1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
11
12 namespace v8 {
13 namespace internal {
14
15 // Give alias names to registers for calling conventions.
16 const Register kReturnRegister0 = {Register::kCode_v0};
17 const Register kReturnRegister1 = {Register::kCode_v1};
18 const Register kReturnRegister2 = {Register::kCode_a0};
19 const Register kJSFunctionRegister = {Register::kCode_a1};
20 const Register kContextRegister = {Register::kCpRegister};
21 const Register kAllocateSizeRegister = {Register::kCode_a0};
22 const Register kInterpreterAccumulatorRegister = {Register::kCode_v0};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_t4};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_t5};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_t6};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_a0};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_a3};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_a1};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_a0};
30
31 // Forward declaration.
32 class JumpTarget;
33
34 // Reserved Register Usage Summary.
35 //
36 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
37 //
38 // The programmer should know that the MacroAssembler may clobber these three,
39 // but won't touch other registers except in special cases.
40 //
41 // Per the MIPS ABI, register t9 must be used for indirect function call
42 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
43 // trying to update gp register for position-independent-code. Whenever
44 // MIPS generated code calls C code, it must be via t9 register.
45
46
47 // Flags used for LeaveExitFrame function.
48 enum LeaveExitFrameMode {
49 EMIT_RETURN = true,
50 NO_EMIT_RETURN = false
51 };
52
53 // Flags used for AllocateHeapNumber
54 enum TaggingMode {
55 // Tag the result.
56 TAG_RESULT,
57 // Don't tag
58 DONT_TAG_RESULT
59 };
60
61 // Flags used for the ObjectToDoubleFPURegister function.
62 enum ObjectToDoubleFlags {
63 // No special flags.
64 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
65 // Object is known to be a non smi.
66 OBJECT_NOT_SMI = 1 << 0,
67 // Don't load NaNs or infinities, branch to the non number case instead.
68 AVOID_NANS_AND_INFINITIES = 1 << 1
69 };
70
71 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
72 enum BranchDelaySlot {
73 USE_DELAY_SLOT,
74 PROTECT
75 };
76
77 // Flags used for the li macro-assembler function.
78 enum LiFlags {
79 // If the constant value can be represented in just 16 bits, then
80 // optimize the li to use a single instruction, rather than lui/ori pair.
81 OPTIMIZE_SIZE = 0,
82 // Always use 2 instructions (lui/ori pair), even if the constant could
83 // be loaded with just one, so that this value is patchable later.
84 CONSTANT_SIZE = 1
85 };
86
87
88 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
89 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
90 enum PointersToHereCheck {
91 kPointersToHereMaybeInteresting,
92 kPointersToHereAreAlwaysInteresting
93 };
94 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
95
96 Register GetRegisterThatIsNotOneOf(Register reg1,
97 Register reg2 = no_reg,
98 Register reg3 = no_reg,
99 Register reg4 = no_reg,
100 Register reg5 = no_reg,
101 Register reg6 = no_reg);
102
103 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
104 Register reg4 = no_reg, Register reg5 = no_reg,
105 Register reg6 = no_reg, Register reg7 = no_reg,
106 Register reg8 = no_reg, Register reg9 = no_reg,
107 Register reg10 = no_reg);
108
109
110 // -----------------------------------------------------------------------------
111 // Static helper functions.
112
ContextMemOperand(Register context,int index)113 inline MemOperand ContextMemOperand(Register context, int index) {
114 return MemOperand(context, Context::SlotOffset(index));
115 }
116
117
NativeContextMemOperand()118 inline MemOperand NativeContextMemOperand() {
119 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
120 }
121
122
123 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)124 inline MemOperand FieldMemOperand(Register object, int offset) {
125 return MemOperand(object, offset - kHeapObjectTag);
126 }
127
128
129 // Generate a MemOperand for storing arguments 5..N on the stack
130 // when calling CallCFunction().
CFunctionArgumentOperand(int index)131 inline MemOperand CFunctionArgumentOperand(int index) {
132 DCHECK(index > kCArgSlotCount);
133 // Argument 5 takes the slot just past the four Arg-slots.
134 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
135 return MemOperand(sp, offset);
136 }
137
138
139 // MacroAssembler implements a collection of frequently used macros.
140 class MacroAssembler: public Assembler {
141 public:
142 MacroAssembler(Isolate* isolate, void* buffer, int size,
143 CodeObjectRequired create_code_object);
144
145 // Arguments macros.
146 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
147 #define COND_ARGS cond, r1, r2
148
149 // Cases when relocation is not needed.
150 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
151 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
152 inline void Name(BranchDelaySlot bd, target_type target) { \
153 Name(target, bd); \
154 } \
155 void Name(target_type target, \
156 COND_TYPED_ARGS, \
157 BranchDelaySlot bd = PROTECT); \
158 inline void Name(BranchDelaySlot bd, \
159 target_type target, \
160 COND_TYPED_ARGS) { \
161 Name(target, COND_ARGS, bd); \
162 }
163
164 #define DECLARE_BRANCH_PROTOTYPES(Name) \
165 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
166 DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
167
168 DECLARE_BRANCH_PROTOTYPES(Branch)
169 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
170 DECLARE_BRANCH_PROTOTYPES(BranchShort)
171
172 #undef DECLARE_BRANCH_PROTOTYPES
173 #undef COND_TYPED_ARGS
174 #undef COND_ARGS
175
176
177 // Jump, Call, and Ret pseudo instructions implementing inter-working.
178 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
179 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
180
181 void Jump(Register target, COND_ARGS);
182 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
183 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
184 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
185 static int CallSize(Register target, COND_ARGS);
186 void Call(Register target, COND_ARGS);
187 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
188 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
189 int CallSize(Handle<Code> code,
190 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
191 TypeFeedbackId ast_id = TypeFeedbackId::None(),
192 COND_ARGS);
193 void Call(Handle<Code> code,
194 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
195 TypeFeedbackId ast_id = TypeFeedbackId::None(),
196 COND_ARGS);
197 void Ret(COND_ARGS);
198 inline void Ret(BranchDelaySlot bd, Condition cond = al,
199 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
200 Ret(cond, rs, rt, bd);
201 }
202
203 bool IsNear(Label* L, Condition cond, int rs_reg);
204
205 void Branch(Label* L,
206 Condition cond,
207 Register rs,
208 Heap::RootListIndex index,
209 BranchDelaySlot bdslot = PROTECT);
210
211 // Number of instructions needed for calculation of switch table entry address
212 #ifdef _MIPS_ARCH_MIPS32R6
213 static const int kSwitchTablePrologueSize = 5;
214 #else
215 static const int kSwitchTablePrologueSize = 10;
216 #endif
217 // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
218 // functor/function with 'Label *func(size_t index)' declaration.
219 template <typename Func>
220 void GenerateSwitchTable(Register index, size_t case_count,
221 Func GetLabelFunction);
222 #undef COND_ARGS
223
224 // Emit code that loads |parameter_index|'th parameter from the stack to
225 // the register according to the CallInterfaceDescriptor definition.
226 // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
227 // below the caller's sp.
228 template <class Descriptor>
229 void LoadParameterFromStack(
230 Register reg, typename Descriptor::ParameterIndices parameter_index,
231 int sp_to_ra_offset_in_words = 0) {
232 DCHECK(Descriptor::kPassLastArgsOnStack);
233 UNIMPLEMENTED();
234 }
235
236 // Emit code to discard a non-negative number of pointer-sized elements
237 // from the stack, clobbering only the sp register.
238 void Drop(int count,
239 Condition cond = cc_always,
240 Register reg = no_reg,
241 const Operand& op = Operand(no_reg));
242
243 // Trivial case of DropAndRet that utilizes the delay slot and only emits
244 // 2 instructions.
245 void DropAndRet(int drop);
246
247 void DropAndRet(int drop,
248 Condition cond,
249 Register reg,
250 const Operand& op);
251
252 // Swap two registers. If the scratch register is omitted then a slightly
253 // less efficient form using xor instead of mov is emitted.
254 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
255
256 void Call(Label* target);
257
Move(Register dst,Handle<Object> handle)258 inline void Move(Register dst, Handle<Object> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)259 inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
260
Move(Register dst,Register src)261 inline void Move(Register dst, Register src) {
262 if (!dst.is(src)) {
263 mov(dst, src);
264 }
265 }
266
Move_d(FPURegister dst,FPURegister src)267 inline void Move_d(FPURegister dst, FPURegister src) {
268 if (!dst.is(src)) {
269 mov_d(dst, src);
270 }
271 }
272
Move_s(FPURegister dst,FPURegister src)273 inline void Move_s(FPURegister dst, FPURegister src) {
274 if (!dst.is(src)) {
275 mov_s(dst, src);
276 }
277 }
278
Move(FPURegister dst,FPURegister src)279 inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
280
Move(Register dst_low,Register dst_high,FPURegister src)281 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
282 mfc1(dst_low, src);
283 Mfhc1(dst_high, src);
284 }
285
FmoveHigh(Register dst_high,FPURegister src)286 inline void FmoveHigh(Register dst_high, FPURegister src) {
287 Mfhc1(dst_high, src);
288 }
289
FmoveHigh(FPURegister dst,Register src_high)290 inline void FmoveHigh(FPURegister dst, Register src_high) {
291 Mthc1(src_high, dst);
292 }
293
FmoveLow(Register dst_low,FPURegister src)294 inline void FmoveLow(Register dst_low, FPURegister src) {
295 mfc1(dst_low, src);
296 }
297
298 void FmoveLow(FPURegister dst, Register src_low);
299
Move(FPURegister dst,Register src_low,Register src_high)300 inline void Move(FPURegister dst, Register src_low, Register src_high) {
301 mtc1(src_low, dst);
302 Mthc1(src_high, dst);
303 }
304
305 void Move(FPURegister dst, float imm);
306 void Move(FPURegister dst, double imm);
307
308 // Conditional move.
309 void Movz(Register rd, Register rs, Register rt);
310 void Movn(Register rd, Register rs, Register rt);
311 void Movt(Register rd, Register rs, uint16_t cc = 0);
312 void Movf(Register rd, Register rs, uint16_t cc = 0);
313
314 void Clz(Register rd, Register rs);
315
316 // Jump unconditionally to given label.
317 // We NEED a nop in the branch delay slot, as it used by v8, for example in
318 // CodeGenerator::ProcessDeferred().
319 // Currently the branch delay slot is filled by the MacroAssembler.
320 // Use rather b(Label) for code generation.
jmp(Label * L)321 void jmp(Label* L) {
322 Branch(L);
323 }
324
325 void Load(Register dst, const MemOperand& src, Representation r);
326 void Store(Register src, const MemOperand& dst, Representation r);
327
PushRoot(Heap::RootListIndex index)328 void PushRoot(Heap::RootListIndex index) {
329 LoadRoot(at, index);
330 Push(at);
331 }
332
333 // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)334 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
335 LoadRoot(at, index);
336 Branch(if_equal, eq, with, Operand(at));
337 }
338
339 // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)340 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
341 Label* if_not_equal) {
342 LoadRoot(at, index);
343 Branch(if_not_equal, ne, with, Operand(at));
344 }
345
346 // Load an object from the root table.
347 void LoadRoot(Register destination,
348 Heap::RootListIndex index);
349 void LoadRoot(Register destination,
350 Heap::RootListIndex index,
351 Condition cond, Register src1, const Operand& src2);
352
353 // Store an object to the root table.
354 void StoreRoot(Register source,
355 Heap::RootListIndex index);
356 void StoreRoot(Register source,
357 Heap::RootListIndex index,
358 Condition cond, Register src1, const Operand& src2);
359
360 // ---------------------------------------------------------------------------
361 // GC Support
362
363 void IncrementalMarkingRecordWriteHelper(Register object,
364 Register value,
365 Register address);
366
367 enum RememberedSetFinalAction {
368 kReturnAtEnd,
369 kFallThroughAtEnd
370 };
371
372
373 // Record in the remembered set the fact that we have a pointer to new space
374 // at the address pointed to by the addr register. Only works if addr is not
375 // in new space.
376 void RememberedSetHelper(Register object, // Used for debug code.
377 Register addr,
378 Register scratch,
379 SaveFPRegsMode save_fp,
380 RememberedSetFinalAction and_then);
381
382 void CheckPageFlag(Register object,
383 Register scratch,
384 int mask,
385 Condition cc,
386 Label* condition_met);
387
388 // Check if object is in new space. Jumps if the object is not in new space.
389 // The register scratch can be object itself, but it will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)390 void JumpIfNotInNewSpace(Register object,
391 Register scratch,
392 Label* branch) {
393 InNewSpace(object, scratch, eq, branch);
394 }
395
396 // Check if object is in new space. Jumps if the object is in new space.
397 // The register scratch can be object itself, but scratch will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)398 void JumpIfInNewSpace(Register object,
399 Register scratch,
400 Label* branch) {
401 InNewSpace(object, scratch, ne, branch);
402 }
403
404 // Check if an object has a given incremental marking color.
405 void HasColor(Register object,
406 Register scratch0,
407 Register scratch1,
408 Label* has_color,
409 int first_bit,
410 int second_bit);
411
412 void JumpIfBlack(Register object,
413 Register scratch0,
414 Register scratch1,
415 Label* on_black);
416
417 // Checks the color of an object. If the object is white we jump to the
418 // incremental marker.
419 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
420 Register scratch3, Label* value_is_white);
421
422 // Notify the garbage collector that we wrote a pointer into an object.
423 // |object| is the object being stored into, |value| is the object being
424 // stored. value and scratch registers are clobbered by the operation.
425 // The offset is the offset from the start of the object, not the offset from
426 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
427 void RecordWriteField(
428 Register object,
429 int offset,
430 Register value,
431 Register scratch,
432 RAStatus ra_status,
433 SaveFPRegsMode save_fp,
434 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
435 SmiCheck smi_check = INLINE_SMI_CHECK,
436 PointersToHereCheck pointers_to_here_check_for_value =
437 kPointersToHereMaybeInteresting);
438
439 // As above, but the offset has the tag presubtracted. For use with
440 // MemOperand(reg, off).
441 inline void RecordWriteContextSlot(
442 Register context,
443 int offset,
444 Register value,
445 Register scratch,
446 RAStatus ra_status,
447 SaveFPRegsMode save_fp,
448 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
449 SmiCheck smi_check = INLINE_SMI_CHECK,
450 PointersToHereCheck pointers_to_here_check_for_value =
451 kPointersToHereMaybeInteresting) {
452 RecordWriteField(context,
453 offset + kHeapObjectTag,
454 value,
455 scratch,
456 ra_status,
457 save_fp,
458 remembered_set_action,
459 smi_check,
460 pointers_to_here_check_for_value);
461 }
462
463 // Notify the garbage collector that we wrote a code entry into a
464 // JSFunction. Only scratch is clobbered by the operation.
465 void RecordWriteCodeEntryField(Register js_function, Register code_entry,
466 Register scratch);
467
468 void RecordWriteForMap(
469 Register object,
470 Register map,
471 Register dst,
472 RAStatus ra_status,
473 SaveFPRegsMode save_fp);
474
475 // For a given |object| notify the garbage collector that the slot |address|
476 // has been written. |value| is the object being stored. The value and
477 // address registers are clobbered by the operation.
478 void RecordWrite(
479 Register object,
480 Register address,
481 Register value,
482 RAStatus ra_status,
483 SaveFPRegsMode save_fp,
484 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
485 SmiCheck smi_check = INLINE_SMI_CHECK,
486 PointersToHereCheck pointers_to_here_check_for_value =
487 kPointersToHereMaybeInteresting);
488
489
490 // ---------------------------------------------------------------------------
491 // Inline caching support.
492
493 void GetNumberHash(Register reg0, Register scratch);
494
MarkCode(NopMarkerTypes type)495 inline void MarkCode(NopMarkerTypes type) {
496 nop(type);
497 }
498
499 // Check if the given instruction is a 'type' marker.
500 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
501 // nop(type)). These instructions are generated to mark special location in
502 // the code, like some special IC code.
IsMarkedCode(Instr instr,int type)503 static inline bool IsMarkedCode(Instr instr, int type) {
504 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
505 return IsNop(instr, type);
506 }
507
508
GetCodeMarker(Instr instr)509 static inline int GetCodeMarker(Instr instr) {
510 uint32_t opcode = ((instr & kOpcodeMask));
511 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
512 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
513 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
514
515 // Return <n> if we have a sll zero_reg, zero_reg, n
516 // else return -1.
517 bool sllzz = (opcode == SLL &&
518 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
519 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
520 int type =
521 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
522 DCHECK((type == -1) ||
523 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
524 return type;
525 }
526
527
528
529 // ---------------------------------------------------------------------------
530 // Allocation support.
531
532 // Allocate an object in new space or old space. The object_size is
533 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
534 // is passed. If the space is exhausted control continues at the gc_required
535 // label. The allocated object is returned in result. If the flag
536 // tag_allocated_object is true the result is tagged as as a heap object.
537 // All registers are clobbered also when control continues at the gc_required
538 // label.
539 void Allocate(int object_size,
540 Register result,
541 Register scratch1,
542 Register scratch2,
543 Label* gc_required,
544 AllocationFlags flags);
545
546 void Allocate(Register object_size, Register result, Register result_new,
547 Register scratch, Label* gc_required, AllocationFlags flags);
548
549 // FastAllocate is right now only used for folded allocations. It just
550 // increments the top pointer without checking against limit. This can only
551 // be done if it was proved earlier that the allocation will succeed.
552 void FastAllocate(int object_size, Register result, Register scratch1,
553 Register scratch2, AllocationFlags flags);
554
555 void FastAllocate(Register object_size, Register result, Register result_new,
556 Register scratch, AllocationFlags flags);
557
558 // Allocates a heap number or jumps to the gc_required label if the young
559 // space is full and a scavenge is needed. All registers are clobbered also
560 // when control continues at the gc_required label.
561 void AllocateHeapNumber(Register result,
562 Register scratch1,
563 Register scratch2,
564 Register heap_number_map,
565 Label* gc_required,
566 MutableMode mode = IMMUTABLE);
567 void AllocateHeapNumberWithValue(Register result,
568 FPURegister value,
569 Register scratch1,
570 Register scratch2,
571 Label* gc_required);
572
573 // Allocate and initialize a JSValue wrapper with the specified {constructor}
574 // and {value}.
575 void AllocateJSValue(Register result, Register constructor, Register value,
576 Register scratch1, Register scratch2,
577 Label* gc_required);
578
579 // ---------------------------------------------------------------------------
580 // Instruction macros.
581
582 #define DEFINE_INSTRUCTION(instr) \
583 void instr(Register rd, Register rs, const Operand& rt); \
584 void instr(Register rd, Register rs, Register rt) { \
585 instr(rd, rs, Operand(rt)); \
586 } \
587 void instr(Register rs, Register rt, int32_t j) { \
588 instr(rs, rt, Operand(j)); \
589 }
590
591 #define DEFINE_INSTRUCTION2(instr) \
592 void instr(Register rs, const Operand& rt); \
593 void instr(Register rs, Register rt) { \
594 instr(rs, Operand(rt)); \
595 } \
596 void instr(Register rs, int32_t j) { \
597 instr(rs, Operand(j)); \
598 }
599
600 #define DEFINE_INSTRUCTION3(instr) \
601 void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt); \
602 void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) { \
603 instr(rd_hi, rd_lo, rs, Operand(rt)); \
604 } \
605 void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) { \
606 instr(rd_hi, rd_lo, rs, Operand(j)); \
607 }
608
609 DEFINE_INSTRUCTION(Addu);
610 DEFINE_INSTRUCTION(Subu);
611 DEFINE_INSTRUCTION(Mul);
612 DEFINE_INSTRUCTION(Div);
613 DEFINE_INSTRUCTION(Divu);
614 DEFINE_INSTRUCTION(Mod);
615 DEFINE_INSTRUCTION(Modu);
616 DEFINE_INSTRUCTION(Mulh);
617 DEFINE_INSTRUCTION2(Mult);
618 DEFINE_INSTRUCTION(Mulhu);
619 DEFINE_INSTRUCTION2(Multu);
620 DEFINE_INSTRUCTION2(Div);
621 DEFINE_INSTRUCTION2(Divu);
622
623 DEFINE_INSTRUCTION3(Div);
624 DEFINE_INSTRUCTION3(Mul);
625 DEFINE_INSTRUCTION3(Mulu);
626
627 DEFINE_INSTRUCTION(And);
628 DEFINE_INSTRUCTION(Or);
629 DEFINE_INSTRUCTION(Xor);
630 DEFINE_INSTRUCTION(Nor);
631 DEFINE_INSTRUCTION2(Neg);
632
633 DEFINE_INSTRUCTION(Slt);
634 DEFINE_INSTRUCTION(Sltu);
635
636 // MIPS32 R2 instruction macro.
637 DEFINE_INSTRUCTION(Ror);
638
639 #undef DEFINE_INSTRUCTION
640 #undef DEFINE_INSTRUCTION2
641 #undef DEFINE_INSTRUCTION3
642
643 // Load Scaled Address instructions. Parameter sa (shift argument) must be
644 // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
645 // may be clobbered.
646 void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
647 Register scratch = at);
648
649 void Pref(int32_t hint, const MemOperand& rs);
650
651
652 // ---------------------------------------------------------------------------
653 // Pseudo-instructions.
654
655 // Change endianness
656 void ByteSwapSigned(Register dest, Register src, int operand_size);
657 void ByteSwapUnsigned(Register dest, Register src, int operand_size);
658
mov(Register rd,Register rt)659 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
660
661 void Ulh(Register rd, const MemOperand& rs);
662 void Ulhu(Register rd, const MemOperand& rs);
663 void Ush(Register rd, const MemOperand& rs, Register scratch);
664
665 void Ulw(Register rd, const MemOperand& rs);
666 void Usw(Register rd, const MemOperand& rs);
667
668 void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
669 void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
670
671 void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
672 void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
673
674 // Load int32 in the rd register.
675 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
676 inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
677 li(rd, Operand(j), mode);
678 }
679 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
680
681 // Push multiple registers on the stack.
682 // Registers are saved in numerical order, with higher numbered registers
683 // saved in higher memory addresses.
684 void MultiPush(RegList regs);
685 void MultiPushReversed(RegList regs);
686
687 void MultiPushFPU(RegList regs);
688 void MultiPushReversedFPU(RegList regs);
689
push(Register src)690 void push(Register src) {
691 Addu(sp, sp, Operand(-kPointerSize));
692 sw(src, MemOperand(sp, 0));
693 }
Push(Register src)694 void Push(Register src) { push(src); }
695
696 // Push a handle.
697 void Push(Handle<Object> handle);
Push(Smi * smi)698 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
699
700 // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)701 void Push(Register src1, Register src2) {
702 Subu(sp, sp, Operand(2 * kPointerSize));
703 sw(src1, MemOperand(sp, 1 * kPointerSize));
704 sw(src2, MemOperand(sp, 0 * kPointerSize));
705 }
706
707 // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)708 void Push(Register src1, Register src2, Register src3) {
709 Subu(sp, sp, Operand(3 * kPointerSize));
710 sw(src1, MemOperand(sp, 2 * kPointerSize));
711 sw(src2, MemOperand(sp, 1 * kPointerSize));
712 sw(src3, MemOperand(sp, 0 * kPointerSize));
713 }
714
715 // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)716 void Push(Register src1, Register src2, Register src3, Register src4) {
717 Subu(sp, sp, Operand(4 * kPointerSize));
718 sw(src1, MemOperand(sp, 3 * kPointerSize));
719 sw(src2, MemOperand(sp, 2 * kPointerSize));
720 sw(src3, MemOperand(sp, 1 * kPointerSize));
721 sw(src4, MemOperand(sp, 0 * kPointerSize));
722 }
723
724 // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)725 void Push(Register src1, Register src2, Register src3, Register src4,
726 Register src5) {
727 Subu(sp, sp, Operand(5 * kPointerSize));
728 sw(src1, MemOperand(sp, 4 * kPointerSize));
729 sw(src2, MemOperand(sp, 3 * kPointerSize));
730 sw(src3, MemOperand(sp, 2 * kPointerSize));
731 sw(src4, MemOperand(sp, 1 * kPointerSize));
732 sw(src5, MemOperand(sp, 0 * kPointerSize));
733 }
734
Push(Register src,Condition cond,Register tst1,Register tst2)735 void Push(Register src, Condition cond, Register tst1, Register tst2) {
736 // Since we don't have conditional execution we use a Branch.
737 Branch(3, cond, tst1, Operand(tst2));
738 Subu(sp, sp, Operand(kPointerSize));
739 sw(src, MemOperand(sp, 0));
740 }
741
742 // Pops multiple values from the stack and load them in the
743 // registers specified in regs. Pop order is the opposite as in MultiPush.
744 void MultiPop(RegList regs);
745 void MultiPopReversed(RegList regs);
746
747 void MultiPopFPU(RegList regs);
748 void MultiPopReversedFPU(RegList regs);
749
pop(Register dst)750 void pop(Register dst) {
751 lw(dst, MemOperand(sp, 0));
752 Addu(sp, sp, Operand(kPointerSize));
753 }
Pop(Register dst)754 void Pop(Register dst) { pop(dst); }
755
756 // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)757 void Pop(Register src1, Register src2) {
758 DCHECK(!src1.is(src2));
759 lw(src2, MemOperand(sp, 0 * kPointerSize));
760 lw(src1, MemOperand(sp, 1 * kPointerSize));
761 Addu(sp, sp, 2 * kPointerSize);
762 }
763
764 // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)765 void Pop(Register src1, Register src2, Register src3) {
766 lw(src3, MemOperand(sp, 0 * kPointerSize));
767 lw(src2, MemOperand(sp, 1 * kPointerSize));
768 lw(src1, MemOperand(sp, 2 * kPointerSize));
769 Addu(sp, sp, 3 * kPointerSize);
770 }
771
772 void Pop(uint32_t count = 1) {
773 Addu(sp, sp, Operand(count * kPointerSize));
774 }
775
776 // Push a fixed frame, consisting of ra, fp.
777 void PushCommonFrame(Register marker_reg = no_reg);
778
779 // Push a standard frame, consisting of ra, fp, context and JS function.
780 void PushStandardFrame(Register function_reg);
781
782 void PopCommonFrame(Register marker_reg = no_reg);
783
784 // Push and pop the registers that can hold pointers, as defined by the
785 // RegList constant kSafepointSavedRegisters.
786 void PushSafepointRegisters();
787 void PopSafepointRegisters();
788 // Store value in register src in the safepoint stack slot for
789 // register dst.
790 void StoreToSafepointRegisterSlot(Register src, Register dst);
791 // Load the value of the src register from its safepoint stack slot
792 // into register dst.
793 void LoadFromSafepointRegisterSlot(Register dst, Register src);
794
795 // MIPS32 R2 instruction macro.
796 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
797 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
798 void Seb(Register rd, Register rt);
799 void Seh(Register rd, Register rt);
800 void Neg_s(FPURegister fd, FPURegister fs);
801 void Neg_d(FPURegister fd, FPURegister fs);
802
803 // MIPS32 R6 instruction macros.
804 void Bovc(Register rt, Register rs, Label* L);
805 void Bnvc(Register rt, Register rs, Label* L);
806
807 // Int64Lowering instructions
808 void AddPair(Register dst_low, Register dst_high, Register left_low,
809 Register left_high, Register right_low, Register right_high);
810
811 void SubPair(Register dst_low, Register dst_high, Register left_low,
812 Register left_high, Register right_low, Register right_high);
813
814 void ShlPair(Register dst_low, Register dst_high, Register src_low,
815 Register src_high, Register shift);
816
817 void ShlPair(Register dst_low, Register dst_high, Register src_low,
818 Register src_high, uint32_t shift);
819
820 void ShrPair(Register dst_low, Register dst_high, Register src_low,
821 Register src_high, Register shift);
822
823 void ShrPair(Register dst_low, Register dst_high, Register src_low,
824 Register src_high, uint32_t shift);
825
826 void SarPair(Register dst_low, Register dst_high, Register src_low,
827 Register src_high, Register shift);
828
829 void SarPair(Register dst_low, Register dst_high, Register src_low,
830 Register src_high, uint32_t shift);
831
832 // ---------------------------------------------------------------------------
833 // FPU macros. These do not handle special cases like NaN or +- inf.
834
835 // Convert unsigned word to double.
836 void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
837
838 // Convert single to unsigned word.
839 void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
840 void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch);
841
842 // Convert double to unsigned word.
843 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
844 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
845
846 void Trunc_w_d(FPURegister fd, FPURegister fs);
847 void Round_w_d(FPURegister fd, FPURegister fs);
848 void Floor_w_d(FPURegister fd, FPURegister fs);
849 void Ceil_w_d(FPURegister fd, FPURegister fs);
850
851 // FP32 mode: Move the general purpose register into
852 // the high part of the double-register pair.
853 // FP64 mode: Move the general-purpose register into
854 // the higher 32 bits of the 64-bit coprocessor register,
855 // while leaving the low bits unchanged.
856 void Mthc1(Register rt, FPURegister fs);
857
858 // FP32 mode: move the high part of the double-register pair into
859 // general purpose register.
860 // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
861 // general-purpose register.
862 void Mfhc1(Register rt, FPURegister fs);
863
864 void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
865 FPURegister scratch);
866 void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
867 FPURegister scratch);
868 void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
869 FPURegister scratch);
870 void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
871 FPURegister scratch);
872
873 // Wrapper functions for the different cmp/branch types.
874 inline void BranchF32(Label* target, Label* nan, Condition cc,
875 FPURegister cmp1, FPURegister cmp2,
876 BranchDelaySlot bd = PROTECT) {
877 BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd);
878 }
879
880 inline void BranchF64(Label* target, Label* nan, Condition cc,
881 FPURegister cmp1, FPURegister cmp2,
882 BranchDelaySlot bd = PROTECT) {
883 BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd);
884 }
885
886 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
BranchF64(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)887 inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan,
888 Condition cc, FPURegister cmp1, FPURegister cmp2) {
889 BranchF64(target, nan, cc, cmp1, cmp2, bd);
890 }
891
BranchF32(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)892 inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan,
893 Condition cc, FPURegister cmp1, FPURegister cmp2) {
894 BranchF32(target, nan, cc, cmp1, cmp2, bd);
895 }
896
897 // Alias functions for backward compatibility.
898 inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1,
899 FPURegister cmp2, BranchDelaySlot bd = PROTECT) {
900 BranchF64(target, nan, cc, cmp1, cmp2, bd);
901 }
902
BranchF(BranchDelaySlot bd,Label * target,Label * nan,Condition cc,FPURegister cmp1,FPURegister cmp2)903 inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan,
904 Condition cc, FPURegister cmp1, FPURegister cmp2) {
905 BranchF64(bd, target, nan, cc, cmp1, cmp2);
906 }
907
908 // Truncates a double using a specific rounding mode, and writes the value
909 // to the result register.
910 // The except_flag will contain any exceptions caused by the instruction.
911 // If check_inexact is kDontCheckForInexactConversion, then the inexact
912 // exception is masked.
913 void EmitFPUTruncate(FPURoundingMode rounding_mode,
914 Register result,
915 DoubleRegister double_input,
916 Register scratch,
917 DoubleRegister double_scratch,
918 Register except_flag,
919 CheckForInexactConversion check_inexact
920 = kDontCheckForInexactConversion);
921
922 // Performs a truncating conversion of a floating point number as used by
923 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
924 // succeeds, otherwise falls through if result is saturated. On return
925 // 'result' either holds answer, or is clobbered on fall through.
926 //
927 // Only public for the test code in test-code-stubs-arm.cc.
928 void TryInlineTruncateDoubleToI(Register result,
929 DoubleRegister input,
930 Label* done);
931
932 // Performs a truncating conversion of a floating point number as used by
933 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
934 // Exits with 'result' holding the answer.
935 void TruncateDoubleToI(Register result, DoubleRegister double_input);
936
937 // Performs a truncating conversion of a heap number as used by
938 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
939 // must be different registers. Exits with 'result' holding the answer.
940 void TruncateHeapNumberToI(Register result, Register object);
941
942 // Converts the smi or heap number in object to an int32 using the rules
943 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
944 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
945 // different registers.
946 void TruncateNumberToI(Register object,
947 Register result,
948 Register heap_number_map,
949 Register scratch,
950 Label* not_int32);
951
952 // Loads the number from object into dst register.
953 // If |object| is neither smi nor heap number, |not_number| is jumped to
954 // with |object| still intact.
955 void LoadNumber(Register object,
956 FPURegister dst,
957 Register heap_number_map,
958 Register scratch,
959 Label* not_number);
960
961 // Loads the number from object into double_dst in the double format.
962 // Control will jump to not_int32 if the value cannot be exactly represented
963 // by a 32-bit integer.
964 // Floating point value in the 32-bit integer range that are not exact integer
965 // won't be loaded.
966 void LoadNumberAsInt32Double(Register object,
967 DoubleRegister double_dst,
968 Register heap_number_map,
969 Register scratch1,
970 Register scratch2,
971 FPURegister double_scratch,
972 Label* not_int32);
973
974 // Loads the number from object into dst as a 32-bit integer.
975 // Control will jump to not_int32 if the object cannot be exactly represented
976 // by a 32-bit integer.
977 // Floating point value in the 32-bit integer range that are not exact integer
978 // won't be converted.
979 void LoadNumberAsInt32(Register object,
980 Register dst,
981 Register heap_number_map,
982 Register scratch1,
983 Register scratch2,
984 FPURegister double_scratch0,
985 FPURegister double_scratch1,
986 Label* not_int32);
987
988 // Enter exit frame.
989 // argc - argument count to be dropped by LeaveExitFrame.
990 // save_doubles - saves FPU registers on stack, currently disabled.
991 // stack_space - extra stack space.
992 void EnterExitFrame(bool save_doubles, int stack_space = 0,
993 StackFrame::Type frame_type = StackFrame::EXIT);
994
995 // Leave the current exit frame.
996 void LeaveExitFrame(bool save_doubles, Register arg_count,
997 bool restore_context, bool do_return = NO_EMIT_RETURN,
998 bool argument_count_is_length = false);
999
1000 // Get the actual activation frame alignment for target environment.
1001 static int ActivationFrameAlignment();
1002
1003 // Make sure the stack is aligned. Only emits code in debug mode.
1004 void AssertStackIsAligned();
1005
1006 void LoadContext(Register dst, int context_chain_length);
1007
1008 // Load the global object from the current context.
LoadGlobalObject(Register dst)1009 void LoadGlobalObject(Register dst) {
1010 LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1011 }
1012
1013 // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1014 void LoadGlobalProxy(Register dst) {
1015 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1016 }
1017
1018 void LoadNativeContextSlot(int index, Register dst);
1019
1020 // Load the initial map from the global function. The registers
1021 // function and map can be the same, function is then overwritten.
1022 void LoadGlobalFunctionInitialMap(Register function,
1023 Register map,
1024 Register scratch);
1025
InitializeRootRegister()1026 void InitializeRootRegister() {
1027 ExternalReference roots_array_start =
1028 ExternalReference::roots_array_start(isolate());
1029 li(kRootRegister, Operand(roots_array_start));
1030 }
1031
1032 // -------------------------------------------------------------------------
1033 // JavaScript invokes.
1034
1035 // Removes current frame and its arguments from the stack preserving
1036 // the arguments and a return address pushed to the stack for the next call.
1037 // Both |callee_args_count| and |caller_args_count_reg| do not include
1038 // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1039 // is trashed.
1040 void PrepareForTailCall(const ParameterCount& callee_args_count,
1041 Register caller_args_count_reg, Register scratch0,
1042 Register scratch1);
1043
1044 // Invoke the JavaScript function code by either calling or jumping.
1045 void InvokeFunctionCode(Register function, Register new_target,
1046 const ParameterCount& expected,
1047 const ParameterCount& actual, InvokeFlag flag,
1048 const CallWrapper& call_wrapper);
1049
1050 // On function call, call into the debugger if necessary.
1051 void CheckDebugHook(Register fun, Register new_target,
1052 const ParameterCount& expected,
1053 const ParameterCount& actual);
1054
1055 // Invoke the JavaScript function in the given register. Changes the
1056 // current context to the context in the function before invoking.
1057 void InvokeFunction(Register function,
1058 Register new_target,
1059 const ParameterCount& actual,
1060 InvokeFlag flag,
1061 const CallWrapper& call_wrapper);
1062
1063 void InvokeFunction(Register function,
1064 const ParameterCount& expected,
1065 const ParameterCount& actual,
1066 InvokeFlag flag,
1067 const CallWrapper& call_wrapper);
1068
1069 void InvokeFunction(Handle<JSFunction> function,
1070 const ParameterCount& expected,
1071 const ParameterCount& actual,
1072 InvokeFlag flag,
1073 const CallWrapper& call_wrapper);
1074
1075 void IsObjectJSStringType(Register object,
1076 Register scratch,
1077 Label* fail);
1078
1079 void IsObjectNameType(Register object,
1080 Register scratch,
1081 Label* fail);
1082
1083 // Frame restart support.
1084 void MaybeDropFrames();
1085
1086 // Exception handling.
1087
1088 // Push a new stack handler and link into stack handler chain.
1089 void PushStackHandler();
1090
1091 // Unlink the stack handler on top of the stack from the stack handler chain.
1092 // Must preserve the result register.
1093 void PopStackHandler();
1094
1095 // Initialize fields with filler values. Fields starting at |current_address|
1096 // not including |end_address| are overwritten with the value in |filler|. At
1097 // the end the loop, |current_address| takes the value of |end_address|.
1098 void InitializeFieldsWithFiller(Register current_address,
1099 Register end_address, Register filler);
1100
1101 // -------------------------------------------------------------------------
1102 // Support functions.
1103
1104 // Machine code version of Map::GetConstructor().
1105 // |temp| holds |result|'s map when done, and |temp2| its instance type.
1106 void GetMapConstructor(Register result, Register map, Register temp,
1107 Register temp2);
1108
1109 void GetObjectType(Register function,
1110 Register map,
1111 Register type_reg);
1112
GetInstanceType(Register object_map,Register object_instance_type)1113 void GetInstanceType(Register object_map, Register object_instance_type) {
1114 lbu(object_instance_type,
1115 FieldMemOperand(object_map, Map::kInstanceTypeOffset));
1116 }
1117
1118 // Compare an object's map with the specified map and its transitioned
1119 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1120 // "branch_to" if the result of the comparison is "cond". If multiple map
1121 // compares are required, the compare sequences branches to early_success.
1122 void CompareMapAndBranch(Register obj,
1123 Register scratch,
1124 Handle<Map> map,
1125 Label* early_success,
1126 Condition cond,
1127 Label* branch_to);
1128
1129 // As above, but the map of the object is already loaded into the register
1130 // which is preserved by the code generated.
1131 void CompareMapAndBranch(Register obj_map,
1132 Handle<Map> map,
1133 Label* early_success,
1134 Condition cond,
1135 Label* branch_to);
1136
1137 // Check if the map of an object is equal to a specified map and branch to
1138 // label if not. Skip the smi check if not required (object is known to be a
1139 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1140 // against maps that are ElementsKind transition maps of the specificed map.
1141 void CheckMap(Register obj,
1142 Register scratch,
1143 Handle<Map> map,
1144 Label* fail,
1145 SmiCheckType smi_check_type);
1146
1147
1148 void CheckMap(Register obj,
1149 Register scratch,
1150 Heap::RootListIndex index,
1151 Label* fail,
1152 SmiCheckType smi_check_type);
1153
1154 // Check if the map of an object is equal to a specified weak map and branch
1155 // to a specified target if equal. Skip the smi check if not required
1156 // (object is known to be a heap object)
1157 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1158 Handle<WeakCell> cell, Handle<Code> success,
1159 SmiCheckType smi_check_type);
1160
1161 // If the value is a NaN, canonicalize the value else, do nothing.
1162 void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
1163
1164 // Get value of the weak cell.
1165 void GetWeakValue(Register value, Handle<WeakCell> cell);
1166
1167 // Load the value of the weak cell in the value register. Branch to the
1168 // given miss label is the weak cell was cleared.
1169 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1170
1171 // Load and check the instance type of an object for being a string.
1172 // Loads the type into the second argument register.
1173 // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type,Register result)1174 Condition IsObjectStringType(Register obj,
1175 Register type,
1176 Register result) {
1177 lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1178 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1179 And(type, type, Operand(kIsNotStringMask));
1180 DCHECK_EQ(0u, kStringTag);
1181 return eq;
1182 }
1183
1184 // Get the number of least significant bits from a register.
1185 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1186 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1187
1188 // Load the value of a number object into a FPU double register. If the
1189 // object is not a number a jump to the label not_number is performed
1190 // and the FPU double register is unchanged.
1191 void ObjectToDoubleFPURegister(
1192 Register object,
1193 FPURegister value,
1194 Register scratch1,
1195 Register scratch2,
1196 Register heap_number_map,
1197 Label* not_number,
1198 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1199
1200 // Load the value of a smi object into a FPU double register. The register
1201 // scratch1 can be the same register as smi in which case smi will hold the
1202 // untagged value afterwards.
1203 void SmiToDoubleFPURegister(Register smi,
1204 FPURegister value,
1205 Register scratch1);
1206
1207 // -------------------------------------------------------------------------
1208 // Overflow handling functions.
1209 // Usage: first call the appropriate arithmetic function, then call one of the
1210 // jump functions with the overflow_dst register as the second parameter.
1211
1212 inline void AddBranchOvf(Register dst, Register left, const Operand& right,
1213 Label* overflow_label, Register scratch = at) {
1214 AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1215 }
1216
1217 inline void AddBranchNoOvf(Register dst, Register left, const Operand& right,
1218 Label* no_overflow_label, Register scratch = at) {
1219 AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1220 }
1221
1222 void AddBranchOvf(Register dst, Register left, const Operand& right,
1223 Label* overflow_label, Label* no_overflow_label,
1224 Register scratch = at);
1225
1226 void AddBranchOvf(Register dst, Register left, Register right,
1227 Label* overflow_label, Label* no_overflow_label,
1228 Register scratch = at);
1229
1230
1231 inline void SubBranchOvf(Register dst, Register left, const Operand& right,
1232 Label* overflow_label, Register scratch = at) {
1233 SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1234 }
1235
1236 inline void SubBranchNoOvf(Register dst, Register left, const Operand& right,
1237 Label* no_overflow_label, Register scratch = at) {
1238 SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1239 }
1240
1241 void SubBranchOvf(Register dst, Register left, const Operand& right,
1242 Label* overflow_label, Label* no_overflow_label,
1243 Register scratch = at);
1244
1245 void SubBranchOvf(Register dst, Register left, Register right,
1246 Label* overflow_label, Label* no_overflow_label,
1247 Register scratch = at);
1248
1249 inline void MulBranchOvf(Register dst, Register left, const Operand& right,
1250 Label* overflow_label, Register scratch = at) {
1251 MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch);
1252 }
1253
1254 inline void MulBranchNoOvf(Register dst, Register left, const Operand& right,
1255 Label* no_overflow_label, Register scratch = at) {
1256 MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch);
1257 }
1258
1259 void MulBranchOvf(Register dst, Register left, const Operand& right,
1260 Label* overflow_label, Label* no_overflow_label,
1261 Register scratch = at);
1262
1263 void MulBranchOvf(Register dst, Register left, Register right,
1264 Label* overflow_label, Label* no_overflow_label,
1265 Register scratch = at);
1266
1267 // Perform a floating-point min or max operation with the
1268 // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
1269 // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
1270 // handled in out-of-line code. The specific behaviour depends on supported
1271 // instructions.
1272 //
1273 // These functions assume (and assert) that !src1.is(src2). It is permitted
1274 // for the result to alias either input register.
1275 void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
1276 Label* out_of_line);
1277 void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
1278 Label* out_of_line);
1279 void Float64Max(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
1280 Label* out_of_line);
1281 void Float64Min(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
1282 Label* out_of_line);
1283
1284 // Generate out-of-line cases for the macros above.
1285 void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1286 void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
1287 void Float64MaxOutOfLine(DoubleRegister dst, DoubleRegister src1,
1288 DoubleRegister src2);
1289 void Float64MinOutOfLine(DoubleRegister dst, DoubleRegister src1,
1290 DoubleRegister src2);
1291
1292 // -------------------------------------------------------------------------
1293 // Runtime calls.
1294
1295 // See comments at the beginning of CEntryStub::Generate.
PrepareCEntryArgs(int num_args)1296 inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1297
PrepareCEntryFunction(const ExternalReference & ref)1298 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1299 li(a1, Operand(ref));
1300 }
1301
1302 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1303 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1304
1305 // Call a code stub.
1306 void CallStub(CodeStub* stub,
1307 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1308 COND_ARGS);
1309
1310 // Tail call a code stub (jump).
1311 void TailCallStub(CodeStub* stub, COND_ARGS);
1312
1313 #undef COND_ARGS
1314
1315 void CallJSExitStub(CodeStub* stub);
1316
1317 // Call a runtime routine.
1318 void CallRuntime(const Runtime::Function* f, int num_arguments,
1319 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1320 BranchDelaySlot bd = PROTECT);
CallRuntimeSaveDoubles(Runtime::FunctionId id)1321 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1322 const Runtime::Function* function = Runtime::FunctionForId(id);
1323 CallRuntime(function, function->nargs, kSaveFPRegs);
1324 }
1325
1326 // Convenience function: Same as above, but takes the fid instead.
1327 void CallRuntime(Runtime::FunctionId fid,
1328 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1329 BranchDelaySlot bd = PROTECT) {
1330 const Runtime::Function* function = Runtime::FunctionForId(fid);
1331 CallRuntime(function, function->nargs, save_doubles, bd);
1332 }
1333
1334 // Convenience function: Same as above, but takes the fid instead.
1335 void CallRuntime(Runtime::FunctionId id, int num_arguments,
1336 SaveFPRegsMode save_doubles = kDontSaveFPRegs,
1337 BranchDelaySlot bd = PROTECT) {
1338 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles, bd);
1339 }
1340
1341 // Convenience function: call an external reference.
1342 void CallExternalReference(const ExternalReference& ext,
1343 int num_arguments,
1344 BranchDelaySlot bd = PROTECT);
1345
1346
1347 // Convenience function: tail call a runtime routine (jump).
1348 void TailCallRuntime(Runtime::FunctionId fid);
1349
1350 int CalculateStackPassedWords(int num_reg_arguments,
1351 int num_double_arguments);
1352
1353 // Before calling a C-function from generated code, align arguments on stack
1354 // and add space for the four mips argument slots.
1355 // After aligning the frame, non-register arguments must be stored on the
1356 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1357 // The argument count assumes all arguments are word sized.
1358 // Some compilers/platforms require the stack to be aligned when calling
1359 // C++ code.
1360 // Needs a scratch register to do some arithmetic. This register will be
1361 // trashed.
1362 void PrepareCallCFunction(int num_reg_arguments,
1363 int num_double_registers,
1364 Register scratch);
1365 void PrepareCallCFunction(int num_reg_arguments,
1366 Register scratch);
1367
1368 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1369 // Arguments 5..n are stored to stack using following:
1370 // sw(t0, CFunctionArgumentOperand(5));
1371
1372 // Calls a C function and cleans up the space for arguments allocated
1373 // by PrepareCallCFunction. The called function is not allowed to trigger a
1374 // garbage collection, since that might move the code and invalidate the
1375 // return address (unless this is somehow accounted for by the called
1376 // function).
1377 void CallCFunction(ExternalReference function, int num_arguments);
1378 void CallCFunction(Register function, int num_arguments);
1379 void CallCFunction(ExternalReference function,
1380 int num_reg_arguments,
1381 int num_double_arguments);
1382 void CallCFunction(Register function,
1383 int num_reg_arguments,
1384 int num_double_arguments);
1385 void MovFromFloatResult(DoubleRegister dst);
1386 void MovFromFloatParameter(DoubleRegister dst);
1387
1388 // There are two ways of passing double arguments on MIPS, depending on
1389 // whether soft or hard floating point ABI is used. These functions
1390 // abstract parameter passing for the three different ways we call
1391 // C functions from generated code.
1392 void MovToFloatParameter(DoubleRegister src);
1393 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1394 void MovToFloatResult(DoubleRegister src);
1395
1396 // Jump to the builtin routine.
1397 void JumpToExternalReference(const ExternalReference& builtin,
1398 BranchDelaySlot bd = PROTECT,
1399 bool builtin_exit_frame = false);
1400
1401 struct Unresolved {
1402 int pc;
1403 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1404 const char* name;
1405 };
1406
CodeObject()1407 Handle<Object> CodeObject() {
1408 DCHECK(!code_object_.is_null());
1409 return code_object_;
1410 }
1411
1412 // Emit code for a truncating division by a constant. The dividend register is
1413 // unchanged and at gets clobbered. Dividend and result must be different.
1414 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1415
1416 // -------------------------------------------------------------------------
1417 // StatsCounter support.
1418
1419 void SetCounter(StatsCounter* counter, int value,
1420 Register scratch1, Register scratch2);
1421 void IncrementCounter(StatsCounter* counter, int value,
1422 Register scratch1, Register scratch2);
1423 void DecrementCounter(StatsCounter* counter, int value,
1424 Register scratch1, Register scratch2);
1425
1426
1427 // -------------------------------------------------------------------------
1428 // Debugging.
1429
1430 // Calls Abort(msg) if the condition cc is not satisfied.
1431 // Use --debug_code to enable.
1432 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1433 void AssertFastElements(Register elements);
1434
1435 // Like Assert(), but always enabled.
1436 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1437
1438 // Print a message to stdout and abort execution.
1439 void Abort(BailoutReason msg);
1440
1441 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1442 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1443 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1444 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1445 bool has_frame() { return has_frame_; }
1446 inline bool AllowThisStubCall(CodeStub* stub);
1447
1448 // ---------------------------------------------------------------------------
1449 // Number utilities.
1450
1451 // Check whether the value of reg is a power of two and not zero. If not
1452 // control continues at the label not_power_of_two. If reg is a power of two
1453 // the register scratch contains the value of (reg - 1) when control falls
1454 // through.
1455 void JumpIfNotPowerOfTwoOrZero(Register reg,
1456 Register scratch,
1457 Label* not_power_of_two_or_zero);
1458
1459 // -------------------------------------------------------------------------
1460 // Smi utilities.
1461
SmiTag(Register reg)1462 void SmiTag(Register reg) {
1463 Addu(reg, reg, reg);
1464 }
1465
SmiTag(Register dst,Register src)1466 void SmiTag(Register dst, Register src) { Addu(dst, src, src); }
1467
1468 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1469 void SmiTagCheckOverflow(Register reg, Register overflow);
1470 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1471
1472 void BranchOnOverflow(Label* label, Register overflow_check,
1473 BranchDelaySlot bd = PROTECT) {
1474 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1475 }
1476
1477 void BranchOnNoOverflow(Label* label, Register overflow_check,
1478 BranchDelaySlot bd = PROTECT) {
1479 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1480 }
1481
1482
1483 // Try to convert int32 to smi. If the value is to large, preserve
1484 // the original value and jump to not_a_smi. Destroys scratch and
1485 // sets flags.
TrySmiTag(Register reg,Register scratch,Label * not_a_smi)1486 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1487 TrySmiTag(reg, reg, scratch, not_a_smi);
1488 }
TrySmiTag(Register dst,Register src,Register scratch,Label * not_a_smi)1489 void TrySmiTag(Register dst,
1490 Register src,
1491 Register scratch,
1492 Label* not_a_smi) {
1493 SmiTagCheckOverflow(at, src, scratch);
1494 BranchOnOverflow(not_a_smi, scratch);
1495 mov(dst, at);
1496 }
1497
SmiUntag(Register reg)1498 void SmiUntag(Register reg) {
1499 sra(reg, reg, kSmiTagSize);
1500 }
1501
SmiUntag(Register dst,Register src)1502 void SmiUntag(Register dst, Register src) {
1503 sra(dst, src, kSmiTagSize);
1504 }
1505
1506 // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1507 inline void SmiTst(Register value, Register scratch) {
1508 And(scratch, value, Operand(kSmiTagMask));
1509 }
NonNegativeSmiTst(Register value,Register scratch)1510 inline void NonNegativeSmiTst(Register value, Register scratch) {
1511 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1512 }
1513
1514 // Untag the source value into destination and jump if source is a smi.
1515 // Souce and destination can be the same register.
1516 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1517
1518 // Jump the register contains a smi.
1519 void JumpIfSmi(Register value,
1520 Label* smi_label,
1521 Register scratch = at,
1522 BranchDelaySlot bd = PROTECT);
1523
1524 // Jump if the register contains a non-smi.
1525 void JumpIfNotSmi(Register value,
1526 Label* not_smi_label,
1527 Register scratch = at,
1528 BranchDelaySlot bd = PROTECT);
1529
1530 // Jump if either of the registers contain a non-smi.
1531 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1532 // Jump if either of the registers contain a smi.
1533 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1534
1535 // Abort execution if argument is a number, enabled via --debug-code.
1536 void AssertNotNumber(Register object);
1537
1538 // Abort execution if argument is a smi, enabled via --debug-code.
1539 void AssertNotSmi(Register object);
1540 void AssertSmi(Register object);
1541
1542 // Abort execution if argument is not a string, enabled via --debug-code.
1543 void AssertString(Register object);
1544
1545 // Abort execution if argument is not a name, enabled via --debug-code.
1546 void AssertName(Register object);
1547
1548 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1549 void AssertFunction(Register object);
1550
1551 // Abort execution if argument is not a JSBoundFunction,
1552 // enabled via --debug-code.
1553 void AssertBoundFunction(Register object);
1554
1555 // Abort execution if argument is not a JSGeneratorObject,
1556 // enabled via --debug-code.
1557 void AssertGeneratorObject(Register object);
1558
1559 // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1560 void AssertReceiver(Register object);
1561
1562 // Abort execution if argument is not undefined or an AllocationSite, enabled
1563 // via --debug-code.
1564 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1565
1566 // Abort execution if reg is not the root value with the given index,
1567 // enabled via --debug-code.
1568 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1569
1570 // ---------------------------------------------------------------------------
1571 // HeapNumber utilities.
1572
1573 void JumpIfNotHeapNumber(Register object,
1574 Register heap_number_map,
1575 Register scratch,
1576 Label* on_not_heap_number);
1577
1578 // -------------------------------------------------------------------------
1579 // String utilities.
1580
1581 // Checks if both instance types are sequential ASCII strings and jumps to
1582 // label if either is not.
1583 void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1584 Register first_object_instance_type, Register second_object_instance_type,
1585 Register scratch1, Register scratch2, Label* failure);
1586
1587 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1588
1589 void EmitSeqStringSetCharCheck(Register string,
1590 Register index,
1591 Register value,
1592 Register scratch,
1593 uint32_t encoding_mask);
1594
1595 // Checks if both objects are sequential one-byte strings and jumps to label
1596 // if either is not. Assumes that neither object is a smi.
1597 void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1598 Register second,
1599 Register scratch1,
1600 Register scratch2,
1601 Label* failure);
1602
1603 // Checks if both objects are sequential one-byte strings and jumps to label
1604 // if either is not.
1605 void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1606 Register scratch1,
1607 Register scratch2,
1608 Label* not_flat_one_byte_strings);
1609
1610 void ClampUint8(Register output_reg, Register input_reg);
1611
1612 void ClampDoubleToUint8(Register result_reg,
1613 DoubleRegister input_reg,
1614 DoubleRegister temp_double_reg);
1615
1616
1617 void LoadInstanceDescriptors(Register map, Register descriptors);
1618 void EnumLength(Register dst, Register map);
1619 void NumberOfOwnDescriptors(Register dst, Register map);
1620 void LoadAccessor(Register dst, Register holder, int accessor_index,
1621 AccessorComponent accessor);
1622
1623 template<typename Field>
DecodeField(Register dst,Register src)1624 void DecodeField(Register dst, Register src) {
1625 Ext(dst, src, Field::kShift, Field::kSize);
1626 }
1627
1628 template<typename Field>
DecodeField(Register reg)1629 void DecodeField(Register reg) {
1630 DecodeField<Field>(reg, reg);
1631 }
1632
1633 template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1634 void DecodeFieldToSmi(Register dst, Register src) {
1635 static const int shift = Field::kShift;
1636 static const int mask = Field::kMask >> shift << kSmiTagSize;
1637 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1638 STATIC_ASSERT(kSmiTag == 0);
1639 if (shift < kSmiTagSize) {
1640 sll(dst, src, kSmiTagSize - shift);
1641 And(dst, dst, Operand(mask));
1642 } else if (shift > kSmiTagSize) {
1643 srl(dst, src, shift - kSmiTagSize);
1644 And(dst, dst, Operand(mask));
1645 } else {
1646 And(dst, src, Operand(mask));
1647 }
1648 }
1649
1650 template<typename Field>
DecodeFieldToSmi(Register reg)1651 void DecodeFieldToSmi(Register reg) {
1652 DecodeField<Field>(reg, reg);
1653 }
1654
1655 // Generates function and stub prologue code.
1656 void StubPrologue(StackFrame::Type type);
1657 void Prologue(bool code_pre_aging);
1658
1659 // Load the type feedback vector from a JavaScript frame.
1660 void EmitLoadFeedbackVector(Register vector);
1661
1662 // Activation support.
1663 void EnterFrame(StackFrame::Type type);
1664 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1665 void LeaveFrame(StackFrame::Type type);
1666
1667 void EnterBuiltinFrame(Register context, Register target, Register argc);
1668 void LeaveBuiltinFrame(Register context, Register target, Register argc);
1669
1670 // Expects object in a0 and returns map with validated enum cache
1671 // in a0. Assumes that any other register can be used as a scratch.
1672 void CheckEnumCache(Label* call_runtime);
1673
1674 // AllocationMemento support. Arrays may have an associated AllocationMemento
1675 // object that can be checked for in order to pretransition to another type.
1676 // On entry, receiver_reg should point to the array object. scratch_reg gets
1677 // clobbered. If no info is present jump to no_memento_found, otherwise fall
1678 // through.
1679 void TestJSArrayForAllocationMemento(Register receiver_reg,
1680 Register scratch_reg,
1681 Label* no_memento_found);
1682
IsDoubleZeroRegSet()1683 bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
1684
1685 private:
1686 void CallCFunctionHelper(Register function,
1687 int num_reg_arguments,
1688 int num_double_arguments);
1689
1690 inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
1691 inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
1692 void BranchShortHelperR6(int32_t offset, Label* L);
1693 void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
1694 bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
1695 Register rs, const Operand& rt);
1696 bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
1697 const Operand& rt, BranchDelaySlot bdslot);
1698 bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
1699 const Operand& rt, BranchDelaySlot bdslot);
1700
1701 void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
1702 void BranchAndLinkShortHelper(int16_t offset, Label* L,
1703 BranchDelaySlot bdslot);
1704 void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
1705 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1706 bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
1707 Register rs, const Operand& rt);
1708 bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
1709 Register rs, const Operand& rt,
1710 BranchDelaySlot bdslot);
1711 bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
1712 Register rs, const Operand& rt,
1713 BranchDelaySlot bdslot);
1714 void BranchLong(Label* L, BranchDelaySlot bdslot);
1715 void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
1716
1717 // Common implementation of BranchF functions for the different formats.
1718 void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan,
1719 Condition cc, FPURegister cmp1, FPURegister cmp2,
1720 BranchDelaySlot bd = PROTECT);
1721
1722 void BranchShortF(SecondaryField sizeField, Label* target, Condition cc,
1723 FPURegister cmp1, FPURegister cmp2,
1724 BranchDelaySlot bd = PROTECT);
1725
1726 // Helper functions for generating invokes.
1727 void InvokePrologue(const ParameterCount& expected,
1728 const ParameterCount& actual,
1729 Label* done,
1730 bool* definitely_mismatches,
1731 InvokeFlag flag,
1732 const CallWrapper& call_wrapper);
1733
1734 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1735 void InNewSpace(Register object, Register scratch,
1736 Condition cond, // ne for new space, eq otherwise.
1737 Label* branch);
1738
1739 // Helper for finding the mark bits for an address. Afterwards, the
1740 // bitmap register points at the word with the mark bits and the mask
1741 // the position of the first bit. Leaves addr_reg unchanged.
1742 inline void GetMarkBits(Register addr_reg,
1743 Register bitmap_reg,
1744 Register mask_reg);
1745
1746 // Compute memory operands for safepoint stack slots.
1747 static int SafepointRegisterStackIndex(int reg_code);
1748 MemOperand SafepointRegisterSlot(Register reg);
1749 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1750
1751 bool generating_stub_;
1752 bool has_frame_;
1753 bool has_double_zero_reg_set_;
1754 // This handle will be patched with the code object on installation.
1755 Handle<Object> code_object_;
1756
1757 // Needs access to SafepointRegisterStackIndex for compiled frame
1758 // traversal.
1759 friend class StandardFrame;
1760 };
1761
1762
1763 // The code patcher is used to patch (typically) small parts of code e.g. for
1764 // debugging and other types of instrumentation. When using the code patcher
1765 // the exact number of bytes specified must be emitted. It is not legal to emit
1766 // relocation information. If any of these constraints are violated it causes
1767 // an assertion to fail.
1768 class CodePatcher {
1769 public:
1770 enum FlushICache {
1771 FLUSH,
1772 DONT_FLUSH
1773 };
1774
1775 CodePatcher(Isolate* isolate, byte* address, int instructions,
1776 FlushICache flush_cache = FLUSH);
1777 ~CodePatcher();
1778
1779 // Macro assembler to emit code.
masm()1780 MacroAssembler* masm() { return &masm_; }
1781
1782 // Emit an instruction directly.
1783 void Emit(Instr instr);
1784
1785 // Emit an address directly.
1786 void Emit(Address addr);
1787
1788 // Change the condition part of an instruction leaving the rest of the current
1789 // instruction unchanged.
1790 void ChangeBranchCondition(Instr current_instr, uint32_t new_opcode);
1791
1792 private:
1793 byte* address_; // The address of the code being patched.
1794 int size_; // Number of bytes of the expected patch size.
1795 MacroAssembler masm_; // Macro assembler used to generate the code.
1796 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1797 };
1798
1799 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1800 void MacroAssembler::GenerateSwitchTable(Register index, size_t case_count,
1801 Func GetLabelFunction) {
1802 if (kArchVariant >= kMips32r6) {
1803 BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
1804 addiupc(at, 5);
1805 Lsa(at, at, index, kPointerSizeLog2);
1806 lw(at, MemOperand(at));
1807 } else {
1808 Label here;
1809 BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
1810 push(ra);
1811 bal(&here);
1812 sll(at, index, kPointerSizeLog2); // Branch delay slot.
1813 bind(&here);
1814 addu(at, at, ra);
1815 pop(ra);
1816 lw(at, MemOperand(at, 6 * v8::internal::Assembler::kInstrSize));
1817 }
1818 jr(at);
1819 nop(); // Branch delay slot nop.
1820 for (size_t index = 0; index < case_count; ++index) {
1821 dd(GetLabelFunction(index));
1822 }
1823 }
1824
1825 #define ACCESS_MASM(masm) masm->
1826
1827 } // namespace internal
1828 } // namespace v8
1829
1830 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
1831