558   if (instr->hydrogen()->IsTailCall()) {
3559     if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3560 
3561     if (instr->target()->IsConstantOperand()) {
3562       LConstantOperand* target = LConstantOperand::cast(instr->target());
3563       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3564       __ Jump(code, RelocInfo::CODE_TARGET);
3565     } else {
3566       DCHECK(instr->target()->IsRegister());
3567       Register target = ToRegister(instr->target());
3568       // Make sure we don't emit any additional entries in the constant pool
3569       // before the call to ensure that the CallCodeSize() calculated the
3570       // correct
3571       // number of instructions for the constant pool load.
3572       {
3573         ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
3574         __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3575       }
3576       __ Jump(target);
3577     }
3578   } else {
3579     LPointerMap* pointers = instr->pointer_map();
3580     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3581 
3582     if (instr->target()->IsConstantOperand()) {
3583       LConstantOperand* target = LConstantOperand::cast(instr->target());
3584       Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3585       generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3586       PlatformInterfaceDescriptor* call_descriptor =
3587           instr->descriptor().platform_specific_descriptor();
3588       if (call_descriptor != NULL) {
3589         __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al,
3590                 call_descriptor->storage_mode());
3591       } else {
3592         __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al);
3593       }
3594     } else {
3595       DCHECK(instr->target()->IsRegister());
3596       Register target = ToRegister(instr->target());
3597       generator.BeforeCall(__ CallSize(target));
3598       // Make sure we don't emit any additional entries in the constant pool
3599       // before the call to ensure that the CallCodeSize() calculated the
3600       // correct
3601       // number of instructions for the constant pool load.
3602       {
3603         ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
3604         __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3605       }
3606       __ Call(target);
3607     }
3608     generator.AfterCall();
3609   }
3610 }
3611 
3612 
DoCallNewArray(LCallNewArray * instr)3613 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3614   DCHECK(ToRegister(instr->context()).is(cp));
3615   DCHECK(ToRegister(instr->constructor()).is(r1));
3616   DCHECK(ToRegister(instr->result()).is(r0));
3617 
3618   __ mov(r0, Operand(instr->arity()));
3619   __ Move(r2, instr->hydrogen()->site());
3620 
3621   ElementsKind kind = instr->hydrogen()->elements_kind();
3622   AllocationSiteOverrideMode override_mode =
3623       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3624           ? DISABLE_ALLOCATION_SITES
3625           : DONT_OVERRIDE;
3626 
3627   if (instr->arity() == 0) {
3628     ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3629     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3630   } else if (instr->arity() == 1) {
3631     Label done;
3632     if (IsFastPackedElementsKind(kind)) {
3633       Label packed_case;
3634       // We might need a change here
3635       // look at the first argument
3636       __ ldr(r5, MemOperand(sp, 0));
3637       __ cmp(r5, Operand::Zero());
3638       __ b(eq, &packed_case);
3639 
3640       ElementsKind holey_kind = GetHoleyElementsKind(kind);
3641       ArraySingleArgumentConstructorStub stub(isolate(),
3642                                               holey_kind,
3643                                               override_mode);
3644       CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3645       __ jmp(&done);
3646       __ bind(&packed_case);
3647     }
3648 
3649     ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3650     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3651     __ bind(&done);
3652   } else {
3653     ArrayNArgumentsConstructorStub stub(isolate());
3654     CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3655   }
3656 }
3657 
3658 
DoCallRuntime(LCallRuntime * instr)3659 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3660   CallRuntime(instr->function(), instr->arity(), instr);
3661 }
3662 
3663 
DoStoreCodeEntry(LStoreCodeEntry * instr)3664 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3665   Register function = ToRegister(instr->function());
3666   Register code_object = ToRegister(instr->code_object());
3667   __ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag));
3668   __ str(code_object,
3669          FieldMemOperand(function, JSFunction::kCodeEntryOffset));
3670 }
3671 
3672 
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3673 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3674   Register result = ToRegister(instr->result());
3675   Register base = ToRegister(instr->base_object());
3676   if (instr->offset()->IsConstantOperand()) {
3677     LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3678     __ add(result, base, Operand(ToInteger32(offset)));
3679   } else {
3680     Register offset = ToRegister(instr->offset());
3681     __ add(result, base, offset);
3682   }
3683 }
3684 
3685 
DoStoreNamedField(LStoreNamedField * instr)3686 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3687   Representation representation = instr->representation();
3688 
3689   Register object = ToRegister(instr->object());
3690   Register scratch = scratch0();
3691   HObjectAccess access = instr->hydrogen()->access();
3692   int offset = access.offset();
3693 
3694   if (access.IsExternalMemory()) {
3695     Register value = ToRegister(instr->value());
3696     MemOperand operand = MemOperand(object, offset);
3697     __ Store(value, operand, representation);
3698     return;
3699   }
3700 
3701   __ AssertNotSmi(object);
3702 
3703   DCHECK(!representation.IsSmi() ||
3704          !instr->value()->IsConstantOperand() ||
3705          IsSmi(LConstantOperand::cast(instr->value())));
3706   if (representation.IsDouble()) {
3707     DCHECK(access.IsInobject());
3708     DCHECK(!instr->hydrogen()->has_transition());
3709     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3710     DwVfpRegister value = ToDoubleRegister(instr->value());
3711     __ vstr(value, FieldMemOperand(object, offset));
3712     return;
3713   }
3714 
3715   if (instr->hydrogen()->has_transition()) {
3716     Handle<Map> transition = instr->hydrogen()->transition_map();
3717     AddDeprecationDependency(transition);
3718     __ mov(scratch, Operand(transition));
3719     __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3720     if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3721       Register temp = ToRegister(instr->temp());
3722       // Update the write barrier for the map field.
3723       __ RecordWriteForMap(object,
3724                            scratch,
3725                            temp,
3726                            GetLinkRegisterState(),
3727                            kSaveFPRegs);
3728     }
3729   }
3730 
3731   // Do the store.
3732   Register value = ToRegister(instr->value());
3733   if (access.IsInobject()) {
3734     MemOperand operand = FieldMemOperand(object, offset);
3735     __ Store(value, operand, representation);
3736     if (instr->hydrogen()->NeedsWriteBarrier()) {
3737       // Update the write barrier for the object for in-object properties.
3738       __ RecordWriteField(object,
3739                           offset,
3740                           value,
3741                           scratch,
3742                           GetLinkRegisterState(),
3743                           kSaveFPRegs,
3744                           EMIT_REMEMBERED_SET,
3745                           instr->hydrogen()->SmiCheckForWriteBarrier(),
3746                           instr->hydrogen()->PointersToHereCheckForValue());
3747     }
3748   } else {
3749     __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3750     MemOperand operand = FieldMemOperand(scratch, offset);
3751     __ Store(value, operand, representation);
3752     if (instr->hydrogen()->NeedsWriteBarrier()) {
3753       // Update the write barrier for the properties array.
3754       // object is used as a scratch register.
3755       __ RecordWriteField(scratch,
3756                           offset,
3757                           value,
3758                           object,
3759                           GetLinkRegisterState(),
3760                           kSaveFPRegs,
3761                           EMIT_REMEMBERED_SET,
3762                           instr->hydrogen()->SmiCheckForWriteBarrier(),
3763                           instr->hydrogen()->PointersToHereCheckForValue());
3764     }
3765   }
3766 }
3767 
3768 
DoBoundsCheck(LBoundsCheck * instr)3769 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3770   Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
3771   if (instr->index()->IsConstantOperand()) {
3772     Operand index = ToOperand(instr->index());
3773     Register length = ToRegister(instr->length());
3774     __ cmp(length, index);
3775     cc = CommuteCondition(cc);
3776   } else {
3777     Register index = ToRegister(instr->index());
3778     Operand length = ToOperand(instr->length());
3779     __ cmp(index, length);
3780   }
3781   if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3782     Label done;
3783     __ b(NegateCondition(cc), &done);
3784     __ stop("eliminated bounds check failed");
3785     __ bind(&done);
3786   } else {
3787     DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
3788   }
3789 }
3790 
3791 
DoStoreKeyedExternalArray(LStoreKeyed * instr)3792 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3793   Register external_pointer = ToRegister(instr->elements());
3794   Register key = no_reg;
3795   ElementsKind elements_kind = instr->elements_kind();
3796   bool key_is_constant = instr->key()->IsConstantOperand();
3797   int constant_key = 0;
3798   if (key_is_constant) {
3799     constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3800     if (constant_key & 0xF0000000) {
3801       Abort(kArrayIndexConstantValueTooBig);
3802     }
3803   } else {
3804     key = ToRegister(instr->key());
3805   }
3806   int element_size_shift = ElementsKindToShiftSize(elements_kind);
3807   int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3808       ? (element_size_shift - kSmiTagSize) : element_size_shift;
3809   int base_offset = instr->base_offset();
3810 
3811   if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3812     Register address = scratch0();
3813     DwVfpRegister value(ToDoubleRegister(instr->value()));
3814     if (key_is_constant) {
3815       if (constant_key != 0) {
3816         __ add(address, external_pointer,
3817                Operand(constant_key << element_size_shift));
3818       } else {
3819         address = external_pointer;
3820       }
3821     } else {
3822       __ add(address, external_pointer, Operand(key, LSL, shift_size));
3823     }
3824     if (elements_kind == FLOAT32_ELEMENTS) {
3825       __ vcvt_f32_f64(double_scratch0().low(), value);
3826       __ vstr(double_scratch0().low(), address, base_offset);
3827     } else {  // Storing doubles, not floats.
3828       __ vstr(value, address, base_offset);
3829     }
3830   } else {
3831     Register value(ToRegister(instr->value()));
3832     MemOperand mem_operand = PrepareKeyedOperand(
3833         key, external_pointer, key_is_constant, constant_key,
3834         element_size_shift, shift_size,
3835         base_offset);
3836     switch (elements_kind) {
3837       case UINT8_ELEMENTS:
3838       case UINT8_CLAMPED_ELEMENTS:
3839       case INT8_ELEMENTS:
3840         __ strb(value, mem_operand);
3841         break;
3842       case INT16_ELEMENTS:
3843       case UINT16_ELEMENTS:
3844         __ strh(value, mem_operand);
3845         break;
3846       case INT32_ELEMENTS:
3847       case UINT32_ELEMENTS:
3848         __ str(value, mem_operand);
3849         break;
3850       case FLOAT32_ELEMENTS:
3851       case FLOAT64_ELEMENTS:
3852       case FAST_DOUBLE_ELEMENTS:
3853       case FAST_ELEMENTS:
3854       case FAST_SMI_ELEMENTS:
3855       case FAST_HOLEY_DOUBLE_ELEMENTS:
3856       case FAST_HOLEY_ELEMENTS:
3857       case FAST_HOLEY_SMI_ELEMENTS:
3858       case DICTIONARY_ELEMENTS:
3859       case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3860       case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3861       case FAST_STRING_WRAPPER_ELEMENTS:
3862       case SLOW_STRING_WRAPPER_ELEMENTS:
3863       case NO_ELEMENTS:
3864         UNREACHABLE();
3865         break;
3866     }
3867   }
3868 }
3869 
3870 
DoStoreKeyedFixedDoubleArray(LStoreKeyed * instr)3871 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
3872   DwVfpRegister value = ToDoubleRegister(instr->value());
3873   Register elements = ToRegister(instr->elements());
3874   Register scratch = scratch0();
3875   DwVfpRegister double_scratch = double_scratch0();
3876   bool key_is_constant = instr->key()->IsConstantOperand();
3877   int base_offset = instr->base_offset();
3878 
3879   // Calculate the effective address of the slot in the array to store the
3880   // double value.
3881   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3882   if (key_is_constant) {
3883     int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3884     if (constant_key & 0xF0000000) {
3885       Abort(kArrayIndexConstantValueTooBig);
3886     }
3887     __ add(scratch, elements,
3888            Operand((constant_key << element_size_shift) + base_offset));
3889   } else {
3890     int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3891         ? (element_size_shift - kSmiTagSize) : element_size_shift;
3892     __ add(scratch, elements, Operand(base_offset));
3893     __ add(scratch, scratch,
3894            Operand(ToRegister(instr->key()), LSL, shift_size));
3895   }
3896 
3897   if (instr->NeedsCanonicalization()) {
3898     // Force a canonical NaN.
3899     __ VFPCanonicalizeNaN(double_scratch, value);
3900     __ vstr(double_scratch, scratch, 0);
3901   } else {
3902     __ vstr(value, scratch, 0);
3903   }
3904 }
3905 
3906 
DoStoreKeyedFixedArray(LStoreKeyed * instr)3907 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
3908   Register value = ToRegister(instr->value());
3909   Register elements = ToRegister(instr->elements());
3910   Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
3911       : no_reg;
3912   Register scratch = scratch0();
3913   Register store_base = scratch;
3914   int offset = instr->base_offset();
3915 
3916   // Do the store.
3917   if (instr->key()->IsConstantOperand()) {
3918     DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3919     LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3920     offset += ToInteger32(const_operand) * kPointerSize;
3921     store_base = elements;
3922   } else {
3923     // Even though the HLoadKeyed instruction forces the input
3924     // representation for the key to be an integer, the input gets replaced
3925     // during bound check elimination with the index argument to the bounds
3926     // check, which can be tagged, so that case must be handled here, too.
3927     if (instr->hydrogen()->key()->representation().IsSmi()) {
3928       __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key));
3929     } else {
3930       __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
3931     }
3932   }
3933   __ str(value, MemOperand(store_base, offset));
3934 
3935   if (instr->hydrogen()->NeedsWriteBarrier()) {
3936     SmiCheck check_needed =
3937         instr->hydrogen()->value()->type().IsHeapObject()
3938             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3939     // Compute address of modified element and store it into key register.
3940     __ add(key, store_base, Operand(offset));
3941     __ RecordWrite(elements,
3942                    key,
3943                    value,
3944                    GetLinkRegisterState(),
3945                    kSaveFPRegs,
3946                    EMIT_REMEMBERED_SET,
3947                    check_needed,
3948                    instr->hydrogen()->PointersToHereCheckForValue());
3949   }
3950 }
3951 
3952 
DoStoreKeyed(LStoreKeyed * instr)3953 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
3954   // By cases: external, fast double
3955   if (instr->is_fixed_typed_array()) {
3956     DoStoreKeyedExternalArray(instr);
3957   } else if (instr->hydrogen()->value()->representation().IsDouble()) {
3958     DoStoreKeyedFixedDoubleArray(instr);
3959   } else {
3960     DoStoreKeyedFixedArray(instr);
3961   }
3962 }
3963 
3964 
DoMaybeGrowElements(LMaybeGrowElements * instr)3965 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
3966   class DeferredMaybeGrowElements final : public LDeferredCode {
3967    public:
3968     DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
3969         : LDeferredCode(codegen), instr_(instr) {}
3970     void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
3971     LInstruction* instr() override { return instr_; }
3972 
3973    private:
3974     LMaybeGrowElements* instr_;
3975   };
3976 
3977   Register result = r0;
3978   DeferredMaybeGrowElements* deferred =
3979       new (zone()) DeferredMaybeGrowElements(this, instr);
3980   LOperand* key = instr->key();
3981   LOperand* current_capacity = instr->current_capacity();
3982 
3983   DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
3984   DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
3985   DCHECK(key->IsConstantOperand() || key->IsRegister());
3986   DCHECK(current_capacity->IsConstantOperand() ||
3987          current_capacity->IsRegister());
3988 
3989   if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
3990     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
3991     int32_t constant_capacity =
3992         ToInteger32(LConstantOperand::cast(current_capacity));
3993     if (constant_key >= constant_capacity) {
3994       // Deferred case.
3995       __ jmp(deferred->entry());
3996     }
3997   } else if (key->IsConstantOperand()) {
3998     int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
3999     __ cmp(ToRegister(current_capacity), Operand(constant_key));
4000     __ b(le, deferred->entry());
4001   } else if (current_capacity->IsConstantOperand()) {
4002     int32_t constant_capacity =
4003         ToInteger32(LConstantOperand::cast(current_capacity));
4004     __ cmp(ToRegister(key), Operand(constant_capacity));
4005     __ b(ge, deferred->entry());
4006   } else {
4007     __ cmp(ToRegister(key), ToRegister(current_capacity));
4008     __ b(ge, deferred->entry());
4009   }
4010 
4011   if (instr->elements()->IsRegister()) {
4012     __ Move(result, ToRegister(instr->elements()));
4013   } else {
4014     __ ldr(result, ToMemOperand(instr->elements()));
4015   }
4016 
4017   __ bind(deferred->exit());
4018 }
4019 
4020 
DoDeferredMaybeGrowElements(LMaybeGrowElements * instr)4021 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4022   // TODO(3095996): Get rid of this. For now, we need to make the
4023   // result register contain a valid pointer because it is already
4024   // contained in the register pointer map.
4025   Register result = r0;
4026   __ mov(result, Operand::Zero());
4027 
4028   // We have to call a stub.
4029   {
4030     PushSafepointRegistersScope scope(this);
4031     if (instr->object()->IsRegister()) {
4032       __ Move(result, ToRegister(instr->object()));
4033     } else {
4034       __ ldr(result, ToMemOperand(instr->object()));
4035     }
4036 
4037     LOperand* key = instr->key();
4038     if (key->IsConstantOperand()) {
4039       LConstantOperand* constant_key = LConstantOperand::cast(key);
4040       int32_t int_key = ToInteger32(constant_key);
4041       if (Smi::IsValid(int_key)) {
4042         __ mov(r3, Operand(Smi::FromInt(int_key)));
4043       } else {
4044         Abort(kArrayIndexConstantValueTooBig);
4045       }
4046     } else {
4047       Label is_smi;
4048       __ SmiTag(r3, ToRegister(key), SetCC);
4049       // Deopt if the key is outside Smi range. The stub expects Smi and would
4050       // bump the elements into dictionary mode (and trigger a deopt) anyways.
4051       __ b(vc, &is_smi);
4052       __ PopSafepointRegisters();
4053       DeoptimizeIf(al, instr, DeoptimizeReason::kOverflow);
4054       __ bind(&is_smi);
4055     }
4056 
4057     GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
4058     __ CallStub(&stub);
4059     RecordSafepointWithLazyDeopt(
4060         instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4061     __ StoreToSafepointRegisterSlot(result, result);
4062   }
4063 
4064   // Deopt on smi, which means the elements array changed to dictionary mode.
4065   __ SmiTst(result);
4066   DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
4067 }
4068 
4069 
DoTransitionElementsKind(LTransitionElementsKind * instr)4070 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4071   Register object_reg = ToRegister(instr->object());
4072   Register scratch = scratch0();
4073 
4074   Handle<Map> from_map = instr->original_map();
4075   Handle<Map> to_map = instr->transitioned_map();
4076   ElementsKind from_kind = instr->from_kind();
4077   ElementsKind to_kind = instr->to_kind();
4078 
4079   Label not_applicable;
4080   __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4081   __ cmp(scratch, Operand(from_map));
4082   __ b(ne, &not_applicable);
4083 
4084   if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4085     Register new_map_reg = ToRegister(instr->new_map_temp());
4086     __ mov(new_map_reg, Operand(to_map));
4087     __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4088     // Write barrier.
4089     __ RecordWriteForMap(object_reg,
4090                          new_map_reg,
4091                          scratch,
4092                          GetLinkRegisterState(),
4093                          kDontSaveFPRegs);
4094   } else {
4095     DCHECK(ToRegister(instr->context()).is(cp));
4096     DCHECK(object_reg.is(r0));
4097     PushSafepointRegistersScope scope(this);
4098     __ Move(r1, to_map);
4099     TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
4100     __ CallStub(&stub);
4101     RecordSafepointWithRegisters(
4102         instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4103   }
4104   __ bind(&not_applicable);
4105 }
4106 
4107 
DoTrapAllocationMemento(LTrapAllocationMemento * instr)4108 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4109   Register object = ToRegister(instr->object());
4110   Register temp = ToRegister(instr->temp());
4111   Label no_memento_found;
4112   __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4113   DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound);
4114   __ bind(&no_memento_found);
4115 }
4116 
4117 
DoStringAdd(LStringAdd * instr)4118 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4119   DCHECK(ToRegister(instr->context()).is(cp));
4120   DCHECK(ToRegister(instr->left()).is(r1));
4121   DCHECK(ToRegister(instr->right()).is(r0));
4122   StringAddStub stub(isolate(),
4123                      instr->hydrogen()->flags(),
4124                      instr->hydrogen()->pretenure_flag());
4125   CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4126 }
4127 
4128 
DoStringCharCodeAt(LStringCharCodeAt * instr)4129 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4130   class DeferredStringCharCodeAt final : public LDeferredCode {
4131    public:
4132     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4133         : LDeferredCode(codegen), instr_(instr) { }
4134     void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4135     LInstruction* instr() override { return instr_; }
4136 
4137    private:
4138     LStringCharCodeAt* instr_;
4139   };
4140 
4141   DeferredStringCharCodeAt* deferred =
4142       new(zone()) DeferredStringCharCodeAt(this, instr);
4143 
4144   StringCharLoadGenerator::Generate(masm(),
4145                                     ToRegister(instr->string()),
4146                                     ToRegister(instr->index()),
4147                                     ToRegister(instr->result()),
4148                                     deferred->entry());
4149   __ bind(deferred->exit());
4150 }
4151 
4152 
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)4153 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4154   Register string = ToRegister(instr->string());
4155   Register result = ToRegister(instr->result());
4156   Register scratch = scratch0();
4157 
4158   // TODO(3095996): Get rid of this. For now, we need to make the
4159   // result register contain a valid pointer because it is already
4160   // contained in the register pointer map.
4161   __ mov(result, Operand::Zero());
4162 
4163   PushSafepointRegistersScope scope(this);
4164   __ push(string);
4165   // Push the index as a smi. This is safe because of the checks in
4166   // DoStringCharCodeAt above.
4167   if (instr->index()->IsConstantOperand()) {
4168     int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4169     __ mov(scratch, Operand(Smi::FromInt(const_index)));
4170     __ push(scratch);
4171   } else {
4172     Register index = ToRegister(instr->index());
4173     __ SmiTag(index);
4174     __ push(index);
4175   }
4176   CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4177                           instr->context());
4178   __ AssertSmi(r0);
4179   __ SmiUntag(r0);
4180   __ StoreToSafepointRegisterSlot(r0, result);
4181 }
4182 
4183 
DoStringCharFromCode(LStringCharFromCode * instr)4184 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4185   class DeferredStringCharFromCode final : public LDeferredCode {
4186    public:
4187     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4188         : LDeferredCode(codegen), instr_(instr) { }
4189     void Generate() override {
4190       codegen()->DoDeferredStringCharFromCode(instr_);
4191     }
4192     LInstruction* instr() override { return instr_; }
4193 
4194    private:
4195     LStringCharFromCode* instr_;
4196   };
4197 
4198   DeferredStringCharFromCode* deferred =
4199       new(zone()) DeferredStringCharFromCode(this, instr);
4200 
4201   DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4202   Register char_code = ToRegister(instr->char_code());
4203   Register result = ToRegister(instr->result());
4204   DCHECK(!char_code.is(result));
4205 
4206   __ cmp(char_code, Operand(String::kMaxOneByteCharCode));
4207   __ b(hi, deferred->entry());
4208   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4209   __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
4210   __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4211   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4212   __ cmp(result, ip);
4213   __ b(eq, deferred->entry());
4214   __ bind(deferred->exit());
4215 }
4216 
4217 
DoDeferredStringCharFromCode(LStringCharFromCode * instr)4218 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4219   Register char_code = ToRegister(instr->char_code());
4220   Register result = ToRegister(instr->result());
4221 
4222   // TODO(3095996): Get rid of this. For now, we need to make the
4223   // result register contain a valid pointer because it is already
4224   // contained in the register pointer map.
4225   __ mov(result, Operand::Zero());
4226 
4227   PushSafepointRegistersScope scope(this);
4228   __ SmiTag(char_code);
4229   __ push(char_code);
4230   CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4231                           instr->context());
4232   __ StoreToSafepointRegisterSlot(r0, result);
4233 }
4234 
4235 
DoInteger32ToDouble(LInteger32ToDouble * instr)4236 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4237   LOperand* input = instr->value();
4238   DCHECK(input->IsRegister() || input->IsStackSlot());
4239   LOperand* output = instr->result();
4240   DCHECK(output->IsDoubleRegister());
4241   SwVfpRegister single_scratch = double_scratch0().low();
4242   if (input->IsStackSlot()) {
4243     Register scratch = scratch0();
4244     __ ldr(scratch, ToMemOperand(input));
4245     __ vmov(single_scratch, scratch);
4246   } else {
4247     __ vmov(single_scratch, ToRegister(input));
4248   }
4249   __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
4250 }
4251 
4252 
DoUint32ToDouble(LUint32ToDouble * instr)4253 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4254   LOperand* input = instr->value();
4255   LOperand* output = instr->result();
4256 
4257   SwVfpRegister flt_scratch = double_scratch0().low();
4258   __ vmov(flt_scratch, ToRegister(input));
4259   __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch);
4260 }
4261 
4262 
DoNumberTagI(LNumberTagI * instr)4263 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4264   class DeferredNumberTagI final : public LDeferredCode {
4265    public:
4266     DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4267         : LDeferredCode(codegen), instr_(instr) { }
4268     void Generate() override {
4269       codegen()->DoDeferredNumberTagIU(instr_,
4270                                        instr_->value(),
4271                                        instr_->temp1(),
4272                                        instr_->temp2(),
4273                                        SIGNED_INT32);
4274     }
4275     LInstruction* instr() override { return instr_; }
4276 
4277    private:
4278     LNumberTagI* instr_;
4279   };
4280 
4281   Register src = ToRegister(instr->value());
4282   Register dst = ToRegister(instr->result());
4283 
4284   DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4285   __ SmiTag(dst, src, SetCC);
4286   __ b(vs, deferred->entry());
4287   __ bind(deferred->exit());
4288 }
4289 
4290 
DoNumberTagU(LNumberTagU * instr)4291 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4292   class DeferredNumberTagU final : public LDeferredCode {
4293    public:
4294     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4295         : LDeferredCode(codegen), instr_(instr) { }
4296     void Generate() override {
4297       codegen()->DoDeferredNumberTagIU(instr_,
4298                                        instr_->value(),
4299                                        instr_->temp1(),
4300                                        instr_->temp2(),
4301                                        UNSIGNED_INT32);
4302     }
4303     LInstruction* instr() override { return instr_; }
4304 
4305    private:
4306     LNumberTagU* instr_;
4307   };
4308 
4309   Register input = ToRegister(instr->value());
4310   Register result = ToRegister(instr->result());
4311 
4312   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4313   __ cmp(input, Operand(Smi::kMaxValue));
4314   __ b(hi, deferred->entry());
4315   __ SmiTag(result, input);
4316   __ bind(deferred->exit());
4317 }
4318 
4319 
DoDeferredNumberTagIU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2,IntegerSignedness signedness)4320 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4321                                      LOperand* value,
4322                                      LOperand* temp1,
4323                                      LOperand* temp2,
4324                                      IntegerSignedness signedness) {
4325   Label done, slow;
4326   Register src = ToRegister(value);
4327   Register dst = ToRegister(instr->result());
4328   Register tmp1 = scratch0();
4329   Register tmp2 = ToRegister(temp1);
4330   Register tmp3 = ToRegister(temp2);
4331   LowDwVfpRegister dbl_scratch = double_scratch0();
4332 
4333   if (signedness == SIGNED_INT32) {
4334     // There was overflow, so bits 30 and 31 of the original integer
4335     // disagree. Try to allocate a heap number in new space and store
4336     // the value in there. If that fails, call the runtime system.
4337     if (dst.is(src)) {
4338       __ SmiUntag(src, dst);
4339       __ eor(src, src, Operand(0x80000000));
4340     }
4341     __ vmov(dbl_scratch.low(), src);
4342     __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low());
4343   } else {
4344     __ vmov(dbl_scratch.low(), src);
4345     __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low());
4346   }
4347 
4348   if (FLAG_inline_new) {
4349     __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4350     __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4351     __ b(&done);
4352   }
4353 
4354   // Slow case: Call the runtime system to do the number allocation.
4355   __ bind(&slow);
4356   {
4357     // TODO(3095996): Put a valid pointer value in the stack slot where the
4358     // result register is stored, as this register is in the pointer map, but
4359     // contains an integer value.
4360     __ mov(dst, Operand::Zero());
4361 
4362     // Preserve the value of all registers.
4363     PushSafepointRegistersScope scope(this);
4364     // Reset the context register.
4365     if (!dst.is(cp)) {
4366       __ mov(cp, Operand::Zero());
4367     }
4368     __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4369     RecordSafepointWithRegisters(
4370         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4371     __ StoreToSafepointRegisterSlot(r0, dst);
4372   }
4373 
4374   // Done. Put the value in dbl_scratch into the value of the allocated heap
4375   // number.
4376   __ bind(&done);
4377   __ vstr(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4378 }
4379 
4380 
DoNumberTagD(LNumberTagD * instr)4381 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4382   class DeferredNumberTagD final : public LDeferredCode {
4383    public:
4384     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4385         : LDeferredCode(codegen), instr_(instr) { }
4386     void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4387     LInstruction* instr() override { return instr_; }
4388 
4389    private:
4390     LNumberTagD* instr_;
4391   };
4392 
4393   DwVfpRegister input_reg = ToDoubleRegister(instr->value());
4394   Register scratch = scratch0();
4395   Register reg = ToRegister(instr->result());
4396   Register temp1 = ToRegister(instr->temp());
4397   Register temp2 = ToRegister(instr->temp2());
4398 
4399   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4400   if (FLAG_inline_new) {
4401     __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4402     __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4403   } else {
4404     __ jmp(deferred->entry());
4405   }
4406   __ bind(deferred->exit());
4407   __ vstr(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4408 }
4409 
4410 
DoDeferredNumberTagD(LNumberTagD * instr)4411 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4412   // TODO(3095996): Get rid of this. For now, we need to make the
4413   // result register contain a valid pointer because it is already
4414   // contained in the register pointer map.
4415   Register reg = ToRegister(instr->result());
4416   __ mov(reg, Operand::Zero());
4417 
4418   PushSafepointRegistersScope scope(this);
4419   // Reset the context register.
4420   if (!reg.is(cp)) {
4421     __ mov(cp, Operand::Zero());
4422   }
4423   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4424   RecordSafepointWithRegisters(
4425       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4426   __ StoreToSafepointRegisterSlot(r0, reg);
4427 }
4428 
4429 
DoSmiTag(LSmiTag * instr)4430 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4431   HChange* hchange = instr->hydrogen();
4432   Register input = ToRegister(instr->value());
4433   Register output = ToRegister(instr->result());
4434   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4435       hchange->value()->CheckFlag(HValue::kUint32)) {
4436     __ tst(input, Operand(0xc0000000));
4437     DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow);
4438   }
4439   if (hchange->CheckFlag(HValue::kCanOverflow) &&
4440       !hchange->value()->CheckFlag(HValue::kUint32)) {
4441     __ SmiTag(output, input, SetCC);
4442     DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
4443   } else {
4444     __ SmiTag(output, input);
4445   }
4446 }
4447 
4448 
DoSmiUntag(LSmiUntag * instr)4449 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4450   Register input = ToRegister(instr->value());
4451   Register result = ToRegister(instr->result());
4452   if (instr->needs_check()) {
4453     STATIC_ASSERT(kHeapObjectTag == 1);
4454     // If the input is a HeapObject, SmiUntag will set the carry flag.
4455     __ SmiUntag(result, input, SetCC);
4456     DeoptimizeIf(cs, instr, DeoptimizeReason::kNotASmi);
4457   } else {
4458     __ SmiUntag(result, input);
4459   }
4460 }
4461 
4462 
EmitNumberUntagD(LNumberUntagD * instr,Register input_reg,DwVfpRegister result_reg,NumberUntagDMode mode)4463 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4464                                 DwVfpRegister result_reg,
4465                                 NumberUntagDMode mode) {
4466   bool can_convert_undefined_to_nan = instr->truncating();
4467   bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4468 
4469   Register scratch = scratch0();
4470   SwVfpRegister flt_scratch = double_scratch0().low();
4471   DCHECK(!result_reg.is(double_scratch0()));
4472   Label convert, load_smi, done;
4473   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4474     // Smi check.
4475     __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4476     // Heap number map check.
4477     __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4478     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4479     __ cmp(scratch, Operand(ip));
4480     if (can_convert_undefined_to_nan) {
4481       __ b(ne, &convert);
4482     } else {
4483       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4484     }
4485     // load heap number
4486     __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag);
4487     if (deoptimize_on_minus_zero) {
4488       __ VmovLow(scratch, result_reg);
4489       __ cmp(scratch, Operand::Zero());
4490       __ b(ne, &done);
4491       __ VmovHigh(scratch, result_reg);
4492       __ cmp(scratch, Operand(HeapNumber::kSignMask));
4493       DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero);
4494     }
4495     __ jmp(&done);
4496     if (can_convert_undefined_to_nan) {
4497       __ bind(&convert);
4498       // Convert undefined (and hole) to NaN.
4499       __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4500       __ cmp(input_reg, Operand(ip));
4501       DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
4502       __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4503       __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag);
4504       __ jmp(&done);
4505     }
4506   } else {
4507     __ SmiUntag(scratch, input_reg);
4508     DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4509   }
4510   // Smi to double register conversion
4511   __ bind(&load_smi);
4512   // scratch: untagged value of input_reg
4513   __ vmov(flt_scratch, scratch);
4514   __ vcvt_f64_s32(result_reg, flt_scratch);
4515   __ bind(&done);
4516 }
4517 
4518 
DoDeferredTaggedToI(LTaggedToI * instr)4519 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4520   Register input_reg = ToRegister(instr->value());
4521   Register scratch1 = scratch0();
4522   Register scratch2 = ToRegister(instr->temp());
4523   LowDwVfpRegister double_scratch = double_scratch0();
4524   DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4525 
4526   DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4527   DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4528 
4529   Label done;
4530 
4531   // The input was optimistically untagged; revert it.
4532   // The carry flag is set when we reach this deferred code as we just executed
4533   // SmiUntag(heap_object, SetCC)
4534   STATIC_ASSERT(kHeapObjectTag == 1);
4535   __ adc(scratch2, input_reg, Operand(input_reg));
4536 
4537   // Heap number map check.
4538   __ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4539   __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4540   __ cmp(scratch1, Operand(ip));
4541 
4542   if (instr->truncating()) {
4543     Label truncate;
4544     __ b(eq, &truncate);
4545     __ CompareInstanceType(scratch1, scratch1, ODDBALL_TYPE);
4546     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball);
4547     __ bind(&truncate);
4548     __ TruncateHeapNumberToI(input_reg, scratch2);
4549   } else {
4550     DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber);
4551 
4552     __ sub(ip, scratch2, Operand(kHeapObjectTag));
4553     __ vldr(double_scratch2, ip, HeapNumber::kValueOffset);
4554     __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch);
4555     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4556 
4557     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4558       __ cmp(input_reg, Operand::Zero());
4559       __ b(ne, &done);
4560       __ VmovHigh(scratch1, double_scratch2);
4561       __ tst(scratch1, Operand(HeapNumber::kSignMask));
4562       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero);
4563     }
4564   }
4565   __ bind(&done);
4566 }
4567 
4568 
DoTaggedToI(LTaggedToI * instr)4569 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4570   class DeferredTaggedToI final : public LDeferredCode {
4571    public:
4572     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4573         : LDeferredCode(codegen), instr_(instr) { }
4574     void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4575     LInstruction* instr() override { return instr_; }
4576 
4577    private:
4578     LTaggedToI* instr_;
4579   };
4580 
4581   LOperand* input = instr->value();
4582   DCHECK(input->IsRegister());
4583   DCHECK(input->Equals(instr->result()));
4584 
4585   Register input_reg = ToRegister(input);
4586 
4587   if (instr->hydrogen()->value()->representation().IsSmi()) {
4588     __ SmiUntag(input_reg);
4589   } else {
4590     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4591 
4592     // Optimistically untag the input.
4593     // If the input is a HeapObject, SmiUntag will set the carry flag.
4594     __ SmiUntag(input_reg, SetCC);
4595     // Branch to deferred code if the input was tagged.
4596     // The deferred code will take care of restoring the tag.
4597     __ b(cs, deferred->entry());
4598     __ bind(deferred->exit());
4599   }
4600 }
4601 
4602 
DoNumberUntagD(LNumberUntagD * instr)4603 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4604   LOperand* input = instr->value();
4605   DCHECK(input->IsRegister());
4606   LOperand* result = instr->result();
4607   DCHECK(result->IsDoubleRegister());
4608 
4609   Register input_reg = ToRegister(input);
4610   DwVfpRegister result_reg = ToDoubleRegister(result);
4611 
4612   HValue* value = instr->hydrogen()->value();
4613   NumberUntagDMode mode = value->representation().IsSmi()
4614       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4615 
4616   EmitNumberUntagD(instr, input_reg, result_reg, mode);
4617 }
4618 
4619 
DoDoubleToI(LDoubleToI * instr)4620 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4621   Register result_reg = ToRegister(instr->result());
4622   Register scratch1 = scratch0();
4623   DwVfpRegister double_input = ToDoubleRegister(instr->value());
4624   LowDwVfpRegister double_scratch = double_scratch0();
4625 
4626   if (instr->truncating()) {
4627     __ TruncateDoubleToI(result_reg, double_input);
4628   } else {
4629     __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
4630     // Deoptimize if the input wasn't a int32 (inside a double).
4631     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4632     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4633       Label done;
4634       __ cmp(result_reg, Operand::Zero());
4635       __ b(ne, &done);
4636       __ VmovHigh(scratch1, double_input);
4637       __ tst(scratch1, Operand(HeapNumber::kSignMask));
4638       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero);
4639       __ bind(&done);
4640     }
4641   }
4642 }
4643 
4644 
DoDoubleToSmi(LDoubleToSmi * instr)4645 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4646   Register result_reg = ToRegister(instr->result());
4647   Register scratch1 = scratch0();
4648   DwVfpRegister double_input = ToDoubleRegister(instr->value());
4649   LowDwVfpRegister double_scratch = double_scratch0();
4650 
4651   if (instr->truncating()) {
4652     __ TruncateDoubleToI(result_reg, double_input);
4653   } else {
4654     __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch);
4655     // Deoptimize if the input wasn't a int32 (inside a double).
4656     DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN);
4657     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4658       Label done;
4659       __ cmp(result_reg, Operand::Zero());
4660       __ b(ne, &done);
4661       __ VmovHigh(scratch1, double_input);
4662       __ tst(scratch1, Operand(HeapNumber::kSignMask));
4663       DeoptimizeIf(ne, instr, DeoptimizeReason::kMinusZero);
4664       __ bind(&done);
4665     }
4666   }
4667   __ SmiTag(result_reg, SetCC);
4668   DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow);
4669 }
4670 
4671 
DoCheckSmi(LCheckSmi * instr)4672 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4673   LOperand* input = instr->value();
4674   __ SmiTst(ToRegister(input));
4675   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi);
4676 }
4677 
4678 
DoCheckNonSmi(LCheckNonSmi * instr)4679 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4680   if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4681     LOperand* input = instr->value();
4682     __ SmiTst(ToRegister(input));
4683     DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi);
4684   }
4685 }
4686 
4687 
DoCheckArrayBufferNotNeutered(LCheckArrayBufferNotNeutered * instr)4688 void LCodeGen::DoCheckArrayBufferNotNeutered(
4689     LCheckArrayBufferNotNeutered* instr) {
4690   Register view = ToRegister(instr->view());
4691   Register scratch = scratch0();
4692 
4693   __ ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
4694   __ ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
4695   __ tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
4696   DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds);
4697 }
4698 
4699 
DoCheckInstanceType(LCheckInstanceType * instr)4700 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4701   Register input = ToRegister(instr->value());
4702   Register scratch = scratch0();
4703 
4704   __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
4705   __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4706 
4707   if (instr->hydrogen()->is_interval_check()) {
4708     InstanceType first;
4709     InstanceType last;
4710     instr->hydrogen()->GetCheckInterval(&first, &last);
4711 
4712     __ cmp(scratch, Operand(first));
4713 
4714     // If there is only one type in the interval check for equality.
4715     if (first == last) {
4716       DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4717     } else {
4718       DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType);
4719       // Omit check for the last type.
4720       if (last != LAST_TYPE) {
4721         __ cmp(scratch, Operand(last));
4722         DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType);
4723       }
4724     }
4725   } else {
4726     uint8_t mask;
4727     uint8_t tag;
4728     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4729 
4730     if (base::bits::IsPowerOfTwo32(mask)) {
4731       DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4732       __ tst(scratch, Operand(mask));
4733       DeoptimizeIf(tag == 0 ? ne : eq, instr,
4734                    DeoptimizeReason::kWrongInstanceType);
4735     } else {
4736       __ and_(scratch, scratch, Operand(mask));
4737       __ cmp(scratch, Operand(tag));
4738       DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType);
4739     }
4740   }
4741 }
4742 
4743 
DoCheckValue(LCheckValue * instr)4744 void LCodeGen::DoCheckValue(LCheckValue* instr) {
4745   Register reg = ToRegister(instr->value());
4746   Handle<HeapObject> object = instr->hydrogen()->object().handle();
4747   AllowDeferredHandleDereference smi_check;
4748   if (isolate()->heap()->InNewSpace(*object)) {
4749     Register reg = ToRegister(instr->value());
4750     Handle<Cell> cell = isolate()->factory()->NewCell(object);
4751     __ mov(ip, Operand(cell));
4752     __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset));
4753     __ cmp(reg, ip);
4754   } else {
4755     __ cmp(reg, Operand(object));
4756   }
4757   DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch);
4758 }
4759 
4760 
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)4761 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4762   Label deopt, done;
4763   // If the map is not deprecated the migration attempt does not make sense.
4764   __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
4765   __ ldr(scratch0(), FieldMemOperand(scratch0(), Map::kBitField3Offset));
4766   __ tst(scratch0(), Operand(Map::Deprecated::kMask));
4767   __ b(eq, &deopt);
4768 
4769   {
4770     PushSafepointRegistersScope scope(this);
4771     __ push(object);
4772     __ mov(cp, Operand::Zero());
4773     __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4774     RecordSafepointWithRegisters(
4775         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4776     __ StoreToSafepointRegisterSlot(r0, scratch0());
4777   }
4778   __ tst(scratch0(), Operand(kSmiTagMask));
4779   __ b(ne, &done);
4780 
4781   __ bind(&deopt);
4782   DeoptimizeIf(al, instr, DeoptimizeReason::kInstanceMigrationFailed);
4783 
4784   __ bind(&done);
4785 }
4786 
4787 
DoCheckMaps(LCheckMaps * instr)4788 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4789   class DeferredCheckMaps final : public LDeferredCode {
4790    public:
4791     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4792         : LDeferredCode(codegen), instr_(instr), object_(object) {
4793       SetExit(check_maps());
4794     }
4795     void Generate() override {
4796       codegen()->DoDeferredInstanceMigration(instr_, object_);
4797     }
4798     Label* check_maps() { return &check_maps_; }
4799     LInstruction* instr() override { return instr_; }
4800 
4801    private:
4802     LCheckMaps* instr_;
4803     Label check_maps_;
4804     Register object_;
4805   };
4806 
4807   if (instr->hydrogen()->IsStabilityCheck()) {
4808     const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4809     for (int i = 0; i < maps->size(); ++i) {
4810       AddStabilityDependency(maps->at(i).handle());
4811     }
4812     return;
4813   }
4814 
4815   Register map_reg = scratch0();
4816 
4817   LOperand* input = instr->value();
4818   DCHECK(input->IsRegister());
4819   Register reg = ToRegister(input);
4820 
4821   __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
4822 
4823   DeferredCheckMaps* deferred = NULL;
4824   if (instr->hydrogen()->HasMigrationTarget()) {
4825     deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
4826     __ bind(deferred->check_maps());
4827   }
4828 
4829   const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4830   Label success;
4831   for (int i = 0; i < maps->size() - 1; i++) {
4832     Handle<Map> map = maps->at(i).handle();
4833     __ CompareMap(map_reg, map, &success);
4834     __ b(eq, &success);
4835   }
4836 
4837   Handle<Map> map = maps->at(maps->size() - 1).handle();
4838   __ CompareMap(map_reg, map, &success);
4839   if (instr->hydrogen()->HasMigrationTarget()) {
4840     __ b(ne, deferred->entry());
4841   } else {
4842     DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
4843   }
4844 
4845   __ bind(&success);
4846 }
4847 
4848 
DoClampDToUint8(LClampDToUint8 * instr)4849 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4850   DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped());
4851   Register result_reg = ToRegister(instr->result());
4852   __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
4853 }
4854 
4855 
DoClampIToUint8(LClampIToUint8 * instr)4856 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4857   Register unclamped_reg = ToRegister(instr->unclamped());
4858   Register result_reg = ToRegister(instr->result());
4859   __ ClampUint8(result_reg, unclamped_reg);
4860 }
4861 
4862 
DoClampTToUint8(LClampTToUint8 * instr)4863 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
4864   Register scratch = scratch0();
4865   Register input_reg = ToRegister(instr->unclamped());
4866   Register result_reg = ToRegister(instr->result());
4867   DwVfpRegister temp_reg = ToDoubleRegister(instr->temp());
4868   Label is_smi, done, heap_number;
4869 
4870   // Both smi and heap number cases are handled.
4871   __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
4872 
4873   // Check for heap number
4874   __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4875   __ cmp(scratch, Operand(factory()->heap_number_map()));
4876   __ b(eq, &heap_number);
4877 
4878   // Check for undefined. Undefined is converted to zero for clamping
4879   // conversions.
4880   __ cmp(input_reg, Operand(factory()->undefined_value()));
4881   DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
4882   __ mov(result_reg, Operand::Zero());
4883   __ jmp(&done);
4884 
4885   // Heap number
4886   __ bind(&heap_number);
4887   __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4888   __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
4889   __ jmp(&done);
4890 
4891   // smi
4892   __ bind(&is_smi);
4893   __ ClampUint8(result_reg, result_reg);
4894 
4895   __ bind(&done);
4896 }
4897 
4898 
DoAllocate(LAllocate * instr)4899 void LCodeGen::DoAllocate(LAllocate* instr) {
4900   class DeferredAllocate final : public LDeferredCode {
4901    public:
4902     DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
4903         : LDeferredCode(codegen), instr_(instr) { }
4904     void Generate() override { codegen()->DoDeferredAllocate(instr_); }
4905     LInstruction* instr() override { return instr_; }
4906 
4907    private:
4908     LAllocate* instr_;
4909   };
4910 
4911   DeferredAllocate* deferred =
4912       new(zone()) DeferredAllocate(this, instr);
4913 
4914   Register result = ToRegister(instr->result());
4915   Register scratch = ToRegister(instr->temp1());
4916   Register scratch2 = ToRegister(instr->temp2());
4917 
4918   // Allocate memory for the object.
4919   AllocationFlags flags = NO_ALLOCATION_FLAGS;
4920   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
4921     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
4922   }
4923   if (instr->hydrogen()->IsOldSpaceAllocation()) {
4924     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4925     flags = static_cast<AllocationFlags>(flags | PRETENURE);
4926   }
4927 
4928   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
4929     flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
4930   }
4931   DCHECK(!instr->hydrogen()->IsAllocationFolded());
4932 
4933   if (instr->size()->IsConstantOperand()) {
4934     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4935     CHECK(size <= kMaxRegularHeapObjectSize);
4936     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
4937   } else {
4938     Register size = ToRegister(instr->size());
4939     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
4940   }
4941 
4942   __ bind(deferred->exit());
4943 
4944   if (instr->hydrogen()->MustPrefillWithFiller()) {
4945     STATIC_ASSERT(kHeapObjectTag == 1);
4946     if (instr->size()->IsConstantOperand()) {
4947       int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4948       __ mov(scratch, Operand(size - kHeapObjectTag));
4949     } else {
4950       __ sub(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
4951     }
4952     __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
4953     Label loop;
4954     __ bind(&loop);
4955     __ sub(scratch, scratch, Operand(kPointerSize), SetCC);
4956     __ str(scratch2, MemOperand(result, scratch));
4957     __ b(ge, &loop);
4958   }
4959 }
4960 
4961 
DoDeferredAllocate(LAllocate * instr)4962 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
4963   Register result = ToRegister(instr->result());
4964 
4965   // TODO(3095996): Get rid of this. For now, we need to make the
4966   // result register contain a valid pointer because it is already
4967   // contained in the register pointer map.
4968   __ mov(result, Operand(Smi::kZero));
4969 
4970   PushSafepointRegistersScope scope(this);
4971   if (instr->size()->IsRegister()) {
4972     Register size = ToRegister(instr->size());
4973     DCHECK(!size.is(result));
4974     __ SmiTag(size);
4975     __ push(size);
4976   } else {
4977     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
4978     if (size >= 0 && size <= Smi::kMaxValue) {
4979       __ Push(Smi::FromInt(size));
4980     } else {
4981       // We should never get here at runtime => abort
4982       __ stop("invalid allocation size");
4983       return;
4984     }
4985   }
4986 
4987   int flags = AllocateDoubleAlignFlag::encode(
4988       instr->hydrogen()->MustAllocateDoubleAligned());
4989   if (instr->hydrogen()->IsOldSpaceAllocation()) {
4990     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
4991     flags = AllocateTargetSpace::update(flags, OLD_SPACE);
4992   } else {
4993     flags = AllocateTargetSpace::update(flags, NEW_SPACE);
4994   }
4995   __ Push(Smi::FromInt(flags));
4996 
4997   CallRuntimeFromDeferred(
4998       Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
4999   __ StoreToSafepointRegisterSlot(r0, result);
5000 
5001   if (instr->hydrogen()->IsAllocationFoldingDominator()) {
5002     AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
5003     if (instr->hydrogen()->IsOldSpaceAllocation()) {
5004       DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5005       allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
5006     }
5007     // If the allocation folding dominator allocate triggered a GC, allocation
5008     // happend in the runtime. We have to reset the top pointer to virtually
5009     // undo the allocation.
5010     ExternalReference allocation_top =
5011         AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
5012     Register top_address = scratch0();
5013     __ sub(r0, r0, Operand(kHeapObjectTag));
5014     __ mov(top_address, Operand(allocation_top));
5015     __ str(r0, MemOperand(top_address));
5016     __ add(r0, r0, Operand(kHeapObjectTag));
5017   }
5018 }
5019 
DoFastAllocate(LFastAllocate * instr)5020 void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
5021   DCHECK(instr->hydrogen()->IsAllocationFolded());
5022   DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
5023   Register result = ToRegister(instr->result());
5024   Register scratch1 = ToRegister(instr->temp1());
5025   Register scratch2 = ToRegister(instr->temp2());
5026 
5027   AllocationFlags flags = ALLOCATION_FOLDED;
5028   if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5029     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5030   }
5031   if (instr->hydrogen()->IsOldSpaceAllocation()) {
5032     DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5033     flags = static_cast<AllocationFlags>(flags | PRETENURE);
5034   }
5035   if (instr->size()->IsConstantOperand()) {
5036     int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5037     CHECK(size <= kMaxRegularHeapObjectSize);
5038     __ FastAllocate(size, result, scratch1, scratch2, flags);
5039   } else {
5040     Register size = ToRegister(instr->size());
5041     __ FastAllocate(size, result, scratch1, scratch2, flags);
5042   }
5043 }
5044 
5045 
DoTypeof(LTypeof * instr)5046 void LCodeGen::DoTypeof(LTypeof* instr) {
5047   DCHECK(ToRegister(instr->value()).is(r3));
5048   DCHECK(ToRegister(instr->result()).is(r0));
5049   Label end, do_call;
5050   Register value_register = ToRegister(instr->value());
5051   __ JumpIfNotSmi(value_register, &do_call);
5052   __ mov(r0, Operand(isolate()->factory()->number_string()));
5053   __ jmp(&end);
5054   __ bind(&do_call);
5055   Callable callable = CodeFactory::Typeof(isolate());
5056   CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
5057   __ bind(&end);
5058 }
5059 
5060 
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5061 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5062   Register input = ToRegister(instr->value());
5063 
5064   Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5065                                                   instr->FalseLabel(chunk_),
5066                                                   input,
5067                                                   instr->type_literal());
5068   if (final_branch_condition != kNoCondition) {
5069     EmitBranch(instr, final_branch_condition);
5070   }
5071 }
5072 
5073 
EmitTypeofIs(Label * true_label,Label * false_label,Register input,Handle<String> type_name)5074 Condition LCodeGen::EmitTypeofIs(Label* true_label,
5075                                  Label* false_label,
5076                                  Register input,
5077                                  Handle<String> type_name) {
5078   Condition final_branch_condition = kNoCondition;
5079   Register scratch = scratch0();
5080   Factory* factory = isolate()->factory();
5081   if (String::Equals(type_name, factory->number_string())) {
5082     __ JumpIfSmi(input, true_label);
5083     __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5084     __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
5085     final_branch_condition = eq;
5086 
5087   } else if (String::Equals(type_name, factory->string_string())) {
5088     __ JumpIfSmi(input, false_label);
5089     __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
5090     final_branch_condition = lt;
5091 
5092   } else if (String::Equals(type_name, factory->symbol_string())) {
5093     __ JumpIfSmi(input, false_label);
5094     __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
5095     final_branch_condition = eq;
5096 
5097   } else if (String::Equals(type_name, factory->boolean_string())) {
5098     __ CompareRoot(input, Heap::kTrueValueRootIndex);
5099     __ b(eq, true_label);
5100     __ CompareRoot(input, Heap::kFalseValueRootIndex);
5101     final_branch_condition = eq;
5102 
5103   } else if (String::Equals(type_name, factory->undefined_string())) {
5104     __ CompareRoot(input, Heap::kNullValueRootIndex);
5105     __ b(eq, false_label);
5106     __ JumpIfSmi(input, false_label);
5107     // Check for undetectable objects => true.
5108     __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5109     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5110     __ tst(scratch, Operand(1 << Map::kIsUndetectable));
5111     final_branch_condition = ne;
5112 
5113   } else if (String::Equals(type_name, factory->function_string())) {
5114     __ JumpIfSmi(input, false_label);
5115     __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5116     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5117     __ and_(scratch, scratch,
5118             Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5119     __ cmp(scratch, Operand(1 << Map::kIsCallable));
5120     final_branch_condition = eq;
5121 
5122   } else if (String::Equals(type_name, factory->object_string())) {
5123     __ JumpIfSmi(input, false_label);
5124     __ CompareRoot(input, Heap::kNullValueRootIndex);
5125     __ b(eq, true_label);
5126     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5127     __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
5128     __ b(lt, false_label);
5129     // Check for callable or undetectable objects => false.
5130     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5131     __ tst(scratch,
5132            Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5133     final_branch_condition = eq;
5134 
5135   } else {
5136     __ b(false_label);
5137   }
5138 
5139   return final_branch_condition;
5140 }
5141 
5142 
EnsureSpaceForLazyDeopt(int space_needed)5143 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5144   if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5145     // Ensure that we have enough space after the previous lazy-bailout
5146     // instruction for patching the code here.
5147     int current_pc = masm()->pc_offset();
5148     if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5149       // Block literal pool emission for duration of padding.
5150       Assembler::BlockConstPoolScope block_const_pool(masm());
5151       int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5152       DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5153       while (padding_size > 0) {
5154         __ nop();
5155         padding_size -= Assembler::kInstrSize;
5156       }
5157     }
5158   }
5159   last_lazy_deopt_pc_ = masm()->pc_offset();
5160 }
5161 
5162 
DoLazyBailout(LLazyBailout * instr)5163 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5164   last_lazy_deopt_pc_ = masm()->pc_offset();
5165   DCHECK(instr->HasEnvironment());
5166   LEnvironment* env = instr->environment();
5167   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5168   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5169 }
5170 
5171 
DoDeoptimize(LDeoptimize * instr)5172 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5173   Deoptimizer::BailoutType type = instr->hydrogen()->type();
5174   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5175   // needed return address), even though the implementation of LAZY and EAGER is
5176   // now identical. When LAZY is eventually completely folded into EAGER, remove
5177   // the special case below.
5178   if (info()->IsStub() && type == Deoptimizer::EAGER) {
5179     type = Deoptimizer::LAZY;
5180   }
5181 
5182   DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
5183 }
5184 
5185 
DoDummy(LDummy * instr)5186 void LCodeGen::DoDummy(LDummy* instr) {
5187   // Nothing to see here, move on!
5188 }
5189 
5190 
DoDummyUse(LDummyUse * instr)5191 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5192   // Nothing to see here, move on!
5193 }
5194 
5195 
DoDeferredStackCheck(LStackCheck * instr)5196 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5197   PushSafepointRegistersScope scope(this);
5198   LoadContextFromDeferred(instr->context());
5199   __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5200   RecordSafepointWithLazyDeopt(
5201       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5202   DCHECK(instr->HasEnvironment());
5203   LEnvironment* env = instr->environment();
5204   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5205 }
5206 
5207 
DoStackCheck(LStackCheck * instr)5208 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5209   class DeferredStackCheck final : public LDeferredCode {
5210    public:
5211     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5212         : LDeferredCode(codegen), instr_(instr) { }
5213     void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5214     LInstruction* instr() override { return instr_; }
5215 
5216    private:
5217     LStackCheck* instr_;
5218   };
5219 
5220   DCHECK(instr->HasEnvironment());
5221   LEnvironment* env = instr->environment();
5222   // There is no LLazyBailout instruction for stack-checks. We have to
5223   // prepare for lazy deoptimization explicitly here.
5224   if (instr->hydrogen()->is_function_entry()) {
5225     // Perform stack overflow check.
5226     Label done;
5227     __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5228     __ cmp(sp, Operand(ip));
5229     __ b(hs, &done);
5230     Handle<Code> stack_check = isolate()->builtins()->StackCheck();
5231     PredictableCodeSizeScope predictable(masm());
5232     predictable.ExpectSize(CallCodeSize(stack_check, RelocInfo::CODE_TARGET));
5233     DCHECK(instr->context()->IsRegister());
5234     DCHECK(ToRegister(instr->context()).is(cp));
5235     CallCode(stack_check, RelocInfo::CODE_TARGET, instr);
5236     __ bind(&done);
5237   } else {
5238     DCHECK(instr->hydrogen()->is_backwards_branch());
5239     // Perform stack overflow check if this goto needs it before jumping.
5240     DeferredStackCheck* deferred_stack_check =
5241         new(zone()) DeferredStackCheck(this, instr);
5242     __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5243     __ cmp(sp, Operand(ip));
5244     __ b(lo, deferred_stack_check->entry());
5245     EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5246     __ bind(instr->done_label());
5247     deferred_stack_check->SetExit(instr->done_label());
5248     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5249     // Don't record a deoptimization index for the safepoint here.
5250     // This will be done explicitly when emitting call and the safepoint in
5251     // the deferred code.
5252   }
5253 }
5254 
5255 
DoOsrEntry(LOsrEntry * instr)5256 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5257   // This is a pseudo-instruction that ensures that the environment here is
5258   // properly registered for deoptimization and records the assembler's PC
5259   // offset.
5260   LEnvironment* environment = instr->environment();
5261 
5262   // If the environment were already registered, we would have no way of
5263   // backpatching it with the spill slot operands.
5264   DCHECK(!environment->HasBeenRegistered());
5265   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5266 
5267   GenerateOsrPrologue();
5268 }
5269 
5270 
DoForInPrepareMap(LForInPrepareMap * instr)5271 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5272   Label use_cache, call_runtime;
5273   __ CheckEnumCache(&call_runtime);
5274 
5275   __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
5276   __ b(&use_cache);
5277 
5278   // Get the set of properties to enumerate.
5279   __ bind(&call_runtime);
5280   __ push(r0);
5281   CallRuntime(Runtime::kForInEnumerate, instr);
5282   __ bind(&use_cache);
5283 }
5284 
5285 
DoForInCacheArray(LForInCacheArray * instr)5286 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5287   Register map = ToRegister(instr->map());
5288   Register result = ToRegister(instr->result());
5289   Label load_cache, done;
5290   __ EnumLength(result, map);
5291   __ cmp(result, Operand(Smi::kZero));
5292   __ b(ne, &load_cache);
5293   __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
5294   __ jmp(&done);
5295 
5296   __ bind(&load_cache);
5297   __ LoadInstanceDescriptors(map, result);
5298   __ ldr(result,
5299          FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5300   __ ldr(result,
5301          FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5302   __ cmp(result, Operand::Zero());
5303   DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache);
5304 
5305   __ bind(&done);
5306 }
5307 
5308 
DoCheckMapValue(LCheckMapValue * instr)5309 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5310   Register object = ToRegister(instr->value());
5311   Register map = ToRegister(instr->map());
5312   __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5313   __ cmp(map, scratch0());
5314   DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap);
5315 }
5316 
5317 
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5318 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5319                                            Register result,
5320                                            Register object,
5321                                            Register index) {
5322   PushSafepointRegistersScope scope(this);
5323   __ Push(object);
5324   __ Push(index);
5325   __ mov(cp, Operand::Zero());
5326   __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5327   RecordSafepointWithRegisters(
5328       instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5329   __ StoreToSafepointRegisterSlot(r0, result);
5330 }
5331 
5332 
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5333 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5334   class DeferredLoadMutableDouble final : public LDeferredCode {
5335    public:
5336     DeferredLoadMutableDouble(LCodeGen* codegen,
5337                               LLoadFieldByIndex* instr,
5338                               Register result,
5339                               Register object,
5340                               Register index)
5341         : LDeferredCode(codegen),
5342           instr_(instr),
5343           result_(result),
5344           object_(object),
5345           index_(index) {
5346     }
5347     void Generate() override {
5348       codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5349     }
5350     LInstruction* instr() override { return instr_; }
5351 
5352    private:
5353     LLoadFieldByIndex* instr_;
5354     Register result_;
5355     Register object_;
5356     Register index_;
5357   };
5358 
5359   Register object = ToRegister(instr->object());
5360   Register index = ToRegister(instr->index());
5361   Register result = ToRegister(instr->result());
5362   Register scratch = scratch0();
5363 
5364   DeferredLoadMutableDouble* deferred;
5365   deferred = new(zone()) DeferredLoadMutableDouble(
5366       this, instr, result, object, index);
5367 
5368   Label out_of_object, done;
5369 
5370   __ tst(index, Operand(Smi::FromInt(1)));
5371   __ b(ne, deferred->entry());
5372   __ mov(index, Operand(index, ASR, 1));
5373 
5374   __ cmp(index, Operand::Zero());
5375   __ b(lt, &out_of_object);
5376 
5377   __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index));
5378   __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5379 
5380   __ b(&done);
5381 
5382   __ bind(&out_of_object);
5383   __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5384   // Index is equal to negated out of object property index plus 1.
5385   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
5386   __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index));
5387   __ ldr(result, FieldMemOperand(scratch,
5388                                  FixedArray::kHeaderSize - kPointerSize));
5389   __ bind(deferred->exit());
5390   __ bind(&done);
5391 }
5392 
5393 #undef __
5394 
5395 }  // namespace internal
5396 }  // namespace v8
5397