• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7 
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kReturnRegister2 = {Register::kCode_a0};
19 const Register kJSFunctionRegister = {Register::kCode_a1};
20 const Register kContextRegister = {Register::kCpRegister};
21 const Register kAllocateSizeRegister = {Register::kCode_a0};
22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t4};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t5};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t6};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30 
31 // Forward declaration.
32 class JumpTarget;
33 
34 // Reserved Register Usage Summary.
35 //
36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
37 //
38 // The programmer should know that the MacroAssembler may clobber these three,
39 // but won't touch other registers except in special cases.
40 //
41 // Per the MIPS ABI, register t9 must be used for indirect function call
42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43 // trying to update gp register for position-independent-code. Whenever
44 // MIPS generated code calls C code, it must be via t9 register.
45 
46 
47 // Flags used for LeaveExitFrame function.
48 enum LeaveExitFrameMode {
49   EMIT_RETURN = true,
50   NO_EMIT_RETURN = false
51 };
52 
53 // Flags used for AllocateHeapNumber
54 enum TaggingMode {
55   // Tag the result.
56   TAG_RESULT,
57   // Don't tag
58   DONT_TAG_RESULT
59 };
60 
61 // Flags used for the ObjectToDoubleFPURegister function.
62 enum ObjectToDoubleFlags {
63   // No special flags.
64   NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65   // Object is known to be a non smi.
66   OBJECT_NOT_SMI = 1 << 0,
67   // Don't load NaNs or infinities, branch to the non number case instead.
68   AVOID_NANS_AND_INFINITIES = 1 << 1
69 };
70 
71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72 enum BranchDelaySlot {
73   USE_DELAY_SLOT,
74   PROTECT
75 };
76 
77 // Flags used for the li macro-assembler function.
78 enum LiFlags {
79   // If the constant value can be represented in just 16 bits, then
80   // optimize the li to use a single instruction, rather than lui/ori pair.
81   OPTIMIZE_SIZE = 0,
82   // Always use 2 instructions (lui/ori pair), even if the constant could
83   // be loaded with just one, so that this value is patchable later.
84   CONSTANT_SIZE = 1
85 };
86 
87 
88 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
89 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
90 enum PointersToHereCheck {
91   kPointersToHereMaybeInteresting,
92   kPointersToHereAreAlwaysInteresting
93 };
94 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
95 
96 Register GetRegisterThatIsNotOneOf(Register reg1,
97                                    Register reg2 = no_reg,
98                                    Register reg3 = no_reg,
99                                    Register reg4 = no_reg,
100                                    Register reg5 = no_reg,
101                                    Register reg6 = no_reg);
102 
103 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
104                 Register reg4 = no_reg, Register reg5 = no_reg,
105                 Register reg6 = no_reg, Register reg7 = no_reg,
106                 Register reg8 = no_reg, Register reg9 = no_reg,
107                 Register reg10 = no_reg);
108 
109 
110 // -----------------------------------------------------------------------------
111 // Static helper functions.
112 
ContextMemOperand(Register context,int index)113 inline MemOperand ContextMemOperand(Register context, int index) {
114   return MemOperand(context, Context::SlotOffset(index));
115 }
116 
117 
NativeContextMemOperand()118 inline MemOperand NativeContextMemOperand() {
119   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
120 }
121 
122 
123 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)124 inline MemOperand FieldMemOperand(Register object, int offset) {
125   return MemOperand(object, offset - kHeapObjectTag);
126 }
127 
128 
129 // Generate a MemOperand for storing arguments 5..N on the stack
130 // when calling CallCFunction().
CFunctionArgumentOperand(int index)131 inline MemOperand CFunctionArgumentOperand(int index) {
132   DCHECK(index > kCArgSlotCount);
133   // Argument 5 takes the slot just past the four Arg-slots.
134   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
135   return MemOperand(sp, offset);
136 }
137 
138 
139 // MacroAssembler implements a collection of frequently used macros.
140 class MacroAssembler: public Assembler {
141  public:
142   MacroAssembler(Isolate* isolate, void* buffer, int size,
143                  CodeObjectRequired create_code_object);
144 
145   // Arguments macros.
146 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
147 #define COND_ARGS cond, r1, r2
148 
149   // Cases when relocation is not needed.
150 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
151   void Name(target_type target, BranchDelaySlot bd = PROTECT); \
152   inline void Name(BranchDelaySlot bd, target_type target) { \
153     Name(target, bd); \
154   } \
155   void Name(target_type target, \
156             COND_TYPED_ARGS, \
157             BranchDelaySlot bd = PROTECT); \
158   inline void Name(BranchDelaySlot bd, \
159                    target_type target, \
160                    COND_TYPED_ARGS) { \
161     Name(target, COND_ARGS, bd); \
162   }
163 
164 #define DECLARE_BRANCH_PROTOTYPES(Name)   \
165   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
166   DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
167 
168   DECLARE_BRANCH_PROTOTYPES(Branch)
169   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
170   DECLARE_BRANCH_PROTOTYPES(BranchShort)
171 
172 #undef DECLARE_BRANCH_PROTOTYPES
173 #undef COND_TYPED_ARGS
174 #undef COND_ARGS
175 
176 
177   // Jump, Call, and Ret pseudo instructions implementing inter-working.
178 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
179   const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
180 
181   void Jump(Register target, COND_ARGS);
182   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
183   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
184   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
185   static int CallSize(Register target, COND_ARGS);
186   void Call(Register target, COND_ARGS);
187   static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
188   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
189   int CallSize(Handle<Code> code,
190                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
191                TypeFeedbackId ast_id = TypeFeedbackId::None(),
192                COND_ARGS);
193   void Call(Handle<Code> code,
194             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
195             TypeFeedbackId ast_id = TypeFeedbackId::None(),
196             COND_ARGS);
197   void Ret(COND_ARGS);
198   inline void Ret(BranchDelaySlot bd, Condition cond = al,
199     Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
200     Ret(cond, rs, rt, bd);
201   }
202 
203   bool IsNear(Label* L, Condition cond, int rs_reg);
204 
205   void Branch(Label* L,
206               Condition cond,
207               Register rs,
208               Heap::RootListIndex index,
209               BranchDelaySlot bdslot = PROTECT);
210 
211 // Number of instructions needed for calculation of switch table entry address
212 #ifdef _MIPS_ARCH_MIPS32R6
213   static const int kSwitchTablePrologueSize = 5;
214 #else
215   static const int kSwitchTablePrologueSize = 10;
216 #endif
217   // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
218   // functor/function with 'Label *func(size_t index)' declaration.
219   template <typename Func>
220   void GenerateSwitchTable(Register index, size_t case_count,
221                            Func GetLabelFunction);
222 #undef COND_ARGS
223 
224   // Emit code that loads |parameter_index|'th parameter from the stack to
225   // the register according to the CallInterfaceDescriptor definition.
226   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
227   // below the caller's sp.
228   template <class Descriptor>
229   void LoadParameterFromStack(
230       Register reg, typename Descriptor::ParameterIndices parameter_index,
231       int sp_to_ra_offset_in_words = 0) {
232     DCHECK(Descriptor::kPassLastArgsOnStack);
233     UNIMPLEMENTED();
234   }
235 
236   // Emit code to discard a non-negative number of pointer-sized elements
237   // from the stack, clobbering only the sp register.
238   void Drop(int count,
239             Condition cond = cc_always,
240             Register reg = no_reg,
241             const Operand& op = Operand(no_reg));
242 
243   // Trivial case of DropAndRet that utilizes the delay slot and only emits
244   // 2 instructions.
245   void DropAndRet(int drop);
246 
247   void DropAndRet(int drop,
248                   Condition cond,
249                   Register reg,
250                   const Operand& op);
251 
252   // Swap two registers.  If the scratch register is omitted then a slightly
253   // less efficient form using xor instead of mov is emitted.
254   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
255 
256   void Call(Label* target);
257 
Move(Register dst,Handle<Object> handle)258   inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)259   inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
260 
Move(Register dst,Register src)261   inline void Move(Register dst, Register src) {
262     if (!dst.is(src)) {
263       mov(dst, src);
264     }
265   }
266 
Move_d(FPURegister dst,FPURegister src)267   inline void Move_d(FPURegister dst, FPURegister src) {
268     if (!dst.is(src)) {
269       mov_d(dst, src);
270     }
271   }
272 
Move_s(FPURegister dst,FPURegister src)273   inline void Move_s(FPURegister dst, FPURegister src) {
274     if (!dst.is(src)) {
275       mov_s(dst, src);
276     }
277   }
278 
Move(FPURegister dst,FPURegister src)279   inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
280 
Move(Register dst_low,Register dst_high,FPURegister src)281   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
282     mfc1(dst_low, src);
283     Mfhc1(dst_high, src);
284   }
285 
FmoveHigh(Register dst_high,FPURegister src)286   inline void FmoveHigh(Register dst_high, FPURegister src) {
287     Mfhc1(dst_high, src);
288   }
289 
FmoveHigh(FPURegister dst,Register src_high)290   inline void FmoveHigh(FPURegister dst, Register src_high) {
291     Mthc1(src_high, dst);
292   }
293 
FmoveLow(Register dst_low,FPURegister src)294   inline void FmoveLow(Register dst_low, FPURegister src) {
295     mfc1(dst_low, src);
296   }
297 
298   void FmoveLow(FPURegister dst, Register src_low);
299 
Move(FPURegister dst,Register src_low,Register src_high)300   inline void Move(FPURegister dst, Register src_low, Register src_high) {
301     mtc1(src_low, dst);
302     Mthc1(src_high, dst);
303   }
304 
305   void Move(FPURegister dst, float imm);
306   void Move(FPURegister dst, double imm);
307 
308   // Conditional move.
309   void Movz(Register rd, Register rs, Register rt);
310   void Movn(Register rd, Register rs, Register rt);
311   void Movt(Register rd, Register rs, uint16_t cc = 0);
312   void Movf(Register rd, Register rs, uint16_t cc = 0);
313 
314   void Clz(Register rd, Register rs);
315 
316   // Jump unconditionally to given label.
317   // We NEED a nop in the branch delay slot, as it used by v8, for example in
318   // CodeGenerator::ProcessDeferred().
319   // Currently the branch delay slot is filled by the MacroAssembler.
320   // Use rather b(Label) for code generation.
jmp(Label * L)321   void jmp(Label* L) {
322     Branch(L);
323   }
324 
325   void Load(Register dst, const MemOperand& src, Representation r);
326   void Store(Register src, const MemOperand& dst, Representation r);
327 
PushRoot(Heap::RootListIndex index)328   void PushRoot(Heap::RootListIndex index) {
329     LoadRoot(at, index);
330     Push(at);
331   }
332 
333   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)334   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
335     LoadRoot(at, index);
336     Branch(if_equal, eq, with, Operand(at));
337   }
338 
339   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)340   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
341                      Label* if_not_equal) {
342     LoadRoot(at, index);
343     Branch(if_not_equal, ne, with, Operand(at));
344   }
345 
346   // Load an object from the root table.
347   void LoadRoot(Register destination,
348                 Heap::RootListIndex index);
349   void LoadRoot(Register destination,
350                 Heap::RootListIndex index,
351                 Condition cond, Register src1, const Operand& src2);
352 
353   // Store an object to the root table.
354   void StoreRoot(Register source,
355                  Heap::RootListIndex index);
356   void StoreRoot(Register source,
357                  Heap::RootListIndex index,
358                  Condition cond, Register src1, const Operand& src2);
359 
360   // ---------------------------------------------------------------------------
361   // GC Support
362 
363   void IncrementalMarkingRecordWriteHelper(Register object,
364                                            Register value,
365                                            Register address);
366 
367   enum RememberedSetFinalAction {
368     kReturnAtEnd,
369     kFallThroughAtEnd
370   };
371 
372 
373   // Record in the remembered set the fact that we have a pointer to new space
374   // at the address pointed to by the addr register.  Only works if addr is not
375   // in new space.
376   void RememberedSetHelper(Register object,  // Used for debug code.
377                            Register addr,
378                            Register scratch,
379                            SaveFPRegsMode save_fp,
380                            RememberedSetFinalAction and_then);
381 
382   void CheckPageFlag(Register object,
383                      Register scratch,
384                      int mask,
385                      Condition cc,
386                      Label* condition_met);
387 
388   // Check if object is in new space.  Jumps if the object is not in new space.
389   // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)390   void JumpIfNotInNewSpace(Register object,
391                            Register scratch,
392                            Label* branch) {
393     InNewSpace(object, scratch, eq, branch);
394   }
395 
396   // Check if object is in new space.  Jumps if the object is in new space.
397   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)398   void JumpIfInNewSpace(Register object,
399                         Register scratch,
400                         Label* branch) {
401     InNewSpace(object, scratch, ne, branch);
402   }
403 
404   // Check if an object has a given incremental marking color.
405   void HasColor(Register object,
406                 Register scratch0,
407                 Register scratch1,
408                 Label* has_color,
409                 int first_bit,
410                 int second_bit);
411 
412   void JumpIfBlack(Register object,
413                    Register scratch0,
414                    Register scratch1,
415                    Label* on_black);
416 
417   // Checks the color of an object.  If the object is white we jump to the
418   // incremental marker.
419   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
420                    Register scratch3, Label* value_is_white);
421 
422   // Notify the garbage collector that we wrote a pointer into an object.
423   // |object| is the object being stored into, |value| is the object being
424   // stored.  value and scratch registers are clobbered by the operation.
425   // The offset is the offset from the start of the object, not the offset from
426   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
427   void RecordWriteField(
428       Register object,
429       int offset,
430       Register value,
431       Register scratch,
432       RAStatus ra_status,
433       SaveFPRegsMode save_fp,
434       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
435       SmiCheck smi_check = INLINE_SMI_CHECK,
436       PointersToHereCheck pointers_to_here_check_for_value =
437           kPointersToHereMaybeInteresting);
438 
439   // As above, but the offset has the tag presubtracted.  For use with
440   // MemOperand(reg, off).
441   inline void RecordWriteContextSlot(
442       Register context,
443       int offset,
444       Register value,
445       Register scratch,
446       RAStatus ra_status,
447       SaveFPRegsMode save_fp,
448       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
449       SmiCheck smi_check = INLINE_SMI_CHECK,
450       PointersToHereCheck pointers_to_here_check_for_value =
451           kPointersToHereMaybeInteresting) {
452     RecordWriteField(context,
453                      offset + kHeapObjectTag,
454                      value,
455                      scratch,
456                      ra_status,
457                      save_fp,
458                      remembered_set_action,
459                      smi_check,
460                      pointers_to_here_check_for_value);
461   }
462 
463   // Notify the garbage collector that we wrote a code entry into a
464   // JSFunction. Only scratch is clobbered by the operation.
465   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
466                                  Register scratch);
467 
468   void RecordWriteForMap(
469       Register object,
470       Register map,
471       Register dst,
472       RAStatus ra_status,
473       SaveFPRegsMode save_fp);
474 
475   // For a given |object| notify the garbage collector that the slot |address|
476   // has been written.  |value| is the object being stored. The value and
477   // address registers are clobbered by the operation.
478   void RecordWrite(
479       Register object,
480       Register address,
481       Register value,
482       RAStatus ra_status,
483       SaveFPRegsMode save_fp,
484       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
485       SmiCheck smi_check = INLINE_SMI_CHECK,
486       PointersToHereCheck pointers_to_here_check_for_value =
487           kPointersToHereMaybeInteresting);
488 
489 
490   // ---------------------------------------------------------------------------
491   // Inline caching support.
492 
493   void GetNumberHash(Register reg0, Register scratch);
494 
MarkCode(NopMarkerTypes type)495   inline void MarkCode(NopMarkerTypes type) {
496     nop(type);
497   }
498 
499   // Check if the given instruction is a 'type' marker.
500   // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
501   // nop(type)). These instructions are generated to mark special location in
502   // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)503   static inline bool IsMarkedCode(Instr instr, int type) {
504     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
505     return IsNop(instr, type);
506   }
507 
508 
GetCodeMarker(Instr instr)509   static inline int GetCodeMarker(Instr instr) {
510     uint32_t opcode = ((instr & kOpcodeMask));
511     uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
512     uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
513     uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
514 
515     // Return <n> if we have a sll zero_reg, zero_reg, n
516     // else return -1.
517     bool sllzz = (opcode == SLL &&
518                   rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
519                   rs == static_cast<uint32_t>(ToNumber(zero_reg)));
520     int type =
521         (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
522     DCHECK((type == -1) ||
523            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
524     return type;
525   }
526 
527 
528 
529   // ---------------------------------------------------------------------------
530   // Allocation support.
531 
532   // Allocate an object in new space or old space. The object_size is
533   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
534   // is passed. If the space is exhausted control continues at the gc_required
535   // label. The allocated object is returned in result. If the flag
536   // tag_allocated_object is true the result is tagged as as a heap object.
537   // All registers are clobbered also when control continues at the gc_required
538   // label.
539   void Allocate(int object_size,
540                 Register result,
541                 Register scratch1,
542                 Register scratch2,
543                 Label* gc_required,
544                 AllocationFlags flags);
545 
546   void Allocate(Register object_size, Register result, Register result_new,
547                 Register scratch, Label* gc_required, AllocationFlags flags);
548 
549   // FastAllocate is right now only used for folded allocations. It just
550   // increments the top pointer without checking against limit. This can only
551   // be done if it was proved earlier that the allocation will succeed.
552   void FastAllocate(int object_size, Register result, Register scratch1,
553                     Register scratch2, AllocationFlags flags);
554 
555   void FastAllocate(Register object_size, Register result, Register result_new,
556                     Register scratch, AllocationFlags flags);
557 
558   // Allocates a heap number or jumps to the gc_required label if the young
559   // space is full and a scavenge is needed. All registers are clobbered also
560   // when control continues at the gc_required label.
561   void AllocateHeapNumber(Register result,
562                           Register scratch1,
563                           Register scratch2,
564                           Register heap_number_map,
565                           Label* gc_required,
566                           MutableMode mode = IMMUTABLE);
567   void AllocateHeapNumberWithValue(Register result,
568                                    FPURegister value,
569                                    Register scratch1,
570                                    Register scratch2,
571                                    Label* gc_required);
572 
573   // Allocate and initialize a JSValue wrapper with the specified {constructor}
574   // and {value}.
575   void AllocateJSValue(Register result, Register constructor, Register value,
576                        Register scratch1, Register scratch2,
577                        Label* gc_required);
578 
579   // ---------------------------------------------------------------------------
580   // Instruction macros.
581 
582 #define DEFINE_INSTRUCTION(instr)                                              \
583   void instr(Register rd, Register rs, const Operand& rt);                     \
584   void instr(Register rd, Register rs, Register rt) {                          \
585     instr(rd, rs, Operand(rt));                                                \
586   }                                                                            \
587   void instr(Register rs, Register rt, int32_t j) {                            \
588     instr(rs, rt, Operand(j));                                                 \
589   }
590 
591 #define DEFINE_INSTRUCTION2(instr)                                             \
592   void instr(Register rs, const Operand& rt);                                  \
593   void instr(Register rs, Register rt) {                                       \
594     instr(rs, Operand(rt));                                                    \
595   }                                                                            \
596   void instr(Register rs, int32_t j) {                                         \
597     instr(rs, Operand(j));                                                     \
598   }
599 
600 #define DEFINE_INSTRUCTION3(instr)                                             \
601   void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt);  \
602   void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) {       \
603     instr(rd_hi, rd_lo, rs, Operand(rt));                                      \
604   }                                                                            \
605   void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) {         \
606     instr(rd_hi, rd_lo, rs, Operand(j));                                       \
607   }
608 
609   DEFINE_INSTRUCTION(Addu);
610   DEFINE_INSTRUCTION(Subu);
611   DEFINE_INSTRUCTION(Mul);
612   DEFINE_INSTRUCTION(Div);
613   DEFINE_INSTRUCTION(Divu);
614   DEFINE_INSTRUCTION(Mod);
615   DEFINE_INSTRUCTION(Modu);
616   DEFINE_INSTRUCTION(Mulh);
617   DEFINE_INSTRUCTION2(Mult);
618   DEFINE_INSTRUCTION(Mulhu);
619   DEFINE_INSTRUCTION2(Multu);
620   DEFINE_INSTRUCTION2(Div);
621   DEFINE_INSTRUCTION2(Divu);
622 
623   DEFINE_INSTRUCTION3(Div);
624   DEFINE_INSTRUCTION3(Mul);
625   DEFINE_INSTRUCTION3(Mulu);
626 
627   DEFINE_INSTRUCTION(And);
628   DEFINE_INSTRUCTION(Or);
629   DEFINE_INSTRUCTION(Xor);
630   DEFINE_INSTRUCTION(Nor);
631   DEFINE_INSTRUCTION2(Neg);
632 
633   DEFINE_INSTRUCTION(Slt);
634   DEFINE_INSTRUCTION(Sltu);
635 
636   // MIPS32 R2 instruction macro.
637   DEFINE_INSTRUCTION(Ror);
638 
639 #undef DEFINE_INSTRUCTION
640 #undef DEFINE_INSTRUCTION2
641 #undef DEFINE_INSTRUCTION3
642 
643   // Load Scaled Address instructions. Parameter sa (shift argument) must be
644   // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
645   // may be clobbered.
646   void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
647            Register scratch = at);
648 
649   void Pref(int32_t hint, const MemOperand& rs);
650 
651 
652   // ---------------------------------------------------------------------------
653   // Pseudo-instructions.
654 
655   // Change endianness
656   void ByteSwapSigned(Register dest, Register src, int operand_size);
657   void ByteSwapUnsigned(Register dest, Register src, int operand_size);
658 
mov(Register rd,Register rt)659   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
660 
661   void Ulh(Register rd, const MemOperand& rs);
662   void Ulhu(Register rd, const MemOperand& rs);
663   void Ush(Register rd, const MemOperand& rs, Register scratch);
664 
665   void Ulw(Register rd, const MemOperand& rs);
666   void Usw(Register rd, const MemOperand& rs);
667 
668   void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
669   void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
670 
671   void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
672   void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
673 
674   // Load int32 in the rd register.
675   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
676   inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
677     li(rd, Operand(j), mode);
678   }
679   void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
680 
681   // Push multiple registers on the stack.
682   // Registers are saved in numerical order, with higher numbered registers
683   // saved in higher memory addresses.
684   void MultiPush(RegList regs);
685   void MultiPushReversed(RegList regs);
686 
687   void MultiPushFPU(RegList regs);
688   void MultiPushReversedFPU(RegList regs);
689 
push(Register src)690   void push(Register src) {
691     Addu(sp, sp, Operand(-kPointerSize));
692     sw(src, MemOperand(sp, 0));
693   }
Push(Register src)694   void Push(Register src) { push(src); }
695 
696   // Push a handle.
697   void Push(Handle<Object> handle);
Push(Smi * smi)698   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
699 
700   // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)701   void Push(Register src1, Register src2) {
702     Subu(sp, sp, Operand(2 * kPointerSize));
703     sw(src1, MemOperand(sp, 1 * kPointerSize));
704     sw(src2, MemOperand(sp, 0 * kPointerSize));
705   }
706 
707   // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)708   void Push(Register src1, Register src2, Register src3) {
709     Subu(sp, sp, Operand(3 * kPointerSize));
710     sw(src1, MemOperand(sp, 2 * kPointerSize));
711     sw(src2, MemOperand(sp, 1 * kPointerSize));
712     sw(src3, MemOperand(sp, 0 * kPointerSize));
713   }
714 
715   // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)716   void Push(Register src1, Register src2, Register src3, Register src4) {
717     Subu(sp, sp, Operand(4 * kPointerSize));
718     sw(src1, MemOperand(sp, 3 * kPointerSize));
719     sw(src2, MemOperand(sp, 2 * kPointerSize));
720     sw(src3, MemOperand(sp, 1 * kPointerSize));
721     sw(src4, MemOperand(sp, 0 * kPointerSize));
722   }
723 
724   // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)725   void Push(Register src1, Register src2, Register src3, Register src4,
726             Register src5) {
727     Subu(sp, sp, Operand(5 * kPointerSize));
728     sw(src1, MemOperand(sp, 4 * kPointerSize));
729     sw(src2, MemOperand(sp, 3 * kPointerSize));
730     sw(src3, MemOperand(sp, 2 * kPointerSize));
731     sw(src4, MemOperand(sp, 1 * kPointerSize));
732     sw(src5, MemOperand(sp, 0 * kPointerSize));
733   }
734 
Push(Register src,Condition cond,Register tst1,Register tst2)735   void Push(Register src, Condition cond, Register tst1, Register tst2) {
736     // Since we don't have conditional execution we use a Branch.
737     Branch(3, cond, tst1, Operand(tst2));
738     Subu(sp, sp, Operand(kPointerSize));
739     sw(src, MemOperand(sp, 0));
740   }
741 
742   // Pops multiple values from the stack and load them in the
743   // registers specified in regs. Pop order is the opposite as in MultiPush.
744   void MultiPop(RegList regs);
745   void MultiPopReversed(RegList regs);
746 
747   void MultiPopFPU(RegList regs);
748   void MultiPopReversedFPU(RegList regs);
749 
pop(Register dst)750   void pop(Register dst) {
751     lw(dst, MemOperand(sp, 0));
752     Addu(sp, sp, Operand(kPointerSize));
753   }
Pop(Register dst)754   void Pop(Register dst) { pop(dst); }
755 
756   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)757   void Pop(Register src1, Register src2) {
758     DCHECK(!src1.is(src2));
759     lw(src2, MemOperand(sp, 0 * kPointerSize));
760     lw(src1, MemOperand(sp, 1 * kPointerSize));
761     Addu(sp, sp, 2 * kPointerSize);
762   }
763 
764   // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)765   void Pop(Register src1, Register src2, Register src3) {
766     lw(src3, MemOperand(sp, 0 * kPointerSize));
767     lw(src2, MemOperand(sp, 1 * kPointerSize));
768     lw(src1, MemOperand(sp, 2 * kPointerSize));
769     Addu(sp, sp, 3 * kPointerSize);
770   }
771 
772   void Pop(uint32_t count = 1) {
773     Addu(sp, sp, Operand(count * kPointerSize));
774   }
775 
776   // Push a fixed frame, consisting of ra, fp.
777   void PushCommonFrame(Register marker_reg = no_reg);
778 
779   // Push a standard frame, consisting of ra, fp, context and JS function.
780   void PushStandardFrame(Register function_reg);
781 
782   void PopCommonFrame(Register marker_reg = no_reg);
783 
784   // Push and pop the registers that can hold pointers, as defined by the
785   // RegList constant kSafepointSavedRegisters.
786   void PushSafepointRegisters();
787   void PopSafepointRegisters();
788   // Store value in register src in the safepoint stack slot for
789   // register dst.
790   void StoreToSafepointRegisterSlot(Register src, Register dst);
791   // Load the value of the src register from its safepoint stack slot
792   // into register dst.
793   void LoadFromSafepointRegisterSlot(Register dst, Register src);
794 
795   // MIPS32 R2 instruction macro.
796   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
797   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
798   void Seb(Register rd, Register rt);
799   void Seh(Register rd, Register rt);
800   void Neg_s(FPURegister fd, FPURegister fs);
801   void Neg_d(FPURegister fd, FPURegister fs);
802 
803   // MIPS32 R6 instruction macros.
804   void Bovc(Register rt, Register rs, Label* L);
805   void Bnvc(Register rt, Register rs, Label* L);
806 
807   // Int64Lowering instructions
808   void AddPair(Register dst_low, Register dst_high, Register left_low,
809                Register left_high, Register right_low, Register right_high);
810 
811   void SubPair(Register dst_low, Register dst_high, Register left_low,
812                Register left_high, Register right_low, Register right_high);
813 
814   void ShlPair(Register dst_low, Register dst_high, Register src_low,
815                Register src_high, Register shift);
816 
817   void ShlPair(Register dst_low, Register dst_high, Register src_low,
818                Register src_high, uint32_t shift);
819 
820   void ShrPair(Register dst_low, Register dst_high, Register src_low,
821                Register src_high, Register shift);
822 
823   void ShrPair(Register dst_low, Register dst_high, Register src_low,
824                Register src_high, uint32_t shift);
825 
826   void SarPair(Register dst_low, Register dst_high, Register src_low,
827                Register src_high, Register shift);
828 
829   void SarPair(Register dst_low, Register dst_high, Register src_low,
830                Register src_high, uint32_t shift);
831 
832   // ---------------------------------------------------------------------------
833   // FPU macros. These do not handle special cases like NaN or +- inf.
834 
835   // Convert unsigned word to double.
836   void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
837 
838   // Convert single to unsigned word.
839   void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
840   void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
841 
842   // Convert double to unsigned word.
843   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
844   void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
845 
846   void Trunc_w_d(FPURegister fd, FPURegister fs);
847   void Round_w_d(FPURegister fd, FPURegister fs);
848   void Floor_w_d(FPURegister fd, FPURegister fs);
849   void Ceil_w_d(FPURegister fd, FPURegister fs);
850 
851   // FP32 mode: Move the general purpose register into
852   // the high part of the double-register pair.
853   // FP64 mode: Move the general-purpose register into
854   // the higher 32 bits of the 64-bit coprocessor register,
855   // while leaving the low bits unchanged.
856   void Mthc1(Register rt, FPURegister fs);
857 
858   // FP32 mode: move the high part of the double-register pair into
859   // general purpose register.
860   // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
861   // general-purpose register.
862   void Mfhc1(Register rt, FPURegister fs);
863 
864   void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
865               FPURegister scratch);
866   void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
867               FPURegister scratch);
868   void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
869               FPURegister scratch);
870   void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
871               FPURegister scratch);
872 
873   // Wrapper functions for the different cmp/branch types.
874   inline void BranchF32(Label* target, Label* nan, Condition cc,
875                         FPURegister cmp1, FPURegister cmp2,
876                         BranchDelaySlot bd = PROTECT) {
877     BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
878   }
879 
880   inline void BranchF64(Label* target, Label* nan, Condition cc,
881                         FPURegister cmp1, FPURegister cmp2,
882                         BranchDelaySlot bd = PROTECT) {
883     BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
884   }
885 
886   // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)887   inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
888                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
889     BranchF64(target, nan, cc, cmp1, cmp2, bd);
890   }
891 
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)892   inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
893                         Condition cc, FPURegister cmp1, FPURegister cmp2) {
894     BranchF32(target, nan, cc, cmp1, cmp2, bd);
895   }
896 
897   // Alias functions for backward compatibility.
898   inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
899                       FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
900     BranchF64(target, nan, cc, cmp1, cmp2, bd);
901   }
902 
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)903   inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
904                       Condition cc, FPURegister cmp1, FPURegister cmp2) {
905     BranchF64(bd, target, nan, cc, cmp1, cmp2);
906   }
907 
908   // Truncates a double using a specific rounding mode, and writes the value
909   // to the result register.
910   // The except_flag will contain any exceptions caused by the instruction.
911   // If check_inexact is kDontCheckForInexactConversion, then the inexact
912   // exception is masked.
913   void EmitFPUTruncate(FPURoundingMode rounding_mode,
914                        Register result,
915                        DoubleRegister double_input,
916                        Register scratch,
917                        DoubleRegister double_scratch,
918                        Register except_flag,
919                        CheckForInexactConversion check_inexact
920                            = kDontCheckForInexactConversion);
921 
922   // Performs a truncating conversion of a floating point number as used by
923   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
924   // succeeds, otherwise falls through if result is saturated. On return
925   // 'result' either holds answer, or is clobbered on fall through.
926   //
927   // Only public for the test code in test-code-stubs-arm.cc.
928   void TryInlineTruncateDoubleToI(Register result,
929                                   DoubleRegister input,
930                                   Label* done);
931 
932   // Performs a truncating conversion of a floating point number as used by
933   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
934   // Exits with 'result' holding the answer.
935   void TruncateDoubleToI(Register result, DoubleRegister double_input);
936 
937   // Performs a truncating conversion of a heap number as used by
938   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
939   // must be different registers. Exits with 'result' holding the answer.
940   void TruncateHeapNumberToI(Register result, Register object);
941 
942   // Converts the smi or heap number in object to an int32 using the rules
943   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
944   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
945   // different registers.
946   void TruncateNumberToI(Register object,
947                          Register result,
948                          Register heap_number_map,
949                          Register scratch,
950                          Label* not_int32);
951 
952   // Loads the number from object into dst register.
953   // If |object| is neither smi nor heap number, |not_number| is jumped to
954   // with |object| still intact.
955   void LoadNumber(Register object,
956                   FPURegister dst,
957                   Register heap_number_map,
958                   Register scratch,
959                   Label* not_number);
960 
961   // Loads the number from object into double_dst in the double format.
962   // Control will jump to not_int32 if the value cannot be exactly represented
963   // by a 32-bit integer.
964   // Floating point value in the 32-bit integer range that are not exact integer
965   // won't be loaded.
966   void LoadNumberAsInt32Double(Register object,
967                                DoubleRegister double_dst,
968                                Register heap_number_map,
969                                Register scratch1,
970                                Register scratch2,
971                                FPURegister double_scratch,
972                                Label* not_int32);
973 
974   // Loads the number from object into dst as a 32-bit integer.
975   // Control will jump to not_int32 if the object cannot be exactly represented
976   // by a 32-bit integer.
977   // Floating point value in the 32-bit integer range that are not exact integer
978   // won't be converted.
979   void LoadNumberAsInt32(Register object,
980                          Register dst,
981                          Register heap_number_map,
982                          Register scratch1,
983                          Register scratch2,
984                          FPURegister double_scratch0,
985                          FPURegister double_scratch1,
986                          Label* not_int32);
987 
988   // Enter exit frame.
989   // argc - argument count to be dropped by LeaveExitFrame.
990   // save_doubles - saves FPU registers on stack, currently disabled.
991   // stack_space - extra stack space.
992   void EnterExitFrame(bool save_doubles, int stack_space = 0,
993                       StackFrame::Type frame_type = StackFrame::EXIT);
994 
995   // Leave the current exit frame.
996   void LeaveExitFrame(bool save_doubles, Register arg_count,
997                       bool restore_context, bool do_return = NO_EMIT_RETURN,
998                       bool argument_count_is_length = false);
999 
1000   // Get the actual activation frame alignment for target environment.
1001   static int ActivationFrameAlignment();
1002 
1003   // Make sure the stack is aligned. Only emits code in debug mode.
1004   void AssertStackIsAligned();
1005 
1006   void LoadContext(Register dst, int context_chain_length);
1007 
1008   // Load the global object from the current context.
LoadGlobalObject(Register dst)1009   void LoadGlobalObject(Register dst) {
1010     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1011   }
1012 
1013   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1014   void LoadGlobalProxy(Register dst) {
1015     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1016   }
1017 
1018   void LoadNativeContextSlot(int index, Register dst);
1019 
1020   // Load the initial map from the global function. The registers
1021   // function and map can be the same, function is then overwritten.
1022   void LoadGlobalFunctionInitialMap(Register function,
1023                                     Register map,
1024                                     Register scratch);
1025 
InitializeRootRegister()1026   void InitializeRootRegister() {
1027     ExternalReference roots_array_start =
1028         ExternalReference::roots_array_start(isolate());
1029     li(kRootRegister, Operand(roots_array_start));
1030   }
1031 
1032   // -------------------------------------------------------------------------
1033   // JavaScript invokes.
1034 
1035   // Removes current frame and its arguments from the stack preserving
1036   // the arguments and a return address pushed to the stack for the next call.
1037   // Both |callee_args_count| and |caller_args_count_reg| do not include
1038   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1039   // is trashed.
1040   void PrepareForTailCall(const ParameterCount& callee_args_count,
1041                           Register caller_args_count_reg, Register scratch0,
1042                           Register scratch1);
1043 
1044   // Invoke the JavaScript function code by either calling or jumping.
1045   void InvokeFunctionCode(Register function, Register new_target,
1046                           const ParameterCount& expected,
1047                           const ParameterCount& actual, InvokeFlag flag,
1048                           const CallWrapper& call_wrapper);
1049 
1050   // On function call, call into the debugger if necessary.
1051   void CheckDebugHook(Register fun, Register new_target,
1052                       const ParameterCount& expected,
1053                       const ParameterCount& actual);
1054 
1055   // Invoke the JavaScript function in the given register. Changes the
1056   // current context to the context in the function before invoking.
1057   void InvokeFunction(Register function,
1058                       Register new_target,
1059                       const ParameterCount& actual,
1060                       InvokeFlag flag,
1061                       const CallWrapper& call_wrapper);
1062 
1063   void InvokeFunction(Register function,
1064                       const ParameterCount& expected,
1065                       const ParameterCount& actual,
1066                       InvokeFlag flag,
1067                       const CallWrapper& call_wrapper);
1068 
1069   void InvokeFunction(Handle<JSFunction> function,
1070                       const ParameterCount& expected,
1071                       const ParameterCount& actual,
1072                       InvokeFlag flag,
1073                       const CallWrapper& call_wrapper);
1074 
1075   void IsObjectJSStringType(Register object,
1076                             Register scratch,
1077                             Label* fail);
1078 
1079   void IsObjectNameType(Register object,
1080                         Register scratch,
1081                         Label* fail);
1082 
1083   // Frame restart support.
1084   void MaybeDropFrames();
1085 
1086   // Exception handling.
1087 
1088   // Push a new stack handler and link into stack handler chain.
1089   void PushStackHandler();
1090 
1091   // Unlink the stack handler on top of the stack from the stack handler chain.
1092   // Must preserve the result register.
1093   void PopStackHandler();
1094 
1095   // Initialize fields with filler values.  Fields starting at |current_address|
1096   // not including |end_address| are overwritten with the value in |filler|.  At
1097   // the end the loop, |current_address| takes the value of |end_address|.
1098   void InitializeFieldsWithFiller(Register current_address,
1099                                   Register end_address, Register filler);
1100 
1101   // -------------------------------------------------------------------------
1102   // Support functions.
1103 
1104   // Machine code version of Map::GetConstructor().
1105   // |temp| holds |result|'s map when done, and |temp2| its instance type.
1106   void GetMapConstructor(Register result, Register map, Register temp,
1107                          Register temp2);
1108 
1109   void GetObjectType(Register function,
1110                      Register map,
1111                      Register type_reg);
1112 
GetInstanceType(Register object_map,Register object_instance_type)1113   void GetInstanceType(Register object_map, Register object_instance_type) {
1114     lbu(object_instance_type,
1115         FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1116   }
1117 
1118   // Compare an object's map with the specified map and its transitioned
1119   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1120   // "branch_to" if the result of the comparison is "cond". If multiple map
1121   // compares are required, the compare sequences branches to early_success.
1122   void CompareMapAndBranch(Register obj,
1123                            Register scratch,
1124                            Handle<Map> map,
1125                            Label* early_success,
1126                            Condition cond,
1127                            Label* branch_to);
1128 
1129   // As above, but the map of the object is already loaded into the register
1130   // which is preserved by the code generated.
1131   void CompareMapAndBranch(Register obj_map,
1132                            Handle<Map> map,
1133                            Label* early_success,
1134                            Condition cond,
1135                            Label* branch_to);
1136 
1137   // Check if the map of an object is equal to a specified map and branch to
1138   // label if not. Skip the smi check if not required (object is known to be a
1139   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1140   // against maps that are ElementsKind transition maps of the specificed map.
1141   void CheckMap(Register obj,
1142                 Register scratch,
1143                 Handle<Map> map,
1144                 Label* fail,
1145                 SmiCheckType smi_check_type);
1146 
1147 
1148   void CheckMap(Register obj,
1149                 Register scratch,
1150                 Heap::RootListIndex index,
1151                 Label* fail,
1152                 SmiCheckType smi_check_type);
1153 
1154   // Check if the map of an object is equal to a specified weak map and branch
1155   // to a specified target if equal. Skip the smi check if not required
1156   // (object is known to be a heap object)
1157   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1158                        Handle<WeakCell> cell, Handle<Code> success,
1159                        SmiCheckType smi_check_type);
1160 
1161   // If the value is a NaN, canonicalize the value else, do nothing.
1162   void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1163 
1164   // Get value of the weak cell.
1165   void GetWeakValue(Register value, Handle<WeakCell> cell);
1166 
1167   // Load the value of the weak cell in the value register. Branch to the
1168   // given miss label is the weak cell was cleared.
1169   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1170 
1171   // Load and check the instance type of an object for being a string.
1172   // Loads the type into the second argument register.
1173   // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1174   Condition IsObjectStringType(Register obj,
1175                                Register type,
1176                                Register result) {
1177     lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1178     lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1179     And(type, type, Operand(kIsNotStringMask));
1180     DCHECK_EQ(0u, kStringTag);
1181     return eq;
1182   }
1183 
1184   // Get the number of least significant bits from a register.
1185   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1186   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1187 
1188   // Load the value of a number object into a FPU double register. If the
1189   // object is not a number a jump to the label not_number is performed
1190   // and the FPU double register is unchanged.
1191   void ObjectToDoubleFPURegister(
1192       Register object,
1193       FPURegister value,
1194       Register scratch1,
1195       Register scratch2,
1196       Register heap_number_map,
1197       Label* not_number,
1198       ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1199 
1200   // Load the value of a smi object into a FPU double register. The register
1201   // scratch1 can be the same register as smi in which case smi will hold the
1202   // untagged value afterwards.
1203   void SmiToDoubleFPURegister(Register smi,
1204                               FPURegister value,
1205                               Register scratch1);
1206 
1207   // -------------------------------------------------------------------------
1208   // Overflow handling functions.
1209   // Usage: first call the appropriate arithmetic function, then call one of the
1210   // jump functions with the overflow_dst register as the second parameter.
1211 
1212   inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1213                            Label* overflow_label, Register scratch = at) {
1214     AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1215   }
1216 
1217   inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1218                              Label* no_overflow_label, Register scratch = at) {
1219     AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1220   }
1221 
1222   void AddBranchOvf(Register dst, Register left, const Operand& right,
1223                     Label* overflow_label, Label* no_overflow_label,
1224                     Register scratch = at);
1225 
1226   void AddBranchOvf(Register dst, Register left, Register right,
1227                     Label* overflow_label, Label* no_overflow_label,
1228                     Register scratch = at);
1229 
1230 
1231   inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1232                            Label* overflow_label, Register scratch = at) {
1233     SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1234   }
1235 
1236   inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1237                              Label* no_overflow_label, Register scratch = at) {
1238     SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1239   }
1240 
1241   void SubBranchOvf(Register dst, Register left, const Operand& right,
1242                     Label* overflow_label, Label* no_overflow_label,
1243                     Register scratch = at);
1244 
1245   void SubBranchOvf(Register dst, Register left, Register right,
1246                     Label* overflow_label, Label* no_overflow_label,
1247                     Register scratch = at);
1248 
1249   inline void MulBranchOvf(Register dst, Register left, const Operand& right,
1250                            Label* overflow_label, Register scratch = at) {
1251     MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1252   }
1253 
1254   inline void MulBranchNoOvf(Register dst, Register left, const Operand& right,
1255                              Label* no_overflow_label, Register scratch = at) {
1256     MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1257   }
1258 
1259   void MulBranchOvf(Register dst, Register left, const Operand& right,
1260                     Label* overflow_label, Label* no_overflow_label,
1261                     Register scratch = at);
1262 
1263   void MulBranchOvf(Register dst, Register left, Register right,
1264                     Label* overflow_label, Label* no_overflow_label,
1265                     Register scratch = at);
1266 
1267   // Perform a floating-point min or max operation with the
1268   // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
1269   // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
1270   // handled in out-of-line code. The specific behaviour depends on supported
1271   // instructions.
1272   //
1273   // These functions assume (and assert) that !src1.is(src2). It is permitted
1274   // for the result to alias either input register.
1275   void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
1276                   Label* out_of_line);
1277   void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
1278                   Label* out_of_line);
1279   void Float64Max(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
1280                   Label* out_of_line);
1281   void Float64Min(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
1282                   Label* out_of_line);
1283 
1284   // Generate out-of-line cases for the macros above.
1285   void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1286   void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1287   void Float64MaxOutOfLine(DoubleRegister dst, DoubleRegister src1,
1288                            DoubleRegister src2);
1289   void Float64MinOutOfLine(DoubleRegister dst, DoubleRegister src1,
1290                            DoubleRegister src2);
1291 
1292   // -------------------------------------------------------------------------
1293   // Runtime calls.
1294 
1295   // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1296   inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1297 
PrepareCEntryFunction(const ExternalReference & ref)1298   inline void PrepareCEntryFunction(const ExternalReference& ref) {
1299     li(a1, Operand(ref));
1300   }
1301 
1302 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1303 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1304 
1305   // Call a code stub.
1306   void CallStub(CodeStub* stub,
1307                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1308                 COND_ARGS);
1309 
1310   // Tail call a code stub (jump).
1311   void TailCallStub(CodeStub* stub, COND_ARGS);
1312 
1313 #undef COND_ARGS
1314 
1315   void CallJSExitStub(CodeStub* stub);
1316 
1317   // Call a runtime routine.
1318   void CallRuntime(const Runtime::Function* f, int num_arguments,
1319                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1320                    BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId id)1321   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1322     const Runtime::Function* function = Runtime::FunctionForId(id);
1323     CallRuntime(function, function->nargs, kSaveFPRegs);
1324   }
1325 
1326   // Convenience function: Same as above, but takes the fid instead.
1327   void CallRuntime(Runtime::FunctionId fid,
1328                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1329                    BranchDelaySlot bd = PROTECT) {
1330     const Runtime::Function* function = Runtime::FunctionForId(fid);
1331     CallRuntime(function, function->nargs, save_doubles, bd);
1332   }
1333 
1334   // Convenience function: Same as above, but takes the fid instead.
1335   void CallRuntime(Runtime::FunctionId id, int num_arguments,
1336                    SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1337                    BranchDelaySlot bd = PROTECT) {
1338     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles, bd);
1339   }
1340 
1341   // Convenience function: call an external reference.
1342   void CallExternalReference(const ExternalReference& ext,
1343                              int num_arguments,
1344                              BranchDelaySlot bd = PROTECT);
1345 
1346 
1347   // Convenience function: tail call a runtime routine (jump).
1348   void TailCallRuntime(Runtime::FunctionId fid);
1349 
1350   int CalculateStackPassedWords(int num_reg_arguments,
1351                                 int num_double_arguments);
1352 
1353   // Before calling a C-function from generated code, align arguments on stack
1354   // and add space for the four mips argument slots.
1355   // After aligning the frame, non-register arguments must be stored on the
1356   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1357   // The argument count assumes all arguments are word sized.
1358   // Some compilers/platforms require the stack to be aligned when calling
1359   // C++ code.
1360   // Needs a scratch register to do some arithmetic. This register will be
1361   // trashed.
1362   void PrepareCallCFunction(int num_reg_arguments,
1363                             int num_double_registers,
1364                             Register scratch);
1365   void PrepareCallCFunction(int num_reg_arguments,
1366                             Register scratch);
1367 
1368   // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1369   // Arguments 5..n are stored to stack using following:
1370   //  sw(t0, CFunctionArgumentOperand(5));
1371 
1372   // Calls a C function and cleans up the space for arguments allocated
1373   // by PrepareCallCFunction. The called function is not allowed to trigger a
1374   // garbage collection, since that might move the code and invalidate the
1375   // return address (unless this is somehow accounted for by the called
1376   // function).
1377   void CallCFunction(ExternalReference function, int num_arguments);
1378   void CallCFunction(Register function, int num_arguments);
1379   void CallCFunction(ExternalReference function,
1380                      int num_reg_arguments,
1381                      int num_double_arguments);
1382   void CallCFunction(Register function,
1383                      int num_reg_arguments,
1384                      int num_double_arguments);
1385   void MovFromFloatResult(DoubleRegister dst);
1386   void MovFromFloatParameter(DoubleRegister dst);
1387 
1388   // There are two ways of passing double arguments on MIPS, depending on
1389   // whether soft or hard floating point ABI is used. These functions
1390   // abstract parameter passing for the three different ways we call
1391   // C functions from generated code.
1392   void MovToFloatParameter(DoubleRegister src);
1393   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1394   void MovToFloatResult(DoubleRegister src);
1395 
1396   // Jump to the builtin routine.
1397   void JumpToExternalReference(const ExternalReference& builtin,
1398                                BranchDelaySlot bd = PROTECT,
1399                                bool builtin_exit_frame = false);
1400 
1401   struct Unresolved {
1402     int pc;
1403     uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1404     const char* name;
1405   };
1406 
CodeObject()1407   Handle<Object> CodeObject() {
1408     DCHECK(!code_object_.is_null());
1409     return code_object_;
1410   }
1411 
1412   // Emit code for a truncating division by a constant. The dividend register is
1413   // unchanged and at gets clobbered. Dividend and result must be different.
1414   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1415 
1416   // -------------------------------------------------------------------------
1417   // StatsCounter support.
1418 
1419   void SetCounter(StatsCounter* counter, int value,
1420                   Register scratch1, Register scratch2);
1421   void IncrementCounter(StatsCounter* counter, int value,
1422                         Register scratch1, Register scratch2);
1423   void DecrementCounter(StatsCounter* counter, int value,
1424                         Register scratch1, Register scratch2);
1425 
1426 
1427   // -------------------------------------------------------------------------
1428   // Debugging.
1429 
1430   // Calls Abort(msg) if the condition cc is not satisfied.
1431   // Use --debug_code to enable.
1432   void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1433   void AssertFastElements(Register elements);
1434 
1435   // Like Assert(), but always enabled.
1436   void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1437 
1438   // Print a message to stdout and abort execution.
1439   void Abort(BailoutReason msg);
1440 
1441   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1442   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1443   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1444   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1445   bool has_frame() { return has_frame_; }
1446   inline bool AllowThisStubCall(CodeStub* stub);
1447 
1448   // ---------------------------------------------------------------------------
1449   // Number utilities.
1450 
1451   // Check whether the value of reg is a power of two and not zero. If not
1452   // control continues at the label not_power_of_two. If reg is a power of two
1453   // the register scratch contains the value of (reg - 1) when control falls
1454   // through.
1455   void JumpIfNotPowerOfTwoOrZero(Register reg,
1456                                  Register scratch,
1457                                  Label* not_power_of_two_or_zero);
1458 
1459   // -------------------------------------------------------------------------
1460   // Smi utilities.
1461 
SmiTag(Register reg)1462   void SmiTag(Register reg) {
1463     Addu(reg, reg, reg);
1464   }
1465 
SmiTag(Register dst,Register src)1466   void SmiTag(Register dst, Register src) { Addu(dst, src, src); }
1467 
1468   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1469   void SmiTagCheckOverflow(Register reg, Register overflow);
1470   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1471 
1472   void BranchOnOverflow(Label* label, Register overflow_check,
1473                         BranchDelaySlot bd = PROTECT) {
1474     Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1475   }
1476 
1477   void BranchOnNoOverflow(Label* label, Register overflow_check,
1478                           BranchDelaySlot bd = PROTECT) {
1479     Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1480   }
1481 
1482 
1483   // Try to convert int32 to smi. If the value is to large, preserve
1484   // the original value and jump to not_a_smi. Destroys scratch and
1485   // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1486   void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1487     TrySmiTag(reg, reg, scratch, not_a_smi);
1488   }
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1489   void TrySmiTag(Register dst,
1490                  Register src,
1491                  Register scratch,
1492                  Label* not_a_smi) {
1493     SmiTagCheckOverflow(at, src, scratch);
1494     BranchOnOverflow(not_a_smi, scratch);
1495     mov(dst, at);
1496   }
1497 
SmiUntag(Register reg)1498   void SmiUntag(Register reg) {
1499     sra(reg, reg, kSmiTagSize);
1500   }
1501 
SmiUntag(Register dst,Register src)1502   void SmiUntag(Register dst, Register src) {
1503     sra(dst, src, kSmiTagSize);
1504   }
1505 
1506   // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1507   inline void SmiTst(Register value, Register scratch) {
1508     And(scratch, value, Operand(kSmiTagMask));
1509   }
NonNegativeSmiTst(Register value,Register scratch)1510   inline void NonNegativeSmiTst(Register value, Register scratch) {
1511     And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1512   }
1513 
1514   // Untag the source value into destination and jump if source is a smi.
1515   // Souce and destination can be the same register.
1516   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1517 
1518   // Jump the register contains a smi.
1519   void JumpIfSmi(Register value,
1520                  Label* smi_label,
1521                  Register scratch = at,
1522                  BranchDelaySlot bd = PROTECT);
1523 
1524   // Jump if the register contains a non-smi.
1525   void JumpIfNotSmi(Register value,
1526                     Label* not_smi_label,
1527                     Register scratch = at,
1528                     BranchDelaySlot bd = PROTECT);
1529 
1530   // Jump if either of the registers contain a non-smi.
1531   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1532   // Jump if either of the registers contain a smi.
1533   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1534 
1535   // Abort execution if argument is a number, enabled via --debug-code.
1536   void AssertNotNumber(Register object);
1537 
1538   // Abort execution if argument is a smi, enabled via --debug-code.
1539   void AssertNotSmi(Register object);
1540   void AssertSmi(Register object);
1541 
1542   // Abort execution if argument is not a string, enabled via --debug-code.
1543   void AssertString(Register object);
1544 
1545   // Abort execution if argument is not a name, enabled via --debug-code.
1546   void AssertName(Register object);
1547 
1548   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1549   void AssertFunction(Register object);
1550 
1551   // Abort execution if argument is not a JSBoundFunction,
1552   // enabled via --debug-code.
1553   void AssertBoundFunction(Register object);
1554 
1555   // Abort execution if argument is not a JSGeneratorObject,
1556   // enabled via --debug-code.
1557   void AssertGeneratorObject(Register object);
1558 
1559   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1560   void AssertReceiver(Register object);
1561 
1562   // Abort execution if argument is not undefined or an AllocationSite, enabled
1563   // via --debug-code.
1564   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1565 
1566   // Abort execution if reg is not the root value with the given index,
1567   // enabled via --debug-code.
1568   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1569 
1570   // ---------------------------------------------------------------------------
1571   // HeapNumber utilities.
1572 
1573   void JumpIfNotHeapNumber(Register object,
1574                            Register heap_number_map,
1575                            Register scratch,
1576                            Label* on_not_heap_number);
1577 
1578   // -------------------------------------------------------------------------
1579   // String utilities.
1580 
1581   // Checks if both instance types are sequential ASCII strings and jumps to
1582   // label if either is not.
1583   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1584       Register first_object_instance_type, Register second_object_instance_type,
1585       Register scratch1, Register scratch2, Label* failure);
1586 
1587   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1588 
1589   void EmitSeqStringSetCharCheck(Register string,
1590                                  Register index,
1591                                  Register value,
1592                                  Register scratch,
1593                                  uint32_t encoding_mask);
1594 
1595   // Checks if both objects are sequential one-byte strings and jumps to label
1596   // if either is not. Assumes that neither object is a smi.
1597   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1598                                                     Register second,
1599                                                     Register scratch1,
1600                                                     Register scratch2,
1601                                                     Label* failure);
1602 
1603   // Checks if both objects are sequential one-byte strings and jumps to label
1604   // if either is not.
1605   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1606                                              Register scratch1,
1607                                              Register scratch2,
1608                                              Label* not_flat_one_byte_strings);
1609 
1610   void ClampUint8(Register output_reg, Register input_reg);
1611 
1612   void ClampDoubleToUint8(Register result_reg,
1613                           DoubleRegister input_reg,
1614                           DoubleRegister temp_double_reg);
1615 
1616 
1617   void LoadInstanceDescriptors(Register map, Register descriptors);
1618   void EnumLength(Register dst, Register map);
1619   void NumberOfOwnDescriptors(Register dst, Register map);
1620   void LoadAccessor(Register dst, Register holder, int accessor_index,
1621                     AccessorComponent accessor);
1622 
1623   template<typename Field>
DecodeField(Register dst,Register src)1624   void DecodeField(Register dst, Register src) {
1625     Ext(dst, src, Field::kShift, Field::kSize);
1626   }
1627 
1628   template<typename Field>
DecodeField(Register reg)1629   void DecodeField(Register reg) {
1630     DecodeField<Field>(reg, reg);
1631   }
1632 
1633   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1634   void DecodeFieldToSmi(Register dst, Register src) {
1635     static const int shift = Field::kShift;
1636     static const int mask = Field::kMask >> shift << kSmiTagSize;
1637     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1638     STATIC_ASSERT(kSmiTag == 0);
1639     if (shift < kSmiTagSize) {
1640       sll(dst, src, kSmiTagSize - shift);
1641       And(dst, dst, Operand(mask));
1642     } else if (shift > kSmiTagSize) {
1643       srl(dst, src, shift - kSmiTagSize);
1644       And(dst, dst, Operand(mask));
1645     } else {
1646       And(dst, src, Operand(mask));
1647     }
1648   }
1649 
1650   template<typename Field>
DecodeFieldToSmi(Register reg)1651   void DecodeFieldToSmi(Register reg) {
1652     DecodeField<Field>(reg, reg);
1653   }
1654 
1655   // Generates function and stub prologue code.
1656   void StubPrologue(StackFrame::Type type);
1657   void Prologue(bool code_pre_aging);
1658 
1659   // Load the type feedback vector from a JavaScript frame.
1660   void EmitLoadFeedbackVector(Register vector);
1661 
1662   // Activation support.
1663   void EnterFrame(StackFrame::Type type);
1664   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1665   void LeaveFrame(StackFrame::Type type);
1666 
1667   void EnterBuiltinFrame(Register context, Register target, Register argc);
1668   void LeaveBuiltinFrame(Register context, Register target, Register argc);
1669 
1670   // Expects object in a0 and returns map with validated enum cache
1671   // in a0.  Assumes that any other register can be used as a scratch.
1672   void CheckEnumCache(Label* call_runtime);
1673 
1674   // AllocationMemento support. Arrays may have an associated AllocationMemento
1675   // object that can be checked for in order to pretransition to another type.
1676   // On entry, receiver_reg should point to the array object. scratch_reg gets
1677   // clobbered. If no info is present jump to no_memento_found, otherwise fall
1678   // through.
1679   void TestJSArrayForAllocationMemento(Register receiver_reg,
1680                                        Register scratch_reg,
1681                                        Label* no_memento_found);
1682 
IsDoubleZeroRegSet()1683   bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1684 
1685  private:
1686   void CallCFunctionHelper(Register function,
1687                            int num_reg_arguments,
1688                            int num_double_arguments);
1689 
1690   inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1691   inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1692   void BranchShortHelperR6(int32_t offset, Label* L);
1693   void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1694   bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1695                            Register rs, const Operand& rt);
1696   bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1697                          const Operand& rt, BranchDelaySlot bdslot);
1698   bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1699                         const Operand& rt, BranchDelaySlot bdslot);
1700 
1701   void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1702   void BranchAndLinkShortHelper(int16_t offset, Label* L,
1703                                 BranchDelaySlot bdslot);
1704   void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1705   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1706   bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1707                                   Register rs, const Operand& rt);
1708   bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1709                                 Register rs, const Operand& rt,
1710                                 BranchDelaySlot bdslot);
1711   bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1712                                Register rs, const Operand& rt,
1713                                BranchDelaySlot bdslot);
1714   void BranchLong(Label* L, BranchDelaySlot bdslot);
1715   void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1716 
1717   // Common implementation of BranchF functions for the different formats.
1718   void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1719                      Condition cc, FPURegister cmp1, FPURegister cmp2,
1720                      BranchDelaySlot bd = PROTECT);
1721 
1722   void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1723                     FPURegister cmp1, FPURegister cmp2,
1724                     BranchDelaySlot bd = PROTECT);
1725 
1726   // Helper functions for generating invokes.
1727   void InvokePrologue(const ParameterCount& expected,
1728                       const ParameterCount& actual,
1729                       Label* done,
1730                       bool* definitely_mismatches,
1731                       InvokeFlag flag,
1732                       const CallWrapper& call_wrapper);
1733 
1734   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1735   void InNewSpace(Register object, Register scratch,
1736                   Condition cond,  // ne for new space, eq otherwise.
1737                   Label* branch);
1738 
1739   // Helper for finding the mark bits for an address.  Afterwards, the
1740   // bitmap register points at the word with the mark bits and the mask
1741   // the position of the first bit.  Leaves addr_reg unchanged.
1742   inline void GetMarkBits(Register addr_reg,
1743                           Register bitmap_reg,
1744                           Register mask_reg);
1745 
1746   // Compute memory operands for safepoint stack slots.
1747   static int SafepointRegisterStackIndex(int reg_code);
1748   MemOperand SafepointRegisterSlot(Register reg);
1749   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1750 
1751   bool generating_stub_;
1752   bool has_frame_;
1753   bool has_double_zero_reg_set_;
1754   // This handle will be patched with the code object on installation.
1755   Handle<Object> code_object_;
1756 
1757   // Needs access to SafepointRegisterStackIndex for compiled frame
1758   // traversal.
1759   friend class StandardFrame;
1760 };
1761 
1762 
1763 // The code patcher is used to patch (typically) small parts of code e.g. for
1764 // debugging and other types of instrumentation. When using the code patcher
1765 // the exact number of bytes specified must be emitted. It is not legal to emit
1766 // relocation information. If any of these constraints are violated it causes
1767 // an assertion to fail.
1768 class CodePatcher {
1769  public:
1770   enum FlushICache {
1771     FLUSH,
1772     DONT_FLUSH
1773   };
1774 
1775   CodePatcher(Isolate* isolate, byte* address, int instructions,
1776               FlushICache flush_cache = FLUSH);
1777   ~CodePatcher();
1778 
1779   // Macro assembler to emit code.
masm()1780   MacroAssembler* masm() { return &masm_; }
1781 
1782   // Emit an instruction directly.
1783   void Emit(Instr instr);
1784 
1785   // Emit an address directly.
1786   void Emit(Address addr);
1787 
1788   // Change the condition part of an instruction leaving the rest of the current
1789   // instruction unchanged.
1790   void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1791 
1792  private:
1793   byte* address_;  // The address of the code being patched.
1794   int size_;  // Number of bytes of the expected patch size.
1795   MacroAssembler masm_;  // Macro assembler used to generate the code.
1796   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1797 };
1798 
1799 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1800 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
1801                                          Func GetLabelFunction) {
1802   if (kArchVariant >= kMips32r6) {
1803     BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
1804     addiupc(at, 5);
1805     Lsa(at, at, index, kPointerSizeLog2);
1806     lw(at, MemOperand(at));
1807   } else {
1808     Label here;
1809     BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
1810     push(ra);
1811     bal(&here);
1812     sll(at, index, kPointerSizeLog2);  // Branch delay slot.
1813     bind(&here);
1814     addu(at, at, ra);
1815     pop(ra);
1816     lw(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
1817   }
1818   jr(at);
1819   nop();  // Branch delay slot nop.
1820   for (size_t index = 0; index < case_count; ++index) {
1821     dd(GetLabelFunction(index));
1822   }
1823 }
1824 
1825 #define ACCESS_MASM(masm) masm->
1826 
1827 }  // namespace internal
1828 }  // namespace v8
1829 
1830 #endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
1831