• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_S390
6 
7 #include "src/code-stubs.h"
8 #include "src/api-arguments.h"
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/codegen.h"
12 #include "src/ic/handler-compiler.h"
13 #include "src/ic/ic.h"
14 #include "src/ic/stub-cache.h"
15 #include "src/isolate.h"
16 #include "src/regexp/jsregexp.h"
17 #include "src/regexp/regexp-macro-assembler.h"
18 #include "src/runtime/runtime.h"
19 #include "src/s390/code-stubs-s390.h"
20 
21 namespace v8 {
22 namespace internal {
23 
24 #define __ ACCESS_MASM(masm)
25 
Generate(MacroAssembler * masm)26 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
27   __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
28   __ StoreP(r3, MemOperand(sp, r1));
29   __ push(r3);
30   __ push(r4);
31   __ AddP(r2, r2, Operand(3));
32   __ TailCallRuntime(Runtime::kNewArray);
33 }
34 
35 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
36                                           Condition cond);
37 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
38                                     Register rhs, Label* lhs_not_nan,
39                                     Label* slow, bool strict);
40 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
41                                            Register rhs);
42 
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)43 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
44                                                ExternalReference miss) {
45   // Update the static counter each time a new code stub is generated.
46   isolate()->counters()->code_stubs()->Increment();
47 
48   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
49   int param_count = descriptor.GetRegisterParameterCount();
50   {
51     // Call the runtime system in a fresh internal frame.
52     FrameScope scope(masm, StackFrame::INTERNAL);
53     DCHECK(param_count == 0 ||
54            r2.is(descriptor.GetRegisterParameter(param_count - 1)));
55     // Push arguments
56     for (int i = 0; i < param_count; ++i) {
57       __ push(descriptor.GetRegisterParameter(i));
58     }
59     __ CallExternalReference(miss, param_count);
60   }
61 
62   __ Ret();
63 }
64 
Generate(MacroAssembler * masm)65 void DoubleToIStub::Generate(MacroAssembler* masm) {
66   Label out_of_range, only_low, negate, done, fastpath_done;
67   Register input_reg = source();
68   Register result_reg = destination();
69   DCHECK(is_truncating());
70 
71   int double_offset = offset();
72 
73   // Immediate values for this stub fit in instructions, so it's safe to use ip.
74   Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
75   Register scratch_low =
76       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
77   Register scratch_high =
78       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
79   DoubleRegister double_scratch = kScratchDoubleReg;
80 
81   __ push(scratch);
82   // Account for saved regs if input is sp.
83   if (input_reg.is(sp)) double_offset += kPointerSize;
84 
85   if (!skip_fastpath()) {
86     // Load double input.
87     __ LoadDouble(double_scratch, MemOperand(input_reg, double_offset));
88 
89     // Do fast-path convert from double to int.
90     __ ConvertDoubleToInt64(double_scratch,
91 #if !V8_TARGET_ARCH_S390X
92                             scratch,
93 #endif
94                             result_reg, d0);
95 
96 // Test for overflow
97 #if V8_TARGET_ARCH_S390X
98     __ TestIfInt32(result_reg, r0);
99 #else
100     __ TestIfInt32(scratch, result_reg, r0);
101 #endif
102     __ beq(&fastpath_done, Label::kNear);
103   }
104 
105   __ Push(scratch_high, scratch_low);
106   // Account for saved regs if input is sp.
107   if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
108 
109   __ LoadlW(scratch_high,
110             MemOperand(input_reg, double_offset + Register::kExponentOffset));
111   __ LoadlW(scratch_low,
112             MemOperand(input_reg, double_offset + Register::kMantissaOffset));
113 
114   __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
115   // Load scratch with exponent - 1. This is faster than loading
116   // with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
117   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
118   __ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
119   // If exponent is greater than or equal to 84, the 32 less significant
120   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
121   // the result is 0.
122   // Compare exponent with 84 (compare exponent - 1 with 83).
123   __ CmpP(scratch, Operand(83));
124   __ bge(&out_of_range, Label::kNear);
125 
126   // If we reach this code, 31 <= exponent <= 83.
127   // So, we don't have to handle cases where 0 <= exponent <= 20 for
128   // which we would need to shift right the high part of the mantissa.
129   // Scratch contains exponent - 1.
130   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
131   __ Load(r0, Operand(51));
132   __ SubP(scratch, r0, scratch);
133   __ CmpP(scratch, Operand::Zero());
134   __ ble(&only_low, Label::kNear);
135   // 21 <= exponent <= 51, shift scratch_low and scratch_high
136   // to generate the result.
137   __ ShiftRight(scratch_low, scratch_low, scratch);
138   // Scratch contains: 52 - exponent.
139   // We needs: exponent - 20.
140   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
141   __ Load(r0, Operand(32));
142   __ SubP(scratch, r0, scratch);
143   __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
144   // Set the implicit 1 before the mantissa part in scratch_high.
145   STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
146   __ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
147   __ ShiftLeftP(r0, r0, Operand(16));
148   __ OrP(result_reg, result_reg, r0);
149   __ ShiftLeft(r0, result_reg, scratch);
150   __ OrP(result_reg, scratch_low, r0);
151   __ b(&negate, Label::kNear);
152 
153   __ bind(&out_of_range);
154   __ mov(result_reg, Operand::Zero());
155   __ b(&done, Label::kNear);
156 
157   __ bind(&only_low);
158   // 52 <= exponent <= 83, shift only scratch_low.
159   // On entry, scratch contains: 52 - exponent.
160   __ LoadComplementRR(scratch, scratch);
161   __ ShiftLeft(result_reg, scratch_low, scratch);
162 
163   __ bind(&negate);
164   // If input was positive, scratch_high ASR 31 equals 0 and
165   // scratch_high LSR 31 equals zero.
166   // New result = (result eor 0) + 0 = result.
167   // If the input was negative, we have to negate the result.
168   // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
169   // New result = (result eor 0xffffffff) + 1 = 0 - result.
170   __ ShiftRightArith(r0, scratch_high, Operand(31));
171 #if V8_TARGET_ARCH_S390X
172   __ lgfr(r0, r0);
173   __ ShiftRightP(r0, r0, Operand(32));
174 #endif
175   __ XorP(result_reg, r0);
176   __ ShiftRight(r0, scratch_high, Operand(31));
177   __ AddP(result_reg, r0);
178 
179   __ bind(&done);
180   __ Pop(scratch_high, scratch_low);
181 
182   __ bind(&fastpath_done);
183   __ pop(scratch);
184 
185   __ Ret();
186 }
187 
188 // Handle the case where the lhs and rhs are the same object.
189 // Equality is almost reflexive (everything but NaN), so this is a test
190 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cond)191 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
192                                           Condition cond) {
193   Label not_identical;
194   Label heap_number, return_equal;
195   __ CmpP(r2, r3);
196   __ bne(&not_identical);
197 
198   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
199   // so we do the second best thing - test it ourselves.
200   // They are both equal and they are not both Smis so both of them are not
201   // Smis.  If it's not a heap number, then return equal.
202   if (cond == lt || cond == gt) {
203     // Call runtime on identical JSObjects.
204     __ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE);
205     __ bge(slow);
206     // Call runtime on identical symbols since we need to throw a TypeError.
207     __ CmpP(r6, Operand(SYMBOL_TYPE));
208     __ beq(slow);
209   } else {
210     __ CompareObjectType(r2, r6, r6, HEAP_NUMBER_TYPE);
211     __ beq(&heap_number);
212     // Comparing JS objects with <=, >= is complicated.
213     if (cond != eq) {
214       __ CmpP(r6, Operand(FIRST_JS_RECEIVER_TYPE));
215       __ bge(slow);
216       // Call runtime on identical symbols since we need to throw a TypeError.
217       __ CmpP(r6, Operand(SYMBOL_TYPE));
218       __ beq(slow);
219       // Normally here we fall through to return_equal, but undefined is
220       // special: (undefined == undefined) == true, but
221       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
222       if (cond == le || cond == ge) {
223         __ CmpP(r6, Operand(ODDBALL_TYPE));
224         __ bne(&return_equal);
225         __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
226         __ bne(&return_equal);
227         if (cond == le) {
228           // undefined <= undefined should fail.
229           __ LoadImmP(r2, Operand(GREATER));
230         } else {
231           // undefined >= undefined should fail.
232           __ LoadImmP(r2, Operand(LESS));
233         }
234         __ Ret();
235       }
236     }
237   }
238 
239   __ bind(&return_equal);
240   if (cond == lt) {
241     __ LoadImmP(r2, Operand(GREATER));  // Things aren't less than themselves.
242   } else if (cond == gt) {
243     __ LoadImmP(r2, Operand(LESS));  // Things aren't greater than themselves.
244   } else {
245     __ LoadImmP(r2, Operand(EQUAL));  // Things are <=, >=, ==, === themselves
246   }
247   __ Ret();
248 
249   // For less and greater we don't have to check for NaN since the result of
250   // x < x is false regardless.  For the others here is some code to check
251   // for NaN.
252   if (cond != lt && cond != gt) {
253     __ bind(&heap_number);
254     // It is a heap number, so return non-equal if it's NaN and equal if it's
255     // not NaN.
256 
257     // The representation of NaN values has all exponent bits (52..62) set,
258     // and not all mantissa bits (0..51) clear.
259     // Read top bits of double representation (second word of value).
260     __ LoadlW(r4, FieldMemOperand(r2, HeapNumber::kExponentOffset));
261     // Test that exponent bits are all set.
262     STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
263     __ ExtractBitMask(r5, r4, HeapNumber::kExponentMask);
264     __ CmpLogicalP(r5, Operand(0x7ff));
265     __ bne(&return_equal);
266 
267     // Shift out flag and all exponent bits, retaining only mantissa.
268     __ sll(r4, Operand(HeapNumber::kNonMantissaBitsInTopWord));
269     // Or with all low-bits of mantissa.
270     __ LoadlW(r5, FieldMemOperand(r2, HeapNumber::kMantissaOffset));
271     __ OrP(r2, r5, r4);
272     __ CmpP(r2, Operand::Zero());
273     // For equal we already have the right value in r2:  Return zero (equal)
274     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
275     // not (it's a NaN).  For <= and >= we need to load r0 with the failing
276     // value if it's a NaN.
277     if (cond != eq) {
278       Label not_equal;
279       __ bne(&not_equal, Label::kNear);
280       // All-zero means Infinity means equal.
281       __ Ret();
282       __ bind(&not_equal);
283       if (cond == le) {
284         __ LoadImmP(r2, Operand(GREATER));  // NaN <= NaN should fail.
285       } else {
286         __ LoadImmP(r2, Operand(LESS));  // NaN >= NaN should fail.
287       }
288     }
289     __ Ret();
290   }
291   // No fall through here.
292 
293   __ bind(&not_identical);
294 }
295 
296 // See comment at call site.
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * lhs_not_nan,Label * slow,bool strict)297 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
298                                     Register rhs, Label* lhs_not_nan,
299                                     Label* slow, bool strict) {
300   DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
301 
302   Label rhs_is_smi;
303   __ JumpIfSmi(rhs, &rhs_is_smi);
304 
305   // Lhs is a Smi.  Check whether the rhs is a heap number.
306   __ CompareObjectType(rhs, r5, r6, HEAP_NUMBER_TYPE);
307   if (strict) {
308     // If rhs is not a number and lhs is a Smi then strict equality cannot
309     // succeed.  Return non-equal
310     // If rhs is r2 then there is already a non zero value in it.
311     Label skip;
312     __ beq(&skip, Label::kNear);
313     if (!rhs.is(r2)) {
314       __ mov(r2, Operand(NOT_EQUAL));
315     }
316     __ Ret();
317     __ bind(&skip);
318   } else {
319     // Smi compared non-strictly with a non-Smi non-heap-number.  Call
320     // the runtime.
321     __ bne(slow);
322   }
323 
324   // Lhs is a smi, rhs is a number.
325   // Convert lhs to a double in d7.
326   __ SmiToDouble(d7, lhs);
327   // Load the double from rhs, tagged HeapNumber r2, to d6.
328   __ LoadDouble(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
329 
330   // We now have both loaded as doubles but we can skip the lhs nan check
331   // since it's a smi.
332   __ b(lhs_not_nan);
333 
334   __ bind(&rhs_is_smi);
335   // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
336   __ CompareObjectType(lhs, r6, r6, HEAP_NUMBER_TYPE);
337   if (strict) {
338     // If lhs is not a number and rhs is a smi then strict equality cannot
339     // succeed.  Return non-equal.
340     // If lhs is r2 then there is already a non zero value in it.
341     Label skip;
342     __ beq(&skip, Label::kNear);
343     if (!lhs.is(r2)) {
344       __ mov(r2, Operand(NOT_EQUAL));
345     }
346     __ Ret();
347     __ bind(&skip);
348   } else {
349     // Smi compared non-strictly with a non-smi non-heap-number.  Call
350     // the runtime.
351     __ bne(slow);
352   }
353 
354   // Rhs is a smi, lhs is a heap number.
355   // Load the double from lhs, tagged HeapNumber r3, to d7.
356   __ LoadDouble(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
357   // Convert rhs to a double in d6.
358   __ SmiToDouble(d6, rhs);
359   // Fall through to both_loaded_as_doubles.
360 }
361 
362 // See comment at call site.
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)363 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
364                                            Register rhs) {
365   DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
366 
367   // If either operand is a JS object or an oddball value, then they are
368   // not equal since their pointers are different.
369   // There is no test for undetectability in strict equality.
370   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
371   Label first_non_object;
372   // Get the type of the first operand into r4 and compare it with
373   // FIRST_JS_RECEIVER_TYPE.
374   __ CompareObjectType(rhs, r4, r4, FIRST_JS_RECEIVER_TYPE);
375   __ blt(&first_non_object, Label::kNear);
376 
377   // Return non-zero (r2 is not zero)
378   Label return_not_equal;
379   __ bind(&return_not_equal);
380   __ Ret();
381 
382   __ bind(&first_non_object);
383   // Check for oddballs: true, false, null, undefined.
384   __ CmpP(r4, Operand(ODDBALL_TYPE));
385   __ beq(&return_not_equal);
386 
387   __ CompareObjectType(lhs, r5, r5, FIRST_JS_RECEIVER_TYPE);
388   __ bge(&return_not_equal);
389 
390   // Check for oddballs: true, false, null, undefined.
391   __ CmpP(r5, Operand(ODDBALL_TYPE));
392   __ beq(&return_not_equal);
393 
394   // Now that we have the types we might as well check for
395   // internalized-internalized.
396   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
397   __ OrP(r4, r4, r5);
398   __ AndP(r0, r4, Operand(kIsNotStringMask | kIsNotInternalizedMask));
399   __ beq(&return_not_equal);
400 }
401 
402 // See comment at call site.
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)403 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
404                                        Register rhs,
405                                        Label* both_loaded_as_doubles,
406                                        Label* not_heap_numbers, Label* slow) {
407   DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
408 
409   __ CompareObjectType(rhs, r5, r4, HEAP_NUMBER_TYPE);
410   __ bne(not_heap_numbers);
411   __ LoadP(r4, FieldMemOperand(lhs, HeapObject::kMapOffset));
412   __ CmpP(r4, r5);
413   __ bne(slow);  // First was a heap number, second wasn't.  Go slow case.
414 
415   // Both are heap numbers.  Load them up then jump to the code we have
416   // for that.
417   __ LoadDouble(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
418   __ LoadDouble(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
419 
420   __ b(both_loaded_as_doubles);
421 }
422 
423 // Fast negative check for internalized-to-internalized equality or receiver
424 // equality. Also handles the undetectable receiver to null/undefined
425 // comparison.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * runtime_call)426 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
427                                                      Register lhs, Register rhs,
428                                                      Label* possible_strings,
429                                                      Label* runtime_call) {
430   DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
431 
432   // r4 is object type of rhs.
433   Label object_test, return_equal, return_unequal, undetectable;
434   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
435   __ mov(r0, Operand(kIsNotStringMask));
436   __ AndP(r0, r4);
437   __ bne(&object_test, Label::kNear);
438   __ mov(r0, Operand(kIsNotInternalizedMask));
439   __ AndP(r0, r4);
440   __ bne(possible_strings);
441   __ CompareObjectType(lhs, r5, r5, FIRST_NONSTRING_TYPE);
442   __ bge(runtime_call);
443   __ mov(r0, Operand(kIsNotInternalizedMask));
444   __ AndP(r0, r5);
445   __ bne(possible_strings);
446 
447   // Both are internalized. We already checked they weren't the same pointer so
448   // they are not equal. Return non-equal by returning the non-zero object
449   // pointer in r2.
450   __ Ret();
451 
452   __ bind(&object_test);
453   __ LoadP(r4, FieldMemOperand(lhs, HeapObject::kMapOffset));
454   __ LoadP(r5, FieldMemOperand(rhs, HeapObject::kMapOffset));
455   __ LoadlB(r6, FieldMemOperand(r4, Map::kBitFieldOffset));
456   __ LoadlB(r7, FieldMemOperand(r5, Map::kBitFieldOffset));
457   __ AndP(r0, r6, Operand(1 << Map::kIsUndetectable));
458   __ bne(&undetectable);
459   __ AndP(r0, r7, Operand(1 << Map::kIsUndetectable));
460   __ bne(&return_unequal);
461 
462   __ CompareInstanceType(r4, r4, FIRST_JS_RECEIVER_TYPE);
463   __ blt(runtime_call);
464   __ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE);
465   __ blt(runtime_call);
466 
467   __ bind(&return_unequal);
468   // Return non-equal by returning the non-zero object pointer in r2.
469   __ Ret();
470 
471   __ bind(&undetectable);
472   __ AndP(r0, r7, Operand(1 << Map::kIsUndetectable));
473   __ beq(&return_unequal);
474 
475   // If both sides are JSReceivers, then the result is false according to
476   // the HTML specification, which says that only comparisons with null or
477   // undefined are affected by special casing for document.all.
478   __ CompareInstanceType(r4, r4, ODDBALL_TYPE);
479   __ beq(&return_equal);
480   __ CompareInstanceType(r5, r5, ODDBALL_TYPE);
481   __ bne(&return_unequal);
482 
483   __ bind(&return_equal);
484   __ LoadImmP(r2, Operand(EQUAL));
485   __ Ret();
486 }
487 
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)488 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
489                                          Register scratch,
490                                          CompareICState::State expected,
491                                          Label* fail) {
492   Label ok;
493   if (expected == CompareICState::SMI) {
494     __ JumpIfNotSmi(input, fail);
495   } else if (expected == CompareICState::NUMBER) {
496     __ JumpIfSmi(input, &ok);
497     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
498                 DONT_DO_SMI_CHECK);
499   }
500   // We could be strict about internalized/non-internalized here, but as long as
501   // hydrogen doesn't care, the stub doesn't have to care either.
502   __ bind(&ok);
503 }
504 
505 // On entry r3 and r4 are the values to be compared.
506 // On exit r2 is 0, positive or negative to indicate the result of
507 // the comparison.
GenerateGeneric(MacroAssembler * masm)508 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
509   Register lhs = r3;
510   Register rhs = r2;
511   Condition cc = GetCondition();
512 
513   Label miss;
514   CompareICStub_CheckInputType(masm, lhs, r4, left(), &miss);
515   CompareICStub_CheckInputType(masm, rhs, r5, right(), &miss);
516 
517   Label slow;  // Call builtin.
518   Label not_smis, both_loaded_as_doubles, lhs_not_nan;
519 
520   Label not_two_smis, smi_done;
521   __ OrP(r4, r3, r2);
522   __ JumpIfNotSmi(r4, &not_two_smis);
523   __ SmiUntag(r3);
524   __ SmiUntag(r2);
525   __ SubP(r2, r3, r2);
526   __ Ret();
527   __ bind(&not_two_smis);
528 
529   // NOTICE! This code is only reached after a smi-fast-case check, so
530   // it is certain that at least one operand isn't a smi.
531 
532   // Handle the case where the objects are identical.  Either returns the answer
533   // or goes to slow.  Only falls through if the objects were not identical.
534   EmitIdenticalObjectComparison(masm, &slow, cc);
535 
536   // If either is a Smi (we know that not both are), then they can only
537   // be strictly equal if the other is a HeapNumber.
538   STATIC_ASSERT(kSmiTag == 0);
539   DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
540   __ AndP(r4, lhs, rhs);
541   __ JumpIfNotSmi(r4, &not_smis);
542   // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
543   // 1) Return the answer.
544   // 2) Go to slow.
545   // 3) Fall through to both_loaded_as_doubles.
546   // 4) Jump to lhs_not_nan.
547   // In cases 3 and 4 we have found out we were dealing with a number-number
548   // comparison.  The double values of the numbers have been loaded
549   // into d7 and d6.
550   EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
551 
552   __ bind(&both_loaded_as_doubles);
553   // The arguments have been converted to doubles and stored in d6 and d7
554   __ bind(&lhs_not_nan);
555   Label no_nan;
556   __ cdbr(d7, d6);
557 
558   Label nan, equal, less_than;
559   __ bunordered(&nan);
560   __ beq(&equal, Label::kNear);
561   __ blt(&less_than, Label::kNear);
562   __ LoadImmP(r2, Operand(GREATER));
563   __ Ret();
564   __ bind(&equal);
565   __ LoadImmP(r2, Operand(EQUAL));
566   __ Ret();
567   __ bind(&less_than);
568   __ LoadImmP(r2, Operand(LESS));
569   __ Ret();
570 
571   __ bind(&nan);
572   // If one of the sides was a NaN then the v flag is set.  Load r2 with
573   // whatever it takes to make the comparison fail, since comparisons with NaN
574   // always fail.
575   if (cc == lt || cc == le) {
576     __ LoadImmP(r2, Operand(GREATER));
577   } else {
578     __ LoadImmP(r2, Operand(LESS));
579   }
580   __ Ret();
581 
582   __ bind(&not_smis);
583   // At this point we know we are dealing with two different objects,
584   // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
585   if (strict()) {
586     // This returns non-equal for some object types, or falls through if it
587     // was not lucky.
588     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
589   }
590 
591   Label check_for_internalized_strings;
592   Label flat_string_check;
593   // Check for heap-number-heap-number comparison.  Can jump to slow case,
594   // or load both doubles into r2, r3, r4, r5 and jump to the code that handles
595   // that case.  If the inputs are not doubles then jumps to
596   // check_for_internalized_strings.
597   // In this case r4 will contain the type of rhs_.  Never falls through.
598   EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
599                              &check_for_internalized_strings,
600                              &flat_string_check);
601 
602   __ bind(&check_for_internalized_strings);
603   // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
604   // internalized strings.
605   if (cc == eq && !strict()) {
606     // Returns an answer for two internalized strings or two detectable objects.
607     // Otherwise jumps to string case or not both strings case.
608     // Assumes that r4 is the type of rhs_ on entry.
609     EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
610                                              &slow);
611   }
612 
613   // Check for both being sequential one-byte strings,
614   // and inline if that is the case.
615   __ bind(&flat_string_check);
616 
617   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r4, r5, &slow);
618 
619   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r4,
620                       r5);
621   if (cc == eq) {
622     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r4, r5);
623   } else {
624     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r4, r5, r6);
625   }
626   // Never falls through to here.
627 
628   __ bind(&slow);
629 
630   if (cc == eq) {
631     {
632       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
633       __ Push(cp);
634       __ Call(strict() ? isolate()->builtins()->StrictEqual()
635                        : isolate()->builtins()->Equal(),
636               RelocInfo::CODE_TARGET);
637       __ Pop(cp);
638     }
639     // Turn true into 0 and false into some non-zero value.
640     STATIC_ASSERT(EQUAL == 0);
641     __ LoadRoot(r3, Heap::kTrueValueRootIndex);
642     __ SubP(r2, r2, r3);
643     __ Ret();
644   } else {
645     __ Push(lhs, rhs);
646     int ncr;  // NaN compare result
647     if (cc == lt || cc == le) {
648       ncr = GREATER;
649     } else {
650       DCHECK(cc == gt || cc == ge);  // remaining cases
651       ncr = LESS;
652     }
653     __ LoadSmiLiteral(r2, Smi::FromInt(ncr));
654     __ push(r2);
655 
656     // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
657     // tagged as a small integer.
658     __ TailCallRuntime(Runtime::kCompare);
659   }
660 
661   __ bind(&miss);
662   GenerateMiss(masm);
663 }
664 
Generate(MacroAssembler * masm)665 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
666   // We don't allow a GC during a store buffer overflow so there is no need to
667   // store the registers in any particular way, but we do have to store and
668   // restore them.
669   __ MultiPush(kJSCallerSaved | r14.bit());
670   if (save_doubles()) {
671     __ MultiPushDoubles(kCallerSavedDoubles);
672   }
673   const int argument_count = 1;
674   const int fp_argument_count = 0;
675   const Register scratch = r3;
676 
677   AllowExternalCallThatCantCauseGC scope(masm);
678   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
679   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
680   __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
681                    argument_count);
682   if (save_doubles()) {
683     __ MultiPopDoubles(kCallerSavedDoubles);
684   }
685   __ MultiPop(kJSCallerSaved | r14.bit());
686   __ Ret();
687 }
688 
Generate(MacroAssembler * masm)689 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
690   __ PushSafepointRegisters();
691   __ b(r14);
692 }
693 
Generate(MacroAssembler * masm)694 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
695   __ PopSafepointRegisters();
696   __ b(r14);
697 }
698 
Generate(MacroAssembler * masm)699 void MathPowStub::Generate(MacroAssembler* masm) {
700   const Register exponent = MathPowTaggedDescriptor::exponent();
701   DCHECK(exponent.is(r4));
702   const DoubleRegister double_base = d1;
703   const DoubleRegister double_exponent = d2;
704   const DoubleRegister double_result = d3;
705   const DoubleRegister double_scratch = d0;
706   const Register scratch = r1;
707   const Register scratch2 = r9;
708 
709   Label call_runtime, done, int_exponent;
710   if (exponent_type() == TAGGED) {
711     // Base is already in double_base.
712     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
713 
714     __ LoadDouble(double_exponent,
715                   FieldMemOperand(exponent, HeapNumber::kValueOffset));
716   }
717 
718   if (exponent_type() != INTEGER) {
719     // Detect integer exponents stored as double.
720     __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
721                              double_scratch);
722     __ beq(&int_exponent, Label::kNear);
723 
724     __ push(r14);
725     {
726       AllowExternalCallThatCantCauseGC scope(masm);
727       __ PrepareCallCFunction(0, 2, scratch);
728       __ MovToFloatParameters(double_base, double_exponent);
729       __ CallCFunction(
730           ExternalReference::power_double_double_function(isolate()), 0, 2);
731     }
732     __ pop(r14);
733     __ MovFromFloatResult(double_result);
734     __ b(&done);
735   }
736 
737   // Calculate power with integer exponent.
738   __ bind(&int_exponent);
739 
740   // Get two copies of exponent in the registers scratch and exponent.
741   if (exponent_type() == INTEGER) {
742     __ LoadRR(scratch, exponent);
743   } else {
744     // Exponent has previously been stored into scratch as untagged integer.
745     __ LoadRR(exponent, scratch);
746   }
747   __ ldr(double_scratch, double_base);  // Back up base.
748   __ LoadImmP(scratch2, Operand(1));
749   __ ConvertIntToDouble(scratch2, double_result);
750 
751   // Get absolute value of exponent.
752   Label positive_exponent;
753   __ CmpP(scratch, Operand::Zero());
754   __ bge(&positive_exponent, Label::kNear);
755   __ LoadComplementRR(scratch, scratch);
756   __ bind(&positive_exponent);
757 
758   Label while_true, no_carry, loop_end;
759   __ bind(&while_true);
760   __ mov(scratch2, Operand(1));
761   __ AndP(scratch2, scratch);
762   __ beq(&no_carry, Label::kNear);
763   __ mdbr(double_result, double_scratch);
764   __ bind(&no_carry);
765   __ ShiftRightP(scratch, scratch, Operand(1));
766   __ LoadAndTestP(scratch, scratch);
767   __ beq(&loop_end, Label::kNear);
768   __ mdbr(double_scratch, double_scratch);
769   __ b(&while_true);
770   __ bind(&loop_end);
771 
772   __ CmpP(exponent, Operand::Zero());
773   __ bge(&done);
774 
775   // get 1/double_result:
776   __ ldr(double_scratch, double_result);
777   __ LoadImmP(scratch2, Operand(1));
778   __ ConvertIntToDouble(scratch2, double_result);
779   __ ddbr(double_result, double_scratch);
780 
781   // Test whether result is zero.  Bail out to check for subnormal result.
782   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
783   __ lzdr(kDoubleRegZero);
784   __ cdbr(double_result, kDoubleRegZero);
785   __ bne(&done, Label::kNear);
786   // double_exponent may not containe the exponent value if the input was a
787   // smi.  We set it with exponent value before bailing out.
788   __ ConvertIntToDouble(exponent, double_exponent);
789 
790   // Returning or bailing out.
791   __ push(r14);
792   {
793     AllowExternalCallThatCantCauseGC scope(masm);
794     __ PrepareCallCFunction(0, 2, scratch);
795     __ MovToFloatParameters(double_base, double_exponent);
796     __ CallCFunction(
797         ExternalReference::power_double_double_function(isolate()), 0, 2);
798   }
799   __ pop(r14);
800   __ MovFromFloatResult(double_result);
801 
802   __ bind(&done);
803   __ Ret();
804 }
805 
NeedsImmovableCode()806 bool CEntryStub::NeedsImmovableCode() { return true; }
807 
GenerateStubsAheadOfTime(Isolate * isolate)808 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
809   CEntryStub::GenerateAheadOfTime(isolate);
810   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
811   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
812   CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
813   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
814   CreateWeakCellStub::GenerateAheadOfTime(isolate);
815   BinaryOpICStub::GenerateAheadOfTime(isolate);
816   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
817   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
818   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
819   StoreFastElementStub::GenerateAheadOfTime(isolate);
820 }
821 
GenerateAheadOfTime(Isolate * isolate)822 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
823   StoreRegistersStateStub stub(isolate);
824   stub.GetCode();
825 }
826 
GenerateAheadOfTime(Isolate * isolate)827 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
828   RestoreRegistersStateStub stub(isolate);
829   stub.GetCode();
830 }
831 
GenerateFPStubs(Isolate * isolate)832 void CodeStub::GenerateFPStubs(Isolate* isolate) {
833   SaveFPRegsMode mode = kSaveFPRegs;
834   CEntryStub(isolate, 1, mode).GetCode();
835   StoreBufferOverflowStub(isolate, mode).GetCode();
836 }
837 
GenerateAheadOfTime(Isolate * isolate)838 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
839   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
840   stub.GetCode();
841 }
842 
Generate(MacroAssembler * masm)843 void CEntryStub::Generate(MacroAssembler* masm) {
844   // Called from JavaScript; parameters are on stack as if calling JS function.
845   // r2: number of arguments including receiver
846   // r3: pointer to builtin function
847   // fp: frame pointer  (restored after C call)
848   // sp: stack pointer  (restored as callee's sp after C call)
849   // cp: current context  (C callee-saved)
850   //
851   // If argv_in_register():
852   // r4: pointer to the first argument
853   ProfileEntryHookStub::MaybeCallEntryHook(masm);
854 
855   __ LoadRR(r7, r3);
856 
857   if (argv_in_register()) {
858     // Move argv into the correct register.
859     __ LoadRR(r3, r4);
860   } else {
861     // Compute the argv pointer.
862     __ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2));
863     __ lay(r3, MemOperand(r3, sp, -kPointerSize));
864   }
865 
866   // Enter the exit frame that transitions from JavaScript to C++.
867   FrameScope scope(masm, StackFrame::MANUAL);
868 
869   // Need at least one extra slot for return address location.
870   int arg_stack_space = 1;
871 
872   // Pass buffer for return value on stack if necessary
873   bool needs_return_buffer =
874       result_size() > 2 ||
875       (result_size() == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS);
876   if (needs_return_buffer) {
877     arg_stack_space += result_size();
878   }
879 
880 #if V8_TARGET_ARCH_S390X
881   // 64-bit linux pass Argument object by reference not value
882   arg_stack_space += 2;
883 #endif
884 
885   __ EnterExitFrame(save_doubles(), arg_stack_space, is_builtin_exit()
886                                            ? StackFrame::BUILTIN_EXIT
887                                            : StackFrame::EXIT);
888 
889   // Store a copy of argc, argv in callee-saved registers for later.
890   __ LoadRR(r6, r2);
891   __ LoadRR(r8, r3);
892   // r2, r6: number of arguments including receiver  (C callee-saved)
893   // r3, r8: pointer to the first argument
894   // r7: pointer to builtin function  (C callee-saved)
895 
896   // Result returned in registers or stack, depending on result size and ABI.
897 
898   Register isolate_reg = r4;
899   if (needs_return_buffer) {
900     // The return value is 16-byte non-scalar value.
901     // Use frame storage reserved by calling function to pass return
902     // buffer as implicit first argument in R2.  Shfit original parameters
903     // by one register each.
904     __ LoadRR(r4, r3);
905     __ LoadRR(r3, r2);
906     __ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
907     isolate_reg = r5;
908   }
909   // Call C built-in.
910   __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
911 
912   Register target = r7;
913 
914   // To let the GC traverse the return address of the exit frames, we need to
915   // know where the return address is. The CEntryStub is unmovable, so
916   // we can store the address on the stack to be able to find it again and
917   // we never have to restore it, because it will not change.
918   {
919     Label return_label;
920     __ larl(r14, &return_label);  // Generate the return addr of call later.
921     __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
922 
923     // zLinux ABI requires caller's frame to have sufficient space for callee
924     // preserved regsiter save area.
925     // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
926     __ b(target);
927     __ bind(&return_label);
928     // __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize));
929   }
930 
931   // If return value is on the stack, pop it to registers.
932   if (needs_return_buffer) {
933     if (result_size() > 2) __ LoadP(r4, MemOperand(r2, 2 * kPointerSize));
934     __ LoadP(r3, MemOperand(r2, kPointerSize));
935     __ LoadP(r2, MemOperand(r2));
936   }
937 
938   // Check result for exception sentinel.
939   Label exception_returned;
940   __ CompareRoot(r2, Heap::kExceptionRootIndex);
941   __ beq(&exception_returned, Label::kNear);
942 
943   // Check that there is no pending exception, otherwise we
944   // should have returned the exception sentinel.
945   if (FLAG_debug_code) {
946     Label okay;
947     ExternalReference pending_exception_address(
948         Isolate::kPendingExceptionAddress, isolate());
949     __ mov(r1, Operand(pending_exception_address));
950     __ LoadP(r1, MemOperand(r1));
951     __ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
952     // Cannot use check here as it attempts to generate call into runtime.
953     __ beq(&okay, Label::kNear);
954     __ stop("Unexpected pending exception");
955     __ bind(&okay);
956   }
957 
958   // Exit C frame and return.
959   // r2:r3: result
960   // sp: stack pointer
961   // fp: frame pointer
962   Register argc;
963   if (argv_in_register()) {
964     // We don't want to pop arguments so set argc to no_reg.
965     argc = no_reg;
966   } else {
967     // r6: still holds argc (callee-saved).
968     argc = r6;
969   }
970   __ LeaveExitFrame(save_doubles(), argc, true);
971   __ b(r14);
972 
973   // Handling of exception.
974   __ bind(&exception_returned);
975 
976   ExternalReference pending_handler_context_address(
977       Isolate::kPendingHandlerContextAddress, isolate());
978   ExternalReference pending_handler_code_address(
979       Isolate::kPendingHandlerCodeAddress, isolate());
980   ExternalReference pending_handler_offset_address(
981       Isolate::kPendingHandlerOffsetAddress, isolate());
982   ExternalReference pending_handler_fp_address(
983       Isolate::kPendingHandlerFPAddress, isolate());
984   ExternalReference pending_handler_sp_address(
985       Isolate::kPendingHandlerSPAddress, isolate());
986 
987   // Ask the runtime for help to determine the handler. This will set r3 to
988   // contain the current pending exception, don't clobber it.
989   ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
990                                  isolate());
991   {
992     FrameScope scope(masm, StackFrame::MANUAL);
993     __ PrepareCallCFunction(3, 0, r2);
994     __ LoadImmP(r2, Operand::Zero());
995     __ LoadImmP(r3, Operand::Zero());
996     __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
997     __ CallCFunction(find_handler, 3);
998   }
999 
1000   // Retrieve the handler context, SP and FP.
1001   __ mov(cp, Operand(pending_handler_context_address));
1002   __ LoadP(cp, MemOperand(cp));
1003   __ mov(sp, Operand(pending_handler_sp_address));
1004   __ LoadP(sp, MemOperand(sp));
1005   __ mov(fp, Operand(pending_handler_fp_address));
1006   __ LoadP(fp, MemOperand(fp));
1007 
1008   // If the handler is a JS frame, restore the context to the frame. Note that
1009   // the context will be set to (cp == 0) for non-JS frames.
1010   Label skip;
1011   __ CmpP(cp, Operand::Zero());
1012   __ beq(&skip, Label::kNear);
1013   __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1014   __ bind(&skip);
1015 
1016   // Compute the handler entry address and jump to it.
1017   __ mov(r3, Operand(pending_handler_code_address));
1018   __ LoadP(r3, MemOperand(r3));
1019   __ mov(r4, Operand(pending_handler_offset_address));
1020   __ LoadP(r4, MemOperand(r4));
1021   __ AddP(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
1022   __ AddP(ip, r3, r4);
1023   __ Jump(ip);
1024 }
1025 
Generate(MacroAssembler * masm)1026 void JSEntryStub::Generate(MacroAssembler* masm) {
1027   // r2: code entry
1028   // r3: function
1029   // r4: receiver
1030   // r5: argc
1031   // r6: argv
1032 
1033   Label invoke, handler_entry, exit;
1034 
1035   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1036 
1037 // saving floating point registers
1038 #if V8_TARGET_ARCH_S390X
1039   // 64bit ABI requires f8 to f15 be saved
1040   __ lay(sp, MemOperand(sp, -8 * kDoubleSize));
1041   __ std(d8, MemOperand(sp));
1042   __ std(d9, MemOperand(sp, 1 * kDoubleSize));
1043   __ std(d10, MemOperand(sp, 2 * kDoubleSize));
1044   __ std(d11, MemOperand(sp, 3 * kDoubleSize));
1045   __ std(d12, MemOperand(sp, 4 * kDoubleSize));
1046   __ std(d13, MemOperand(sp, 5 * kDoubleSize));
1047   __ std(d14, MemOperand(sp, 6 * kDoubleSize));
1048   __ std(d15, MemOperand(sp, 7 * kDoubleSize));
1049 #else
1050   // 31bit ABI requires you to store f4 and f6:
1051   // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
1052   __ lay(sp, MemOperand(sp, -2 * kDoubleSize));
1053   __ std(d4, MemOperand(sp));
1054   __ std(d6, MemOperand(sp, kDoubleSize));
1055 #endif
1056 
1057   // zLinux ABI
1058   //    Incoming parameters:
1059   //          r2: code entry
1060   //          r3: function
1061   //          r4: receiver
1062   //          r5: argc
1063   //          r6: argv
1064   //    Requires us to save the callee-preserved registers r6-r13
1065   //    General convention is to also save r14 (return addr) and
1066   //    sp/r15 as well in a single STM/STMG
1067   __ lay(sp, MemOperand(sp, -10 * kPointerSize));
1068   __ StoreMultipleP(r6, sp, MemOperand(sp, 0));
1069 
1070   // Set up the reserved register for 0.0.
1071   // __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
1072 
1073   // Push a frame with special values setup to mark it as an entry frame.
1074   //   Bad FP (-1)
1075   //   SMI Marker
1076   //   SMI Marker
1077   //   kCEntryFPAddress
1078   //   Frame type
1079   __ lay(sp, MemOperand(sp, -5 * kPointerSize));
1080   // Push a bad frame pointer to fail if it is used.
1081   __ LoadImmP(r10, Operand(-1));
1082 
1083   StackFrame::Type marker = type();
1084   __ Load(r9, Operand(StackFrame::TypeToMarker(marker)));
1085   __ Load(r8, Operand(StackFrame::TypeToMarker(marker)));
1086   // Save copies of the top frame descriptor on the stack.
1087   __ mov(r7, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1088   __ LoadP(r7, MemOperand(r7));
1089   __ StoreMultipleP(r7, r10, MemOperand(sp, kPointerSize));
1090   // Set up frame pointer for the frame to be pushed.
1091   // Need to add kPointerSize, because sp has one extra
1092   // frame already for the frame type being pushed later.
1093   __ lay(fp,
1094          MemOperand(sp, -EntryFrameConstants::kCallerFPOffset + kPointerSize));
1095 
1096   // If this is the outermost JS call, set js_entry_sp value.
1097   Label non_outermost_js;
1098   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1099   __ mov(r7, Operand(ExternalReference(js_entry_sp)));
1100   __ LoadAndTestP(r8, MemOperand(r7));
1101   __ bne(&non_outermost_js, Label::kNear);
1102   __ StoreP(fp, MemOperand(r7));
1103   __ Load(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1104   Label cont;
1105   __ b(&cont, Label::kNear);
1106   __ bind(&non_outermost_js);
1107   __ Load(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
1108 
1109   __ bind(&cont);
1110   __ StoreP(ip, MemOperand(sp));  // frame-type
1111 
1112   // Jump to a faked try block that does the invoke, with a faked catch
1113   // block that sets the pending exception.
1114   __ b(&invoke, Label::kNear);
1115 
1116   __ bind(&handler_entry);
1117   handler_offset_ = handler_entry.pos();
1118   // Caught exception: Store result (exception) in the pending exception
1119   // field in the JSEnv and return a failure sentinel.  Coming in here the
1120   // fp will be invalid because the PushStackHandler below sets it to 0 to
1121   // signal the existence of the JSEntry frame.
1122   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1123                                        isolate())));
1124 
1125   __ StoreP(r2, MemOperand(ip));
1126   __ LoadRoot(r2, Heap::kExceptionRootIndex);
1127   __ b(&exit, Label::kNear);
1128 
1129   // Invoke: Link this frame into the handler chain.
1130   __ bind(&invoke);
1131   // Must preserve r2-r6.
1132   __ PushStackHandler();
1133   // If an exception not caught by another handler occurs, this handler
1134   // returns control to the code after the b(&invoke) above, which
1135   // restores all kCalleeSaved registers (including cp and fp) to their
1136   // saved values before returning a failure to C.
1137 
1138   // Invoke the function by calling through JS entry trampoline builtin.
1139   // Notice that we cannot store a reference to the trampoline code directly in
1140   // this stub, because runtime stubs are not traversed when doing GC.
1141 
1142   // Expected registers by Builtins::JSEntryTrampoline
1143   // r2: code entry
1144   // r3: function
1145   // r4: receiver
1146   // r5: argc
1147   // r6: argv
1148   if (type() == StackFrame::ENTRY_CONSTRUCT) {
1149     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1150                                       isolate());
1151     __ mov(ip, Operand(construct_entry));
1152   } else {
1153     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1154     __ mov(ip, Operand(entry));
1155   }
1156   __ LoadP(ip, MemOperand(ip));  // deref address
1157 
1158   // Branch and link to JSEntryTrampoline.
1159   // the address points to the start of the code object, skip the header
1160   __ AddP(ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1161   Label return_addr;
1162   // __ basr(r14, ip);
1163   __ larl(r14, &return_addr);
1164   __ b(ip);
1165   __ bind(&return_addr);
1166 
1167   // Unlink this frame from the handler chain.
1168   __ PopStackHandler();
1169 
1170   __ bind(&exit);  // r2 holds result
1171   // Check if the current stack frame is marked as the outermost JS frame.
1172   Label non_outermost_js_2;
1173   __ pop(r7);
1174   __ CmpP(r7, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
1175   __ bne(&non_outermost_js_2, Label::kNear);
1176   __ mov(r8, Operand::Zero());
1177   __ mov(r7, Operand(ExternalReference(js_entry_sp)));
1178   __ StoreP(r8, MemOperand(r7));
1179   __ bind(&non_outermost_js_2);
1180 
1181   // Restore the top frame descriptors from the stack.
1182   __ pop(r5);
1183   __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1184   __ StoreP(r5, MemOperand(ip));
1185 
1186   // Reset the stack to the callee saved registers.
1187   __ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset));
1188 
1189   // Reload callee-saved preserved regs, return address reg (r14) and sp
1190   __ LoadMultipleP(r6, sp, MemOperand(sp, 0));
1191   __ la(sp, MemOperand(sp, 10 * kPointerSize));
1192 
1193 // saving floating point registers
1194 #if V8_TARGET_ARCH_S390X
1195   // 64bit ABI requires f8 to f15 be saved
1196   __ ld(d8, MemOperand(sp));
1197   __ ld(d9, MemOperand(sp, 1 * kDoubleSize));
1198   __ ld(d10, MemOperand(sp, 2 * kDoubleSize));
1199   __ ld(d11, MemOperand(sp, 3 * kDoubleSize));
1200   __ ld(d12, MemOperand(sp, 4 * kDoubleSize));
1201   __ ld(d13, MemOperand(sp, 5 * kDoubleSize));
1202   __ ld(d14, MemOperand(sp, 6 * kDoubleSize));
1203   __ ld(d15, MemOperand(sp, 7 * kDoubleSize));
1204   __ la(sp, MemOperand(sp, 8 * kDoubleSize));
1205 #else
1206   // 31bit ABI requires you to store f4 and f6:
1207   // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
1208   __ ld(d4, MemOperand(sp));
1209   __ ld(d6, MemOperand(sp, kDoubleSize));
1210   __ la(sp, MemOperand(sp, 2 * kDoubleSize));
1211 #endif
1212 
1213   __ b(r14);
1214 }
1215 
Generate(MacroAssembler * masm)1216 void RegExpExecStub::Generate(MacroAssembler* masm) {
1217 // Just jump directly to runtime if native RegExp is not selected at compile
1218 // time or if regexp entry in generated code is turned off runtime switch or
1219 // at compilation.
1220 #ifdef V8_INTERPRETED_REGEXP
1221   __ TailCallRuntime(Runtime::kRegExpExec);
1222 #else   // V8_INTERPRETED_REGEXP
1223 
1224   // Stack frame on entry.
1225   //  sp[0]: last_match_info (expected JSArray)
1226   //  sp[4]: previous index
1227   //  sp[8]: subject string
1228   //  sp[12]: JSRegExp object
1229 
1230   const int kLastMatchInfoOffset = 0 * kPointerSize;
1231   const int kPreviousIndexOffset = 1 * kPointerSize;
1232   const int kSubjectOffset = 2 * kPointerSize;
1233   const int kJSRegExpOffset = 3 * kPointerSize;
1234 
1235   Label runtime, br_over, encoding_type_UC16;
1236 
1237   // Allocation of registers for this function. These are in callee save
1238   // registers and will be preserved by the call to the native RegExp code, as
1239   // this code is called using the normal C calling convention. When calling
1240   // directly from generated code the native RegExp code will not do a GC and
1241   // therefore the content of these registers are safe to use after the call.
1242   Register subject = r6;
1243   Register regexp_data = r7;
1244   Register last_match_info_elements = r8;
1245   Register code = r9;
1246 
1247   __ CleanseP(r14);
1248 
1249   // Ensure register assigments are consistent with callee save masks
1250   DCHECK(subject.bit() & kCalleeSaved);
1251   DCHECK(regexp_data.bit() & kCalleeSaved);
1252   DCHECK(last_match_info_elements.bit() & kCalleeSaved);
1253   DCHECK(code.bit() & kCalleeSaved);
1254 
1255   // Ensure that a RegExp stack is allocated.
1256   ExternalReference address_of_regexp_stack_memory_address =
1257       ExternalReference::address_of_regexp_stack_memory_address(isolate());
1258   ExternalReference address_of_regexp_stack_memory_size =
1259       ExternalReference::address_of_regexp_stack_memory_size(isolate());
1260   __ mov(r2, Operand(address_of_regexp_stack_memory_size));
1261   __ LoadAndTestP(r2, MemOperand(r2));
1262   __ beq(&runtime);
1263 
1264   // Check that the first argument is a JSRegExp object.
1265   __ LoadP(r2, MemOperand(sp, kJSRegExpOffset));
1266   __ JumpIfSmi(r2, &runtime);
1267   __ CompareObjectType(r2, r3, r3, JS_REGEXP_TYPE);
1268   __ bne(&runtime);
1269 
1270   // Check that the RegExp has been compiled (data contains a fixed array).
1271   __ LoadP(regexp_data, FieldMemOperand(r2, JSRegExp::kDataOffset));
1272   if (FLAG_debug_code) {
1273     __ TestIfSmi(regexp_data);
1274     __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
1275     __ CompareObjectType(regexp_data, r2, r2, FIXED_ARRAY_TYPE);
1276     __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1277   }
1278 
1279   // regexp_data: RegExp data (FixedArray)
1280   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1281   __ LoadP(r2, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1282   // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
1283   __ CmpSmiLiteral(r2, Smi::FromInt(JSRegExp::IRREGEXP), r0);
1284   __ bne(&runtime);
1285 
1286   // regexp_data: RegExp data (FixedArray)
1287   // Check that the number of captures fit in the static offsets vector buffer.
1288   __ LoadP(r4,
1289            FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1290   // Check (number_of_captures + 1) * 2 <= offsets vector size
1291   // Or          number_of_captures * 2 <= offsets vector size - 2
1292   // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1293   // SmiUntag (which is a nop for 32-bit).
1294   __ SmiToShortArrayOffset(r4, r4);
1295   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1296   __ CmpLogicalP(r4, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1297   __ bgt(&runtime);
1298 
1299   // Reset offset for possibly sliced string.
1300   __ LoadImmP(ip, Operand::Zero());
1301   __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1302   __ JumpIfSmi(subject, &runtime);
1303   __ LoadRR(r5, subject);  // Make a copy of the original subject string.
1304   // subject: subject string
1305   // r5: subject string
1306   // regexp_data: RegExp data (FixedArray)
1307   // Handle subject string according to its encoding and representation:
1308   // (1) Sequential string?  If yes, go to (4).
1309   // (2) Sequential or cons?  If not, go to (5).
1310   // (3) Cons string.  If the string is flat, replace subject with first string
1311   //     and go to (1). Otherwise bail out to runtime.
1312   // (4) Sequential string.  Load regexp code according to encoding.
1313   // (E) Carry on.
1314   /// [...]
1315 
1316   // Deferred code at the end of the stub:
1317   // (5) Long external string?  If not, go to (7).
1318   // (6) External string.  Make it, offset-wise, look like a sequential string.
1319   //     Go to (4).
1320   // (7) Short external string or not a string?  If yes, bail out to runtime.
1321   // (8) Sliced or thin string.  Replace subject with parent.  Go to (1).
1322 
1323   Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1324       not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
1325 
1326   __ bind(&check_underlying);
1327   __ LoadP(r2, FieldMemOperand(subject, HeapObject::kMapOffset));
1328   __ LoadlB(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
1329 
1330   // (1) Sequential string?  If yes, go to (4).
1331 
1332   STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
1333                  kShortExternalStringMask) == 0xa7);
1334   __ mov(r3, Operand(kIsNotStringMask | kStringRepresentationMask |
1335                      kShortExternalStringMask));
1336   __ AndP(r3, r2);
1337   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1338   __ beq(&seq_string, Label::kNear);  // Go to (4).
1339 
1340   // (2) Sequential or cons? If not, go to (5).
1341   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1342   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1343   STATIC_ASSERT(kThinStringTag > kExternalStringTag);
1344   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1345   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1346   STATIC_ASSERT(kExternalStringTag < 0xffffu);
1347   __ CmpP(r3, Operand(kExternalStringTag));
1348   __ bge(&not_seq_nor_cons);  // Go to (5).
1349 
1350   // (3) Cons string.  Check that it's flat.
1351   // Replace subject with first string and reload instance type.
1352   __ LoadP(r2, FieldMemOperand(subject, ConsString::kSecondOffset));
1353   __ CompareRoot(r2, Heap::kempty_stringRootIndex);
1354   __ bne(&runtime);
1355   __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1356   __ b(&check_underlying);
1357 
1358   // (4) Sequential string.  Load regexp code according to encoding.
1359   __ bind(&seq_string);
1360   // subject: sequential subject string (or look-alike, external string)
1361   // r5: original subject string
1362   // Load previous index and check range before r5 is overwritten.  We have to
1363   // use r5 instead of subject here because subject might have been only made
1364   // to look like a sequential string when it actually is an external string.
1365   __ LoadP(r3, MemOperand(sp, kPreviousIndexOffset));
1366   __ JumpIfNotSmi(r3, &runtime);
1367   __ LoadP(r5, FieldMemOperand(r5, String::kLengthOffset));
1368   __ CmpLogicalP(r5, r3);
1369   __ ble(&runtime);
1370   __ SmiUntag(r3);
1371 
1372   STATIC_ASSERT(8 == kOneByteStringTag);
1373   STATIC_ASSERT(kTwoByteStringTag == 0);
1374   STATIC_ASSERT(kStringEncodingMask == 8);
1375   __ ExtractBitMask(r5, r2, kStringEncodingMask, SetRC);
1376   __ beq(&encoding_type_UC16, Label::kNear);
1377   __ LoadP(code,
1378            FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1379   __ b(&br_over, Label::kNear);
1380   __ bind(&encoding_type_UC16);
1381   __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1382   __ bind(&br_over);
1383 
1384   // (E) Carry on.  String handling is done.
1385   // code: irregexp code
1386   // Check that the irregexp code has been generated for the actual string
1387   // encoding. If it has, the field contains a code object otherwise it contains
1388   // a smi (code flushing support).
1389   __ JumpIfSmi(code, &runtime);
1390 
1391   // r3: previous index
1392   // r5: encoding of subject string (1 if one_byte, 0 if two_byte);
1393   // code: Address of generated regexp code
1394   // subject: Subject string
1395   // regexp_data: RegExp data (FixedArray)
1396   // All checks done. Now push arguments for native regexp code.
1397   __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r2, r4);
1398 
1399   // Isolates: note we add an additional parameter here (isolate pointer).
1400   const int kRegExpExecuteArguments = 10;
1401   const int kParameterRegisters = 5;
1402   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1403 
1404   // Stack pointer now points to cell where return address is to be written.
1405   // Arguments are before that on the stack or in registers.
1406 
1407   // Argument 10 (in stack parameter area): Pass current isolate address.
1408   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
1409   __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1410                                    4 * kPointerSize));
1411 
1412   // Argument 9 is a dummy that reserves the space used for
1413   // the return address added by the ExitFrame in native calls.
1414   __ mov(r2, Operand::Zero());
1415   __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1416                                    3 * kPointerSize));
1417 
1418   // Argument 8: Indicate that this is a direct call from JavaScript.
1419   __ mov(r2, Operand(1));
1420   __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1421                                    2 * kPointerSize));
1422 
1423   // Argument 7: Start (high end) of backtracking stack memory area.
1424   __ mov(r2, Operand(address_of_regexp_stack_memory_address));
1425   __ LoadP(r2, MemOperand(r2, 0));
1426   __ mov(r1, Operand(address_of_regexp_stack_memory_size));
1427   __ LoadP(r1, MemOperand(r1, 0));
1428   __ AddP(r2, r1);
1429   __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1430                                    1 * kPointerSize));
1431 
1432   // Argument 6: Set the number of capture registers to zero to force
1433   // global egexps to behave as non-global.  This does not affect non-global
1434   // regexps.
1435   __ mov(r2, Operand::Zero());
1436   __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1437                                    0 * kPointerSize));
1438 
1439   // Argument 1 (r2): Subject string.
1440   // Load the length from the original subject string from the previous stack
1441   // frame. Therefore we have to use fp, which points exactly to 15 pointer
1442   // sizes below the previous sp. (Because creating a new stack frame pushes
1443   // the previous fp onto the stack and moves up sp by 2 * kPointerSize and
1444   // 13 registers saved on the stack previously)
1445   __ LoadP(r2, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1446 
1447   // Argument 2 (r3): Previous index.
1448   // Already there
1449   __ AddP(r1, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1450 
1451   // Argument 5 (r6): static offsets vector buffer.
1452   __ mov(
1453       r6,
1454       Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
1455 
1456   // For arguments 4 (r5) and 3 (r4) get string length, calculate start of data
1457   // and calculate the shift of the index (0 for one-byte and 1 for two byte).
1458   __ XorP(r5, Operand(1));
1459   // If slice offset is not 0, load the length from the original sliced string.
1460   // Argument 3, r4: Start of string data
1461   // Prepare start and end index of the input.
1462   __ ShiftLeftP(ip, ip, r5);
1463   __ AddP(ip, r1, ip);
1464   __ ShiftLeftP(r4, r3, r5);
1465   __ AddP(r4, ip, r4);
1466 
1467   // Argument 4, r5: End of string data
1468   __ LoadP(r1, FieldMemOperand(r2, String::kLengthOffset));
1469   __ SmiUntag(r1);
1470   __ ShiftLeftP(r0, r1, r5);
1471   __ AddP(r5, ip, r0);
1472 
1473   // Locate the code entry and call it.
1474   __ AddP(code, Operand(Code::kHeaderSize - kHeapObjectTag));
1475 
1476   DirectCEntryStub stub(isolate());
1477   stub.GenerateCall(masm, code);
1478 
1479   __ LeaveExitFrame(false, no_reg, true);
1480 
1481   // r2: result (int32)
1482   // subject: subject string -- needed to reload
1483   __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1484 
1485   // regexp_data: RegExp data (callee saved)
1486   // last_match_info_elements: Last match info elements (callee saved)
1487   // Check the result.
1488   Label success;
1489   __ Cmp32(r2, Operand(1));
1490   // We expect exactly one result since we force the called regexp to behave
1491   // as non-global.
1492   __ beq(&success);
1493   Label failure;
1494   __ Cmp32(r2, Operand(NativeRegExpMacroAssembler::FAILURE));
1495   __ beq(&failure);
1496   __ Cmp32(r2, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1497   // If not exception it can only be retry. Handle that in the runtime system.
1498   __ bne(&runtime);
1499   // Result must now be exception. If there is no pending exception already a
1500   // stack overflow (on the backtrack stack) was detected in RegExp code but
1501   // haven't created the exception yet. Handle that in the runtime system.
1502   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1503   __ mov(r3, Operand(isolate()->factory()->the_hole_value()));
1504   __ mov(r4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1505                                        isolate())));
1506   __ LoadP(r2, MemOperand(r4, 0));
1507   __ CmpP(r2, r3);
1508   __ beq(&runtime);
1509 
1510   // For exception, throw the exception again.
1511   __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1512 
1513   __ bind(&failure);
1514   // For failure and exception return null.
1515   __ mov(r2, Operand(isolate()->factory()->null_value()));
1516   __ la(sp, MemOperand(sp, (4 * kPointerSize)));
1517   __ Ret();
1518 
1519   // Process the result from the native regexp code.
1520   __ bind(&success);
1521   __ LoadP(r3,
1522            FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1523   // Calculate number of capture registers (number_of_captures + 1) * 2.
1524   // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1525   // SmiUntag (which is a nop for 32-bit).
1526   __ SmiToShortArrayOffset(r3, r3);
1527   __ AddP(r3, Operand(2));
1528 
1529   // Check that the last match info is a FixedArray.
1530   __ LoadP(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
1531   __ JumpIfSmi(last_match_info_elements, &runtime);
1532   // Check that the object has fast elements.
1533   __ LoadP(r2,
1534            FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1535   __ CompareRoot(r2, Heap::kFixedArrayMapRootIndex);
1536   __ bne(&runtime);
1537   // Check that the last match info has space for the capture registers and the
1538   // additional information.
1539   __ LoadP(
1540       r2, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1541   __ AddP(r4, r3, Operand(RegExpMatchInfo::kLastMatchOverhead));
1542   __ SmiUntag(r0, r2);
1543   __ CmpP(r4, r0);
1544   __ bgt(&runtime);
1545 
1546   // r3: number of capture registers
1547   // subject: subject string
1548   // Store the capture count.
1549   __ SmiTag(r4, r3);
1550   __ StoreP(r4, FieldMemOperand(last_match_info_elements,
1551                                 RegExpMatchInfo::kNumberOfCapturesOffset));
1552   // Store last subject and last input.
1553   __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1554                                      RegExpMatchInfo::kLastSubjectOffset));
1555   __ LoadRR(r4, subject);
1556   __ RecordWriteField(last_match_info_elements,
1557                       RegExpMatchInfo::kLastSubjectOffset, subject, r9,
1558                       kLRHasNotBeenSaved, kDontSaveFPRegs);
1559   __ LoadRR(subject, r4);
1560   __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1561                                      RegExpMatchInfo::kLastInputOffset));
1562   __ RecordWriteField(last_match_info_elements,
1563                       RegExpMatchInfo::kLastInputOffset, subject, r9,
1564                       kLRHasNotBeenSaved, kDontSaveFPRegs);
1565 
1566   // Get the static offsets vector filled by the native regexp code.
1567   ExternalReference address_of_static_offsets_vector =
1568       ExternalReference::address_of_static_offsets_vector(isolate());
1569   __ mov(r4, Operand(address_of_static_offsets_vector));
1570 
1571   // r3: number of capture registers
1572   // r4: offsets vector
1573   Label next_capture;
1574   // Capture register counter starts from number of capture registers and
1575   // counts down until wrapping after zero.
1576   __ AddP(r2, last_match_info_elements,
1577           Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag -
1578                   kPointerSize));
1579   __ AddP(r4, Operand(-kIntSize));  // bias down for lwzu
1580   __ bind(&next_capture);
1581   // Read the value from the static offsets vector buffer.
1582   __ ly(r5, MemOperand(r4, kIntSize));
1583   __ lay(r4, MemOperand(r4, kIntSize));
1584   // Store the smi value in the last match info.
1585   __ SmiTag(r5);
1586   __ StoreP(r5, MemOperand(r2, kPointerSize));
1587   __ lay(r2, MemOperand(r2, kPointerSize));
1588   __ BranchOnCount(r3, &next_capture);
1589 
1590   // Return last match info.
1591   __ LoadRR(r2, last_match_info_elements);
1592   __ la(sp, MemOperand(sp, (4 * kPointerSize)));
1593   __ Ret();
1594 
1595   // Do the runtime call to execute the regexp.
1596   __ bind(&runtime);
1597   __ TailCallRuntime(Runtime::kRegExpExec);
1598 
1599   // Deferred code for string handling.
1600   // (5) Long external string? If not, go to (7).
1601   __ bind(&not_seq_nor_cons);
1602   // Compare flags are still set.
1603   __ bgt(&not_long_external, Label::kNear);  // Go to (7).
1604 
1605   // (6) External string.  Make it, offset-wise, look like a sequential string.
1606   __ bind(&external_string);
1607   __ LoadP(r2, FieldMemOperand(subject, HeapObject::kMapOffset));
1608   __ LoadlB(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
1609   if (FLAG_debug_code) {
1610     // Assert that we do not have a cons or slice (indirect strings) here.
1611     // Sequential strings have already been ruled out.
1612     STATIC_ASSERT(kIsIndirectStringMask == 1);
1613     __ tmll(r2, Operand(kIsIndirectStringMask));
1614     __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
1615   }
1616   __ LoadP(subject,
1617            FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1618   // Move the pointer so that offset-wise, it looks like a sequential string.
1619   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1620   __ SubP(subject, subject,
1621           Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1622   __ b(&seq_string);  // Go to (4).
1623 
1624   // (7) Short external string or not a string?  If yes, bail out to runtime.
1625   __ bind(&not_long_external);
1626   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
1627   __ mov(r0, Operand(kIsNotStringMask | kShortExternalStringMask));
1628   __ AndP(r0, r3);
1629   __ bne(&runtime);
1630 
1631   // (8) Sliced or thin string.  Replace subject with parent.  Go to (4).
1632   Label thin_string;
1633   __ CmpP(r3, Operand(kThinStringTag));
1634   __ beq(&thin_string);
1635   // Load offset into ip and replace subject string with parent.
1636   __ LoadP(ip, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1637   __ SmiUntag(ip);
1638   __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1639   __ b(&check_underlying);  // Go to (4).
1640 
1641   __ bind(&thin_string);
1642   __ LoadP(subject, FieldMemOperand(subject, ThinString::kActualOffset));
1643   __ b(&check_underlying);  // Go to (4).
1644 #endif  // V8_INTERPRETED_REGEXP
1645 }
1646 
CallStubInRecordCallTarget(MacroAssembler * masm,CodeStub * stub)1647 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1648   // r2 : number of arguments to the construct function
1649   // r3 : the function to call
1650   // r4 : feedback vector
1651   // r5 : slot in feedback vector (Smi)
1652   FrameScope scope(masm, StackFrame::INTERNAL);
1653 
1654   // Number-of-arguments register must be smi-tagged to call out.
1655   __ SmiTag(r2);
1656   __ Push(r5, r4, r3, r2);
1657   __ Push(cp);
1658 
1659   __ CallStub(stub);
1660 
1661   __ Pop(cp);
1662   __ Pop(r5, r4, r3, r2);
1663   __ SmiUntag(r2);
1664 }
1665 
GenerateRecordCallTarget(MacroAssembler * masm)1666 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1667   // Cache the called function in a feedback vector slot.  Cache states
1668   // are uninitialized, monomorphic (indicated by a JSFunction), and
1669   // megamorphic.
1670   // r2 : number of arguments to the construct function
1671   // r3 : the function to call
1672   // r4 : feedback vector
1673   // r5 : slot in feedback vector (Smi)
1674   Label initialize, done, miss, megamorphic, not_array_function;
1675 
1676   DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
1677             masm->isolate()->heap()->megamorphic_symbol());
1678   DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
1679             masm->isolate()->heap()->uninitialized_symbol());
1680 
1681   const int count_offset = FixedArray::kHeaderSize + kPointerSize;
1682 
1683   // Load the cache state into r7.
1684   __ SmiToPtrArrayOffset(r7, r5);
1685   __ AddP(r7, r4, r7);
1686   __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
1687 
1688   // A monomorphic cache hit or an already megamorphic state: invoke the
1689   // function without changing the state.
1690   // We don't know if r7 is a WeakCell or a Symbol, but it's harmless to read at
1691   // this position in a symbol (see static asserts in feedback-vector.h).
1692   Label check_allocation_site;
1693   Register feedback_map = r8;
1694   Register weak_value = r9;
1695   __ LoadP(weak_value, FieldMemOperand(r7, WeakCell::kValueOffset));
1696   __ CmpP(r3, weak_value);
1697   __ beq(&done, Label::kNear);
1698   __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex);
1699   __ beq(&done, Label::kNear);
1700   __ LoadP(feedback_map, FieldMemOperand(r7, HeapObject::kMapOffset));
1701   __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
1702   __ bne(&check_allocation_site);
1703 
1704   // If the weak cell is cleared, we have a new chance to become monomorphic.
1705   __ JumpIfSmi(weak_value, &initialize);
1706   __ b(&megamorphic);
1707 
1708   __ bind(&check_allocation_site);
1709   // If we came here, we need to see if we are the array function.
1710   // If we didn't have a matching function, and we didn't find the megamorph
1711   // sentinel, then we have in the slot either some other function or an
1712   // AllocationSite.
1713   __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
1714   __ bne(&miss);
1715 
1716   // Make sure the function is the Array() function
1717   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
1718   __ CmpP(r3, r7);
1719   __ bne(&megamorphic);
1720   __ b(&done, Label::kNear);
1721 
1722   __ bind(&miss);
1723 
1724   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1725   // megamorphic.
1726   __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
1727   __ beq(&initialize);
1728   // MegamorphicSentinel is an immortal immovable object (undefined) so no
1729   // write-barrier is needed.
1730   __ bind(&megamorphic);
1731   __ SmiToPtrArrayOffset(r7, r5);
1732   __ AddP(r7, r4, r7);
1733   __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
1734   __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
1735   __ jmp(&done);
1736 
1737   // An uninitialized cache is patched with the function
1738   __ bind(&initialize);
1739 
1740   // Make sure the function is the Array() function.
1741   __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
1742   __ CmpP(r3, r7);
1743   __ bne(&not_array_function);
1744 
1745   // The target function is the Array constructor,
1746   // Create an AllocationSite if we don't already have it, store it in the
1747   // slot.
1748   CreateAllocationSiteStub create_stub(masm->isolate());
1749   CallStubInRecordCallTarget(masm, &create_stub);
1750   __ b(&done, Label::kNear);
1751 
1752   __ bind(&not_array_function);
1753 
1754   CreateWeakCellStub weak_cell_stub(masm->isolate());
1755   CallStubInRecordCallTarget(masm, &weak_cell_stub);
1756 
1757   __ bind(&done);
1758 
1759   // Increment the call count for all function calls.
1760   __ SmiToPtrArrayOffset(r7, r5);
1761   __ AddP(r7, r4, r7);
1762 
1763   __ LoadP(r6, FieldMemOperand(r7, count_offset));
1764   __ AddSmiLiteral(r6, r6, Smi::FromInt(1), r0);
1765   __ StoreP(r6, FieldMemOperand(r7, count_offset), r0);
1766 }
1767 
Generate(MacroAssembler * masm)1768 void CallConstructStub::Generate(MacroAssembler* masm) {
1769   // r2 : number of arguments
1770   // r3 : the function to call
1771   // r4 : feedback vector
1772   // r5 : slot in feedback vector (Smi, for RecordCallTarget)
1773 
1774   Label non_function;
1775   // Check that the function is not a smi.
1776   __ JumpIfSmi(r3, &non_function);
1777   // Check that the function is a JSFunction.
1778   __ CompareObjectType(r3, r7, r7, JS_FUNCTION_TYPE);
1779   __ bne(&non_function);
1780 
1781   GenerateRecordCallTarget(masm);
1782 
1783   __ SmiToPtrArrayOffset(r7, r5);
1784   __ AddP(r7, r4, r7);
1785   // Put the AllocationSite from the feedback vector into r4, or undefined.
1786   __ LoadP(r4, FieldMemOperand(r7, FixedArray::kHeaderSize));
1787   __ LoadP(r7, FieldMemOperand(r4, AllocationSite::kMapOffset));
1788   __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
1789   Label feedback_register_initialized;
1790   __ beq(&feedback_register_initialized);
1791   __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
1792   __ bind(&feedback_register_initialized);
1793 
1794   __ AssertUndefinedOrAllocationSite(r4, r7);
1795 
1796   // Pass function as new target.
1797   __ LoadRR(r5, r3);
1798 
1799   // Tail call to the function-specific construct stub (still in the caller
1800   // context at this point).
1801   __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
1802   __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kConstructStubOffset));
1803   __ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
1804   __ JumpToJSEntry(ip);
1805 
1806   __ bind(&non_function);
1807   __ LoadRR(r5, r3);
1808   __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
1809 }
1810 
1811 // StringCharCodeAtGenerator
GenerateFast(MacroAssembler * masm)1812 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
1813   // If the receiver is a smi trigger the non-string case.
1814   if (check_mode_ == RECEIVER_IS_UNKNOWN) {
1815     __ JumpIfSmi(object_, receiver_not_string_);
1816 
1817     // Fetch the instance type of the receiver into result register.
1818     __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1819     __ LoadlB(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1820     // If the receiver is not a string trigger the non-string case.
1821     __ mov(r0, Operand(kIsNotStringMask));
1822     __ AndP(r0, result_);
1823     __ bne(receiver_not_string_);
1824   }
1825 
1826   // If the index is non-smi trigger the non-smi case.
1827   __ JumpIfNotSmi(index_, &index_not_smi_);
1828   __ bind(&got_smi_index_);
1829 
1830   // Check for index out of range.
1831   __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
1832   __ CmpLogicalP(ip, index_);
1833   __ ble(index_out_of_range_);
1834 
1835   __ SmiUntag(index_);
1836 
1837   StringCharLoadGenerator::Generate(masm, object_, index_, result_,
1838                                     &call_runtime_);
1839 
1840   __ SmiTag(result_);
1841   __ bind(&exit_);
1842 }
1843 
GenerateSlow(MacroAssembler * masm,EmbedMode embed_mode,const RuntimeCallHelper & call_helper)1844 void StringCharCodeAtGenerator::GenerateSlow(
1845     MacroAssembler* masm, EmbedMode embed_mode,
1846     const RuntimeCallHelper& call_helper) {
1847   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
1848 
1849   // Index is not a smi.
1850   __ bind(&index_not_smi_);
1851   // If index is a heap number, try converting it to an integer.
1852   __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
1853               DONT_DO_SMI_CHECK);
1854   call_helper.BeforeCall(masm);
1855   if (embed_mode == PART_OF_IC_HANDLER) {
1856     __ Push(LoadWithVectorDescriptor::VectorRegister(),
1857             LoadWithVectorDescriptor::SlotRegister(), object_, index_);
1858   } else {
1859     // index_ is consumed by runtime conversion function.
1860     __ Push(object_, index_);
1861   }
1862   __ CallRuntime(Runtime::kNumberToSmi);
1863   // Save the conversion result before the pop instructions below
1864   // have a chance to overwrite it.
1865   __ Move(index_, r2);
1866   if (embed_mode == PART_OF_IC_HANDLER) {
1867     __ Pop(LoadWithVectorDescriptor::VectorRegister(),
1868            LoadWithVectorDescriptor::SlotRegister(), object_);
1869   } else {
1870     __ pop(object_);
1871   }
1872   // Reload the instance type.
1873   __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
1874   __ LoadlB(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
1875   call_helper.AfterCall(masm);
1876   // If index is still not a smi, it must be out of range.
1877   __ JumpIfNotSmi(index_, index_out_of_range_);
1878   // Otherwise, return to the fast path.
1879   __ b(&got_smi_index_);
1880 
1881   // Call runtime. We get here when the receiver is a string and the
1882   // index is a number, but the code of getting the actual character
1883   // is too complex (e.g., when the string needs to be flattened).
1884   __ bind(&call_runtime_);
1885   call_helper.BeforeCall(masm);
1886   __ SmiTag(index_);
1887   __ Push(object_, index_);
1888   __ CallRuntime(Runtime::kStringCharCodeAtRT);
1889   __ Move(result_, r2);
1890   call_helper.AfterCall(masm);
1891   __ b(&exit_);
1892 
1893   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
1894 }
1895 
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)1896 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
1897                                                    Register left,
1898                                                    Register right,
1899                                                    Register scratch1,
1900                                                    Register scratch2) {
1901   Register length = scratch1;
1902 
1903   // Compare lengths.
1904   Label strings_not_equal, check_zero_length;
1905   __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
1906   __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
1907   __ CmpP(length, scratch2);
1908   __ beq(&check_zero_length);
1909   __ bind(&strings_not_equal);
1910   __ LoadSmiLiteral(r2, Smi::FromInt(NOT_EQUAL));
1911   __ Ret();
1912 
1913   // Check if the length is zero.
1914   Label compare_chars;
1915   __ bind(&check_zero_length);
1916   STATIC_ASSERT(kSmiTag == 0);
1917   __ CmpP(length, Operand::Zero());
1918   __ bne(&compare_chars);
1919   __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
1920   __ Ret();
1921 
1922   // Compare characters.
1923   __ bind(&compare_chars);
1924   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
1925                                   &strings_not_equal);
1926 
1927   // Characters are equal.
1928   __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
1929   __ Ret();
1930 }
1931 
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)1932 void StringHelper::GenerateCompareFlatOneByteStrings(
1933     MacroAssembler* masm, Register left, Register right, Register scratch1,
1934     Register scratch2, Register scratch3) {
1935   Label skip, result_not_equal, compare_lengths;
1936   // Find minimum length and length difference.
1937   __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
1938   __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
1939   __ SubP(scratch3, scratch1, scratch2 /*, LeaveOE, SetRC*/);
1940   // Removing RC looks okay here.
1941   Register length_delta = scratch3;
1942   __ ble(&skip, Label::kNear);
1943   __ LoadRR(scratch1, scratch2);
1944   __ bind(&skip);
1945   Register min_length = scratch1;
1946   STATIC_ASSERT(kSmiTag == 0);
1947   __ CmpP(min_length, Operand::Zero());
1948   __ beq(&compare_lengths);
1949 
1950   // Compare loop.
1951   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
1952                                   &result_not_equal);
1953 
1954   // Compare lengths - strings up to min-length are equal.
1955   __ bind(&compare_lengths);
1956   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
1957   // Use length_delta as result if it's zero.
1958   __ LoadRR(r2, length_delta);
1959   __ CmpP(length_delta, Operand::Zero());
1960   __ bind(&result_not_equal);
1961   // Conditionally update the result based either on length_delta or
1962   // the last comparion performed in the loop above.
1963   Label less_equal, equal;
1964   __ ble(&less_equal);
1965   __ LoadSmiLiteral(r2, Smi::FromInt(GREATER));
1966   __ Ret();
1967   __ bind(&less_equal);
1968   __ beq(&equal);
1969   __ LoadSmiLiteral(r2, Smi::FromInt(LESS));
1970   __ bind(&equal);
1971   __ Ret();
1972 }
1973 
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Label * chars_not_equal)1974 void StringHelper::GenerateOneByteCharsCompareLoop(
1975     MacroAssembler* masm, Register left, Register right, Register length,
1976     Register scratch1, Label* chars_not_equal) {
1977   // Change index to run from -length to -1 by adding length to string
1978   // start. This means that loop ends when index reaches zero, which
1979   // doesn't need an additional compare.
1980   __ SmiUntag(length);
1981   __ AddP(scratch1, length,
1982           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
1983   __ AddP(left, scratch1);
1984   __ AddP(right, scratch1);
1985   __ LoadComplementRR(length, length);
1986   Register index = length;  // index = -length;
1987 
1988   // Compare loop.
1989   Label loop;
1990   __ bind(&loop);
1991   __ LoadlB(scratch1, MemOperand(left, index));
1992   __ LoadlB(r0, MemOperand(right, index));
1993   __ CmpP(scratch1, r0);
1994   __ bne(chars_not_equal);
1995   __ AddP(index, Operand(1));
1996   __ CmpP(index, Operand::Zero());
1997   __ bne(&loop);
1998 }
1999 
Generate(MacroAssembler * masm)2000 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2001   // ----------- S t a t e -------------
2002   //  -- r3    : left
2003   //  -- r2    : right
2004   // r3: second string
2005   // -----------------------------------
2006 
2007   // Load r4 with the allocation site.  We stick an undefined dummy value here
2008   // and replace it with the real allocation site later when we instantiate this
2009   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2010   __ Move(r4, isolate()->factory()->undefined_value());
2011 
2012   // Make sure that we actually patched the allocation site.
2013   if (FLAG_debug_code) {
2014     __ TestIfSmi(r4);
2015     __ Assert(ne, kExpectedAllocationSite, cr0);
2016     __ push(r4);
2017     __ LoadP(r4, FieldMemOperand(r4, HeapObject::kMapOffset));
2018     __ CompareRoot(r4, Heap::kAllocationSiteMapRootIndex);
2019     __ pop(r4);
2020     __ Assert(eq, kExpectedAllocationSite);
2021   }
2022 
2023   // Tail call into the stub that handles binary operations with allocation
2024   // sites.
2025   BinaryOpWithAllocationSiteStub stub(isolate(), state());
2026   __ TailCallStub(&stub);
2027 }
2028 
GenerateBooleans(MacroAssembler * masm)2029 void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2030   DCHECK_EQ(CompareICState::BOOLEAN, state());
2031   Label miss;
2032 
2033   __ CheckMap(r3, r4, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2034   __ CheckMap(r2, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2035   if (!Token::IsEqualityOp(op())) {
2036     __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
2037     __ AssertSmi(r3);
2038     __ LoadP(r2, FieldMemOperand(r2, Oddball::kToNumberOffset));
2039     __ AssertSmi(r2);
2040   }
2041   __ SubP(r2, r3, r2);
2042   __ Ret();
2043 
2044   __ bind(&miss);
2045   GenerateMiss(masm);
2046 }
2047 
GenerateSmis(MacroAssembler * masm)2048 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2049   DCHECK(state() == CompareICState::SMI);
2050   Label miss;
2051   __ OrP(r4, r3, r2);
2052   __ JumpIfNotSmi(r4, &miss);
2053 
2054   if (GetCondition() == eq) {
2055     // For equality we do not care about the sign of the result.
2056     // __ sub(r2, r2, r3, SetCC);
2057     __ SubP(r2, r2, r3);
2058   } else {
2059     // Untag before subtracting to avoid handling overflow.
2060     __ SmiUntag(r3);
2061     __ SmiUntag(r2);
2062     __ SubP(r2, r3, r2);
2063   }
2064   __ Ret();
2065 
2066   __ bind(&miss);
2067   GenerateMiss(masm);
2068 }
2069 
GenerateNumbers(MacroAssembler * masm)2070 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2071   DCHECK(state() == CompareICState::NUMBER);
2072 
2073   Label generic_stub;
2074   Label unordered, maybe_undefined1, maybe_undefined2;
2075   Label miss;
2076   Label equal, less_than;
2077 
2078   if (left() == CompareICState::SMI) {
2079     __ JumpIfNotSmi(r3, &miss);
2080   }
2081   if (right() == CompareICState::SMI) {
2082     __ JumpIfNotSmi(r2, &miss);
2083   }
2084 
2085   // Inlining the double comparison and falling back to the general compare
2086   // stub if NaN is involved.
2087   // Load left and right operand.
2088   Label done, left, left_smi, right_smi;
2089   __ JumpIfSmi(r2, &right_smi);
2090   __ CheckMap(r2, r4, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
2091               DONT_DO_SMI_CHECK);
2092   __ LoadDouble(d1, FieldMemOperand(r2, HeapNumber::kValueOffset));
2093   __ b(&left);
2094   __ bind(&right_smi);
2095   __ SmiToDouble(d1, r2);
2096 
2097   __ bind(&left);
2098   __ JumpIfSmi(r3, &left_smi);
2099   __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
2100               DONT_DO_SMI_CHECK);
2101   __ LoadDouble(d0, FieldMemOperand(r3, HeapNumber::kValueOffset));
2102   __ b(&done);
2103   __ bind(&left_smi);
2104   __ SmiToDouble(d0, r3);
2105 
2106   __ bind(&done);
2107 
2108   // Compare operands
2109   __ cdbr(d0, d1);
2110 
2111   // Don't base result on status bits when a NaN is involved.
2112   __ bunordered(&unordered);
2113 
2114   // Return a result of -1, 0, or 1, based on status bits.
2115   __ beq(&equal);
2116   __ blt(&less_than);
2117   //  assume greater than
2118   __ LoadImmP(r2, Operand(GREATER));
2119   __ Ret();
2120   __ bind(&equal);
2121   __ LoadImmP(r2, Operand(EQUAL));
2122   __ Ret();
2123   __ bind(&less_than);
2124   __ LoadImmP(r2, Operand(LESS));
2125   __ Ret();
2126 
2127   __ bind(&unordered);
2128   __ bind(&generic_stub);
2129   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
2130                      CompareICState::GENERIC, CompareICState::GENERIC);
2131   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2132 
2133   __ bind(&maybe_undefined1);
2134   if (Token::IsOrderedRelationalCompareOp(op())) {
2135     __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
2136     __ bne(&miss);
2137     __ JumpIfSmi(r3, &unordered);
2138     __ CompareObjectType(r3, r4, r4, HEAP_NUMBER_TYPE);
2139     __ bne(&maybe_undefined2);
2140     __ b(&unordered);
2141   }
2142 
2143   __ bind(&maybe_undefined2);
2144   if (Token::IsOrderedRelationalCompareOp(op())) {
2145     __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
2146     __ beq(&unordered);
2147   }
2148 
2149   __ bind(&miss);
2150   GenerateMiss(masm);
2151 }
2152 
GenerateInternalizedStrings(MacroAssembler * masm)2153 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2154   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2155   Label miss, not_equal;
2156 
2157   // Registers containing left and right operands respectively.
2158   Register left = r3;
2159   Register right = r2;
2160   Register tmp1 = r4;
2161   Register tmp2 = r5;
2162 
2163   // Check that both operands are heap objects.
2164   __ JumpIfEitherSmi(left, right, &miss);
2165 
2166   // Check that both operands are symbols.
2167   __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2168   __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2169   __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2170   __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2171   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2172   __ OrP(tmp1, tmp1, tmp2);
2173   __ AndP(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2174   __ bne(&miss);
2175 
2176   // Internalized strings are compared by identity.
2177   __ CmpP(left, right);
2178   __ bne(&not_equal);
2179   // Make sure r2 is non-zero. At this point input operands are
2180   // guaranteed to be non-zero.
2181   DCHECK(right.is(r2));
2182   STATIC_ASSERT(EQUAL == 0);
2183   STATIC_ASSERT(kSmiTag == 0);
2184   __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2185   __ bind(&not_equal);
2186   __ Ret();
2187 
2188   __ bind(&miss);
2189   GenerateMiss(masm);
2190 }
2191 
GenerateUniqueNames(MacroAssembler * masm)2192 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2193   DCHECK(state() == CompareICState::UNIQUE_NAME);
2194   DCHECK(GetCondition() == eq);
2195   Label miss;
2196 
2197   // Registers containing left and right operands respectively.
2198   Register left = r3;
2199   Register right = r2;
2200   Register tmp1 = r4;
2201   Register tmp2 = r5;
2202 
2203   // Check that both operands are heap objects.
2204   __ JumpIfEitherSmi(left, right, &miss);
2205 
2206   // Check that both operands are unique names. This leaves the instance
2207   // types loaded in tmp1 and tmp2.
2208   __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2209   __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2210   __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2211   __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2212 
2213   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
2214   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
2215 
2216   // Unique names are compared by identity.
2217   __ CmpP(left, right);
2218   __ bne(&miss);
2219   // Make sure r2 is non-zero. At this point input operands are
2220   // guaranteed to be non-zero.
2221   DCHECK(right.is(r2));
2222   STATIC_ASSERT(EQUAL == 0);
2223   STATIC_ASSERT(kSmiTag == 0);
2224   __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2225   __ Ret();
2226 
2227   __ bind(&miss);
2228   GenerateMiss(masm);
2229 }
2230 
GenerateStrings(MacroAssembler * masm)2231 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2232   DCHECK(state() == CompareICState::STRING);
2233   Label miss, not_identical, is_symbol;
2234 
2235   bool equality = Token::IsEqualityOp(op());
2236 
2237   // Registers containing left and right operands respectively.
2238   Register left = r3;
2239   Register right = r2;
2240   Register tmp1 = r4;
2241   Register tmp2 = r5;
2242   Register tmp3 = r6;
2243   Register tmp4 = r7;
2244 
2245   // Check that both operands are heap objects.
2246   __ JumpIfEitherSmi(left, right, &miss);
2247 
2248   // Check that both operands are strings. This leaves the instance
2249   // types loaded in tmp1 and tmp2.
2250   __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2251   __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2252   __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2253   __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2254   STATIC_ASSERT(kNotStringTag != 0);
2255   __ OrP(tmp3, tmp1, tmp2);
2256   __ AndP(r0, tmp3, Operand(kIsNotStringMask));
2257   __ bne(&miss);
2258 
2259   // Fast check for identical strings.
2260   __ CmpP(left, right);
2261   STATIC_ASSERT(EQUAL == 0);
2262   STATIC_ASSERT(kSmiTag == 0);
2263   __ bne(&not_identical);
2264   __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2265   __ Ret();
2266   __ bind(&not_identical);
2267 
2268   // Handle not identical strings.
2269 
2270   // Check that both strings are internalized strings. If they are, we're done
2271   // because we already know they are not identical. We know they are both
2272   // strings.
2273   if (equality) {
2274     DCHECK(GetCondition() == eq);
2275     STATIC_ASSERT(kInternalizedTag == 0);
2276     __ OrP(tmp3, tmp1, tmp2);
2277     __ AndP(r0, tmp3, Operand(kIsNotInternalizedMask));
2278     __ bne(&is_symbol);
2279     // Make sure r2 is non-zero. At this point input operands are
2280     // guaranteed to be non-zero.
2281     DCHECK(right.is(r2));
2282     __ Ret();
2283     __ bind(&is_symbol);
2284   }
2285 
2286   // Check that both strings are sequential one-byte.
2287   Label runtime;
2288   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
2289                                                     &runtime);
2290 
2291   // Compare flat one-byte strings. Returns when done.
2292   if (equality) {
2293     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
2294                                                   tmp2);
2295   } else {
2296     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
2297                                                     tmp2, tmp3);
2298   }
2299 
2300   // Handle more complex cases in runtime.
2301   __ bind(&runtime);
2302   if (equality) {
2303     {
2304       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2305       __ Push(left, right);
2306       __ CallRuntime(Runtime::kStringEqual);
2307     }
2308     __ LoadRoot(r3, Heap::kTrueValueRootIndex);
2309     __ SubP(r2, r2, r3);
2310     __ Ret();
2311   } else {
2312     __ Push(left, right);
2313     __ TailCallRuntime(Runtime::kStringCompare);
2314   }
2315 
2316   __ bind(&miss);
2317   GenerateMiss(masm);
2318 }
2319 
GenerateReceivers(MacroAssembler * masm)2320 void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
2321   DCHECK_EQ(CompareICState::RECEIVER, state());
2322   Label miss;
2323   __ AndP(r4, r3, r2);
2324   __ JumpIfSmi(r4, &miss);
2325 
2326   STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2327   __ CompareObjectType(r2, r4, r4, FIRST_JS_RECEIVER_TYPE);
2328   __ blt(&miss);
2329   __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
2330   __ blt(&miss);
2331 
2332   DCHECK(GetCondition() == eq);
2333   __ SubP(r2, r2, r3);
2334   __ Ret();
2335 
2336   __ bind(&miss);
2337   GenerateMiss(masm);
2338 }
2339 
GenerateKnownReceivers(MacroAssembler * masm)2340 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
2341   Label miss;
2342   Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
2343   __ AndP(r4, r3, r2);
2344   __ JumpIfSmi(r4, &miss);
2345   __ GetWeakValue(r6, cell);
2346   __ LoadP(r4, FieldMemOperand(r2, HeapObject::kMapOffset));
2347   __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
2348   __ CmpP(r4, r6);
2349   __ bne(&miss);
2350   __ CmpP(r5, r6);
2351   __ bne(&miss);
2352 
2353   if (Token::IsEqualityOp(op())) {
2354     __ SubP(r2, r2, r3);
2355     __ Ret();
2356   } else {
2357     if (op() == Token::LT || op() == Token::LTE) {
2358       __ LoadSmiLiteral(r4, Smi::FromInt(GREATER));
2359     } else {
2360       __ LoadSmiLiteral(r4, Smi::FromInt(LESS));
2361     }
2362     __ Push(r3, r2, r4);
2363     __ TailCallRuntime(Runtime::kCompare);
2364   }
2365 
2366   __ bind(&miss);
2367   GenerateMiss(masm);
2368 }
2369 
GenerateMiss(MacroAssembler * masm)2370 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
2371   {
2372     // Call the runtime system in a fresh internal frame.
2373     FrameScope scope(masm, StackFrame::INTERNAL);
2374     __ Push(r3, r2);
2375     __ Push(r3, r2);
2376     __ LoadSmiLiteral(r0, Smi::FromInt(op()));
2377     __ push(r0);
2378     __ CallRuntime(Runtime::kCompareIC_Miss);
2379     // Compute the entry point of the rewritten stub.
2380     __ AddP(r4, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
2381     // Restore registers.
2382     __ Pop(r3, r2);
2383   }
2384 
2385   __ JumpToJSEntry(r4);
2386 }
2387 
2388 // This stub is paired with DirectCEntryStub::GenerateCall
Generate(MacroAssembler * masm)2389 void DirectCEntryStub::Generate(MacroAssembler* masm) {
2390   __ CleanseP(r14);
2391 
2392   __ b(ip);  // Callee will return to R14 directly
2393 }
2394 
GenerateCall(MacroAssembler * masm,Register target)2395 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
2396 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
2397   // Native AIX/S390X Linux use a function descriptor.
2398   __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
2399   __ LoadP(target, MemOperand(target, 0));  // Instruction address
2400 #else
2401   // ip needs to be set for DirectCEentryStub::Generate, and also
2402   // for ABI_CALL_VIA_IP.
2403   __ Move(ip, target);
2404 #endif
2405 
2406   __ call(GetCode(), RelocInfo::CODE_TARGET);  // Call the stub.
2407 }
2408 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)2409 void NameDictionaryLookupStub::GenerateNegativeLookup(
2410     MacroAssembler* masm, Label* miss, Label* done, Register receiver,
2411     Register properties, Handle<Name> name, Register scratch0) {
2412   DCHECK(name->IsUniqueName());
2413   // If names of slots in range from 1 to kProbes - 1 for the hash value are
2414   // not equal to the name and kProbes-th slot is not used (its name is the
2415   // undefined value), it guarantees the hash table doesn't contain the
2416   // property. It's true even if some slots represent deleted properties
2417   // (their names are the hole value).
2418   for (int i = 0; i < kInlinedProbes; i++) {
2419     // scratch0 points to properties hash.
2420     // Compute the masked index: (hash + i + i * i) & mask.
2421     Register index = scratch0;
2422     // Capacity is smi 2^n.
2423     __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
2424     __ SubP(index, Operand(1));
2425     __ LoadSmiLiteral(
2426         ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
2427     __ AndP(index, ip);
2428 
2429     // Scale the index by multiplying by the entry size.
2430     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2431     __ ShiftLeftP(ip, index, Operand(1));
2432     __ AddP(index, ip);  // index *= 3.
2433 
2434     Register entity_name = scratch0;
2435     // Having undefined at this place means the name is not contained.
2436     Register tmp = properties;
2437     __ SmiToPtrArrayOffset(ip, index);
2438     __ AddP(tmp, properties, ip);
2439     __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
2440 
2441     DCHECK(!tmp.is(entity_name));
2442     __ CompareRoot(entity_name, Heap::kUndefinedValueRootIndex);
2443     __ beq(done);
2444 
2445     // Stop if found the property.
2446     __ CmpP(entity_name, Operand(Handle<Name>(name)));
2447     __ beq(miss);
2448 
2449     Label good;
2450     __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
2451     __ beq(&good);
2452 
2453     // Check if the entry name is not a unique name.
2454     __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
2455     __ LoadlB(entity_name,
2456               FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
2457     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
2458     __ bind(&good);
2459 
2460     // Restore the properties.
2461     __ LoadP(properties,
2462              FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2463   }
2464 
2465   const int spill_mask = (r0.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() |
2466                           r4.bit() | r3.bit() | r2.bit());
2467 
2468   __ LoadRR(r0, r14);
2469   __ MultiPush(spill_mask);
2470 
2471   __ LoadP(r2, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
2472   __ mov(r3, Operand(Handle<Name>(name)));
2473   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
2474   __ CallStub(&stub);
2475   __ CmpP(r2, Operand::Zero());
2476 
2477   __ MultiPop(spill_mask);  // MultiPop does not touch condition flags
2478   __ LoadRR(r14, r0);
2479 
2480   __ beq(done);
2481   __ bne(miss);
2482 }
2483 
Generate(MacroAssembler * masm)2484 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
2485   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
2486   // we cannot call anything that could cause a GC from this stub.
2487   // Registers:
2488   //  result: NameDictionary to probe
2489   //  r3: key
2490   //  dictionary: NameDictionary to probe.
2491   //  index: will hold an index of entry if lookup is successful.
2492   //         might alias with result_.
2493   // Returns:
2494   //  result_ is zero if lookup failed, non zero otherwise.
2495 
2496   Register result = r2;
2497   Register dictionary = r2;
2498   Register key = r3;
2499   Register index = r4;
2500   Register mask = r5;
2501   Register hash = r6;
2502   Register undefined = r7;
2503   Register entry_key = r8;
2504   Register scratch = r8;
2505 
2506   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
2507 
2508   __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
2509   __ SmiUntag(mask);
2510   __ SubP(mask, Operand(1));
2511 
2512   __ LoadlW(hash, FieldMemOperand(key, String::kHashFieldOffset));
2513 
2514   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
2515 
2516   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
2517     // Compute the masked index: (hash + i + i * i) & mask.
2518     // Capacity is smi 2^n.
2519     if (i > 0) {
2520       // Add the probe offset (i + i * i) left shifted to avoid right shifting
2521       // the hash in a separate instruction. The value hash + i + i * i is right
2522       // shifted in the following and instruction.
2523       DCHECK(NameDictionary::GetProbeOffset(i) <
2524              1 << (32 - Name::kHashFieldOffset));
2525       __ AddP(index, hash,
2526               Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
2527     } else {
2528       __ LoadRR(index, hash);
2529     }
2530     __ ShiftRight(r0, index, Operand(String::kHashShift));
2531     __ AndP(index, r0, mask);
2532 
2533     // Scale the index by multiplying by the entry size.
2534     STATIC_ASSERT(NameDictionary::kEntrySize == 3);
2535     __ ShiftLeftP(scratch, index, Operand(1));
2536     __ AddP(index, scratch);  // index *= 3.
2537 
2538     __ ShiftLeftP(scratch, index, Operand(kPointerSizeLog2));
2539     __ AddP(index, dictionary, scratch);
2540     __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
2541 
2542     // Having undefined at this place means the name is not contained.
2543     __ CmpP(entry_key, undefined);
2544     __ beq(&not_in_dictionary);
2545 
2546     // Stop if found the property.
2547     __ CmpP(entry_key, key);
2548     __ beq(&in_dictionary);
2549 
2550     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
2551       // Check if the entry name is not a unique name.
2552       __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
2553       __ LoadlB(entry_key,
2554                 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
2555       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
2556     }
2557   }
2558 
2559   __ bind(&maybe_in_dictionary);
2560   // If we are doing negative lookup then probing failure should be
2561   // treated as a lookup success. For positive lookup probing failure
2562   // should be treated as lookup failure.
2563   if (mode() == POSITIVE_LOOKUP) {
2564     __ LoadImmP(result, Operand::Zero());
2565     __ Ret();
2566   }
2567 
2568   __ bind(&in_dictionary);
2569   __ LoadImmP(result, Operand(1));
2570   __ Ret();
2571 
2572   __ bind(&not_in_dictionary);
2573   __ LoadImmP(result, Operand::Zero());
2574   __ Ret();
2575 }
2576 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)2577 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
2578     Isolate* isolate) {
2579   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
2580   stub1.GetCode();
2581   // Hydrogen code stubs need stub2 at snapshot time.
2582   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
2583   stub2.GetCode();
2584 }
2585 
2586 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
2587 // the value has just been written into the object, now this stub makes sure
2588 // we keep the GC informed.  The word in the object where the value has been
2589 // written is in the address register.
Generate(MacroAssembler * masm)2590 void RecordWriteStub::Generate(MacroAssembler* masm) {
2591   Label skip_to_incremental_noncompacting;
2592   Label skip_to_incremental_compacting;
2593 
2594   // The first two branch instructions are generated with labels so as to
2595   // get the offset fixed up correctly by the bind(Label*) call.  We patch
2596   // it back and forth between branch condition True and False
2597   // when we start and stop incremental heap marking.
2598   // See RecordWriteStub::Patch for details.
2599 
2600   // Clear the bit, branch on True for NOP action initially
2601   __ b(CC_NOP, &skip_to_incremental_noncompacting);
2602   __ b(CC_NOP, &skip_to_incremental_compacting);
2603 
2604   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2605     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2606                            MacroAssembler::kReturnAtEnd);
2607   }
2608   __ Ret();
2609 
2610   __ bind(&skip_to_incremental_noncompacting);
2611   GenerateIncremental(masm, INCREMENTAL);
2612 
2613   __ bind(&skip_to_incremental_compacting);
2614   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
2615 
2616   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
2617   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
2618   // patching not required on S390 as the initial path is effectively NOP
2619 }
2620 
GenerateIncremental(MacroAssembler * masm,Mode mode)2621 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
2622   regs_.Save(masm);
2623 
2624   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
2625     Label dont_need_remembered_set;
2626 
2627     __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
2628     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
2629                            regs_.scratch0(), &dont_need_remembered_set);
2630 
2631     __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
2632                         &dont_need_remembered_set);
2633 
2634     // First notify the incremental marker if necessary, then update the
2635     // remembered set.
2636     CheckNeedsToInformIncrementalMarker(
2637         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
2638     InformIncrementalMarker(masm);
2639     regs_.Restore(masm);
2640     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2641                            MacroAssembler::kReturnAtEnd);
2642 
2643     __ bind(&dont_need_remembered_set);
2644   }
2645 
2646   CheckNeedsToInformIncrementalMarker(
2647       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
2648   InformIncrementalMarker(masm);
2649   regs_.Restore(masm);
2650   __ Ret();
2651 }
2652 
InformIncrementalMarker(MacroAssembler * masm)2653 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
2654   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
2655   int argument_count = 3;
2656   __ PrepareCallCFunction(argument_count, regs_.scratch0());
2657   Register address =
2658       r2.is(regs_.address()) ? regs_.scratch0() : regs_.address();
2659   DCHECK(!address.is(regs_.object()));
2660   DCHECK(!address.is(r2));
2661   __ LoadRR(address, regs_.address());
2662   __ LoadRR(r2, regs_.object());
2663   __ LoadRR(r3, address);
2664   __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
2665 
2666   AllowExternalCallThatCantCauseGC scope(masm);
2667   __ CallCFunction(
2668       ExternalReference::incremental_marking_record_write_function(isolate()),
2669       argument_count);
2670   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
2671 }
2672 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)2673 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
2674     MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
2675     Mode mode) {
2676   Label on_black;
2677   Label need_incremental;
2678   Label need_incremental_pop_scratch;
2679 
2680   // Let's look at the color of the object:  If it is not black we don't have
2681   // to inform the incremental marker.
2682   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
2683 
2684   regs_.Restore(masm);
2685   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2686     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2687                            MacroAssembler::kReturnAtEnd);
2688   } else {
2689     __ Ret();
2690   }
2691 
2692   __ bind(&on_black);
2693 
2694   // Get the value from the slot.
2695   __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
2696 
2697   if (mode == INCREMENTAL_COMPACTION) {
2698     Label ensure_not_white;
2699 
2700     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
2701                      regs_.scratch1(),  // Scratch.
2702                      MemoryChunk::kEvacuationCandidateMask, eq,
2703                      &ensure_not_white);
2704 
2705     __ CheckPageFlag(regs_.object(),
2706                      regs_.scratch1(),  // Scratch.
2707                      MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
2708                      &need_incremental);
2709 
2710     __ bind(&ensure_not_white);
2711   }
2712 
2713   // We need extra registers for this, so we push the object and the address
2714   // register temporarily.
2715   __ Push(regs_.object(), regs_.address());
2716   __ JumpIfWhite(regs_.scratch0(),  // The value.
2717                  regs_.scratch1(),  // Scratch.
2718                  regs_.object(),    // Scratch.
2719                  regs_.address(),   // Scratch.
2720                  &need_incremental_pop_scratch);
2721   __ Pop(regs_.object(), regs_.address());
2722 
2723   regs_.Restore(masm);
2724   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
2725     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
2726                            MacroAssembler::kReturnAtEnd);
2727   } else {
2728     __ Ret();
2729   }
2730 
2731   __ bind(&need_incremental_pop_scratch);
2732   __ Pop(regs_.object(), regs_.address());
2733 
2734   __ bind(&need_incremental);
2735 
2736   // Fall through when we need to inform the incremental marker.
2737 }
2738 
Generate(MacroAssembler * masm)2739 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
2740   CEntryStub ces(isolate(), 1, kSaveFPRegs);
2741   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
2742   int parameter_count_offset =
2743       StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
2744   __ LoadP(r3, MemOperand(fp, parameter_count_offset));
2745   if (function_mode() == JS_FUNCTION_STUB_MODE) {
2746     __ AddP(r3, Operand(1));
2747   }
2748   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
2749   __ ShiftLeftP(r3, r3, Operand(kPointerSizeLog2));
2750   __ la(sp, MemOperand(r3, sp));
2751   __ Ret();
2752 }
2753 
MaybeCallEntryHook(MacroAssembler * masm)2754 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
2755   if (masm->isolate()->function_entry_hook() != NULL) {
2756     PredictableCodeSizeScope predictable(masm,
2757 #if V8_TARGET_ARCH_S390X
2758                                          40);
2759 #elif V8_HOST_ARCH_S390
2760                                          36);
2761 #else
2762                                          32);
2763 #endif
2764     ProfileEntryHookStub stub(masm->isolate());
2765     __ CleanseP(r14);
2766     __ Push(r14, ip);
2767     __ CallStub(&stub);  // BRASL
2768     __ Pop(r14, ip);
2769   }
2770 }
2771 
Generate(MacroAssembler * masm)2772 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
2773 // The entry hook is a "push lr" instruction (LAY+ST/STG), followed by a call.
2774 #if V8_TARGET_ARCH_S390X
2775   const int32_t kReturnAddressDistanceFromFunctionStart =
2776       Assembler::kCallTargetAddressOffset + 18;  // LAY + STG * 2
2777 #elif V8_HOST_ARCH_S390
2778   const int32_t kReturnAddressDistanceFromFunctionStart =
2779       Assembler::kCallTargetAddressOffset + 18;  // NILH + LAY + ST * 2
2780 #else
2781   const int32_t kReturnAddressDistanceFromFunctionStart =
2782       Assembler::kCallTargetAddressOffset + 14;  // LAY + ST * 2
2783 #endif
2784 
2785   // This should contain all kJSCallerSaved registers.
2786   const RegList kSavedRegs = kJSCallerSaved |  // Caller saved registers.
2787                              r7.bit();         // Saved stack pointer.
2788 
2789   // We also save r14+ip, so count here is one higher than the mask indicates.
2790   const int32_t kNumSavedRegs = kNumJSCallerSaved + 3;
2791 
2792   // Save all caller-save registers as this may be called from anywhere.
2793   __ CleanseP(r14);
2794   __ LoadRR(ip, r14);
2795   __ MultiPush(kSavedRegs | ip.bit());
2796 
2797   // Compute the function's address for the first argument.
2798 
2799   __ SubP(r2, ip, Operand(kReturnAddressDistanceFromFunctionStart));
2800 
2801   // The caller's return address is two slots above the saved temporaries.
2802   // Grab that for the second argument to the hook.
2803   __ lay(r3, MemOperand(sp, kNumSavedRegs * kPointerSize));
2804 
2805   // Align the stack if necessary.
2806   int frame_alignment = masm->ActivationFrameAlignment();
2807   if (frame_alignment > kPointerSize) {
2808     __ LoadRR(r7, sp);
2809     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2810     __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
2811   }
2812 
2813 #if !defined(USE_SIMULATOR)
2814   uintptr_t entry_hook =
2815       reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
2816   __ mov(ip, Operand(entry_hook));
2817 
2818 #if ABI_USES_FUNCTION_DESCRIPTORS
2819   // Function descriptor
2820   __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
2821   __ LoadP(ip, MemOperand(ip, 0));
2822 // ip already set.
2823 #endif
2824 #endif
2825 
2826   // zLinux ABI requires caller's frame to have sufficient space for callee
2827   // preserved regsiter save area.
2828   __ LoadImmP(r0, Operand::Zero());
2829   __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize -
2830                                 kNumRequiredStackFrameSlots * kPointerSize));
2831   __ StoreP(r0, MemOperand(sp));
2832 #if defined(USE_SIMULATOR)
2833   // Under the simulator we need to indirect the entry hook through a
2834   // trampoline function at a known address.
2835   // It additionally takes an isolate as a third parameter
2836   __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
2837 
2838   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
2839   __ mov(ip, Operand(ExternalReference(
2840                  &dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
2841 #endif
2842   __ Call(ip);
2843 
2844   // zLinux ABI requires caller's frame to have sufficient space for callee
2845   // preserved regsiter save area.
2846   __ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize +
2847                                kNumRequiredStackFrameSlots * kPointerSize));
2848 
2849   // Restore the stack pointer if needed.
2850   if (frame_alignment > kPointerSize) {
2851     __ LoadRR(sp, r7);
2852   }
2853 
2854   // Also pop lr to get Ret(0).
2855   __ MultiPop(kSavedRegs | ip.bit());
2856   __ LoadRR(r14, ip);
2857   __ Ret();
2858 }
2859 
2860 template <class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)2861 static void CreateArrayDispatch(MacroAssembler* masm,
2862                                 AllocationSiteOverrideMode mode) {
2863   if (mode == DISABLE_ALLOCATION_SITES) {
2864     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
2865     __ TailCallStub(&stub);
2866   } else if (mode == DONT_OVERRIDE) {
2867     int last_index =
2868         GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
2869     for (int i = 0; i <= last_index; ++i) {
2870       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2871       __ CmpP(r5, Operand(kind));
2872       T stub(masm->isolate(), kind);
2873       __ TailCallStub(&stub, eq);
2874     }
2875 
2876     // If we reached this point there is a problem.
2877     __ Abort(kUnexpectedElementsKindInArrayConstructor);
2878   } else {
2879     UNREACHABLE();
2880   }
2881 }
2882 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)2883 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
2884                                            AllocationSiteOverrideMode mode) {
2885   // r4 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
2886   // r5 - kind (if mode != DISABLE_ALLOCATION_SITES)
2887   // r2 - number of arguments
2888   // r3 - constructor?
2889   // sp[0] - last argument
2890   Label normal_sequence;
2891   if (mode == DONT_OVERRIDE) {
2892     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2893     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2894     STATIC_ASSERT(FAST_ELEMENTS == 2);
2895     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2896     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
2897     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
2898 
2899     // is the low bit set? If so, we are holey and that is good.
2900     __ AndP(r0, r5, Operand(1));
2901     __ bne(&normal_sequence);
2902   }
2903 
2904   // look at the first argument
2905   __ LoadP(r7, MemOperand(sp, 0));
2906   __ CmpP(r7, Operand::Zero());
2907   __ beq(&normal_sequence);
2908 
2909   if (mode == DISABLE_ALLOCATION_SITES) {
2910     ElementsKind initial = GetInitialFastElementsKind();
2911     ElementsKind holey_initial = GetHoleyElementsKind(initial);
2912 
2913     ArraySingleArgumentConstructorStub stub_holey(
2914         masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
2915     __ TailCallStub(&stub_holey);
2916 
2917     __ bind(&normal_sequence);
2918     ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
2919                                             DISABLE_ALLOCATION_SITES);
2920     __ TailCallStub(&stub);
2921   } else if (mode == DONT_OVERRIDE) {
2922     // We are going to create a holey array, but our kind is non-holey.
2923     // Fix kind and retry (only if we have an allocation site in the slot).
2924     __ AddP(r5, r5, Operand(1));
2925     if (FLAG_debug_code) {
2926       __ LoadP(r7, FieldMemOperand(r4, 0));
2927       __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
2928       __ Assert(eq, kExpectedAllocationSite);
2929     }
2930 
2931     // Save the resulting elements kind in type info. We can't just store r5
2932     // in the AllocationSite::transition_info field because elements kind is
2933     // restricted to a portion of the field...upper bits need to be left alone.
2934     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
2935     __ LoadP(r6, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
2936     __ AddSmiLiteral(r6, r6, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
2937     __ StoreP(r6, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
2938 
2939     __ bind(&normal_sequence);
2940     int last_index =
2941         GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
2942     for (int i = 0; i <= last_index; ++i) {
2943       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2944       __ CmpP(r5, Operand(kind));
2945       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
2946       __ TailCallStub(&stub, eq);
2947     }
2948 
2949     // If we reached this point there is a problem.
2950     __ Abort(kUnexpectedElementsKindInArrayConstructor);
2951   } else {
2952     UNREACHABLE();
2953   }
2954 }
2955 
2956 template <class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)2957 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
2958   int to_index =
2959       GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
2960   for (int i = 0; i <= to_index; ++i) {
2961     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
2962     T stub(isolate, kind);
2963     stub.GetCode();
2964     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
2965       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
2966       stub1.GetCode();
2967     }
2968   }
2969 }
2970 
GenerateStubsAheadOfTime(Isolate * isolate)2971 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2972   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
2973       isolate);
2974   ArrayNArgumentsConstructorStub stub(isolate);
2975   stub.GetCode();
2976   ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
2977   for (int i = 0; i < 2; i++) {
2978     // For internal arrays we only need a few things
2979     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
2980     stubh1.GetCode();
2981     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
2982     stubh2.GetCode();
2983   }
2984 }
2985 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)2986 void ArrayConstructorStub::GenerateDispatchToArrayStub(
2987     MacroAssembler* masm, AllocationSiteOverrideMode mode) {
2988   Label not_zero_case, not_one_case;
2989   __ CmpP(r2, Operand::Zero());
2990   __ bne(&not_zero_case);
2991   CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
2992 
2993   __ bind(&not_zero_case);
2994   __ CmpP(r2, Operand(1));
2995   __ bgt(&not_one_case);
2996   CreateArrayDispatchOneArgument(masm, mode);
2997 
2998   __ bind(&not_one_case);
2999   ArrayNArgumentsConstructorStub stub(masm->isolate());
3000   __ TailCallStub(&stub);
3001 }
3002 
Generate(MacroAssembler * masm)3003 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
3004   // ----------- S t a t e -------------
3005   //  -- r2 : argc (only if argument_count() == ANY)
3006   //  -- r3 : constructor
3007   //  -- r4 : AllocationSite or undefined
3008   //  -- r5 : new target
3009   //  -- sp[0] : return address
3010   //  -- sp[4] : last argument
3011   // -----------------------------------
3012 
3013   if (FLAG_debug_code) {
3014     // The array construct code is only set for the global and natives
3015     // builtin Array functions which always have maps.
3016 
3017     // Initial map for the builtin Array function should be a map.
3018     __ LoadP(r6, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
3019     // Will both indicate a NULL and a Smi.
3020     __ TestIfSmi(r6);
3021     __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
3022     __ CompareObjectType(r6, r6, r7, MAP_TYPE);
3023     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
3024 
3025     // We should either have undefined in r4 or a valid AllocationSite
3026     __ AssertUndefinedOrAllocationSite(r4, r6);
3027   }
3028 
3029   // Enter the context of the Array function.
3030   __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
3031 
3032   Label subclassing;
3033   __ CmpP(r5, r3);
3034   __ bne(&subclassing, Label::kNear);
3035 
3036   Label no_info;
3037   // Get the elements kind and case on that.
3038   __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
3039   __ beq(&no_info);
3040 
3041   __ LoadP(r5, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
3042   __ SmiUntag(r5);
3043   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
3044   __ AndP(r5, Operand(AllocationSite::ElementsKindBits::kMask));
3045   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
3046 
3047   __ bind(&no_info);
3048   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
3049 
3050   __ bind(&subclassing);
3051   __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
3052   __ StoreP(r3, MemOperand(sp, r1));
3053   __ AddP(r2, r2, Operand(3));
3054   __ Push(r5, r4);
3055   __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
3056 }
3057 
GenerateCase(MacroAssembler * masm,ElementsKind kind)3058 void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
3059                                                 ElementsKind kind) {
3060   __ CmpLogicalP(r2, Operand(1));
3061 
3062   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
3063   __ TailCallStub(&stub0, lt);
3064 
3065   ArrayNArgumentsConstructorStub stubN(isolate());
3066   __ TailCallStub(&stubN, gt);
3067 
3068   if (IsFastPackedElementsKind(kind)) {
3069     // We might need to create a holey array
3070     // look at the first argument
3071     __ LoadP(r5, MemOperand(sp, 0));
3072     __ CmpP(r5, Operand::Zero());
3073 
3074     InternalArraySingleArgumentConstructorStub stub1_holey(
3075         isolate(), GetHoleyElementsKind(kind));
3076     __ TailCallStub(&stub1_holey, ne);
3077   }
3078 
3079   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
3080   __ TailCallStub(&stub1);
3081 }
3082 
Generate(MacroAssembler * masm)3083 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
3084   // ----------- S t a t e -------------
3085   //  -- r2 : argc
3086   //  -- r3 : constructor
3087   //  -- sp[0] : return address
3088   //  -- sp[4] : last argument
3089   // -----------------------------------
3090 
3091   if (FLAG_debug_code) {
3092     // The array construct code is only set for the global and natives
3093     // builtin Array functions which always have maps.
3094 
3095     // Initial map for the builtin Array function should be a map.
3096     __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
3097     // Will both indicate a NULL and a Smi.
3098     __ TestIfSmi(r5);
3099     __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
3100     __ CompareObjectType(r5, r5, r6, MAP_TYPE);
3101     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
3102   }
3103 
3104   // Figure out the right elements kind
3105   __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
3106   // Load the map's "bit field 2" into |result|.
3107   __ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset));
3108   // Retrieve elements_kind from bit field 2.
3109   __ DecodeField<Map::ElementsKindBits>(r5);
3110 
3111   if (FLAG_debug_code) {
3112     Label done;
3113     __ CmpP(r5, Operand(FAST_ELEMENTS));
3114     __ beq(&done);
3115     __ CmpP(r5, Operand(FAST_HOLEY_ELEMENTS));
3116     __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
3117     __ bind(&done);
3118   }
3119 
3120   Label fast_elements_case;
3121   __ CmpP(r5, Operand(FAST_ELEMENTS));
3122   __ beq(&fast_elements_case);
3123   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
3124 
3125   __ bind(&fast_elements_case);
3126   GenerateCase(masm, FAST_ELEMENTS);
3127 }
3128 
AddressOffset(ExternalReference ref0,ExternalReference ref1)3129 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
3130   return ref0.address() - ref1.address();
3131 }
3132 
3133 // Calls an API function.  Allocates HandleScope, extracts returned value
3134 // from handle and propagates exceptions.  Restores context.  stack_space
3135 // - space to be unwound on exit (includes the call JS arguments space and
3136 // the additional space allocated for the fast call).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,MemOperand * stack_space_operand,MemOperand return_value_operand,MemOperand * context_restore_operand)3137 static void CallApiFunctionAndReturn(MacroAssembler* masm,
3138                                      Register function_address,
3139                                      ExternalReference thunk_ref,
3140                                      int stack_space,
3141                                      MemOperand* stack_space_operand,
3142                                      MemOperand return_value_operand,
3143                                      MemOperand* context_restore_operand) {
3144   Isolate* isolate = masm->isolate();
3145   ExternalReference next_address =
3146       ExternalReference::handle_scope_next_address(isolate);
3147   const int kNextOffset = 0;
3148   const int kLimitOffset = AddressOffset(
3149       ExternalReference::handle_scope_limit_address(isolate), next_address);
3150   const int kLevelOffset = AddressOffset(
3151       ExternalReference::handle_scope_level_address(isolate), next_address);
3152 
3153   // Additional parameter is the address of the actual callback.
3154   DCHECK(function_address.is(r3) || function_address.is(r4));
3155   Register scratch = r5;
3156 
3157   __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
3158   __ LoadlB(scratch, MemOperand(scratch, 0));
3159   __ CmpP(scratch, Operand::Zero());
3160 
3161   Label profiler_disabled;
3162   Label end_profiler_check;
3163   __ beq(&profiler_disabled, Label::kNear);
3164   __ mov(scratch, Operand(thunk_ref));
3165   __ b(&end_profiler_check, Label::kNear);
3166   __ bind(&profiler_disabled);
3167   __ LoadRR(scratch, function_address);
3168   __ bind(&end_profiler_check);
3169 
3170   // Allocate HandleScope in callee-save registers.
3171   // r9 - next_address
3172   // r6 - next_address->kNextOffset
3173   // r7 - next_address->kLimitOffset
3174   // r8 - next_address->kLevelOffset
3175   __ mov(r9, Operand(next_address));
3176   __ LoadP(r6, MemOperand(r9, kNextOffset));
3177   __ LoadP(r7, MemOperand(r9, kLimitOffset));
3178   __ LoadlW(r8, MemOperand(r9, kLevelOffset));
3179   __ AddP(r8, Operand(1));
3180   __ StoreW(r8, MemOperand(r9, kLevelOffset));
3181 
3182   if (FLAG_log_timer_events) {
3183     FrameScope frame(masm, StackFrame::MANUAL);
3184     __ PushSafepointRegisters();
3185     __ PrepareCallCFunction(1, r2);
3186     __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
3187     __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
3188                      1);
3189     __ PopSafepointRegisters();
3190   }
3191 
3192   // Native call returns to the DirectCEntry stub which redirects to the
3193   // return address pushed on stack (could have moved after GC).
3194   // DirectCEntry stub itself is generated early and never moves.
3195   DirectCEntryStub stub(isolate);
3196   stub.GenerateCall(masm, scratch);
3197 
3198   if (FLAG_log_timer_events) {
3199     FrameScope frame(masm, StackFrame::MANUAL);
3200     __ PushSafepointRegisters();
3201     __ PrepareCallCFunction(1, r2);
3202     __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
3203     __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
3204                      1);
3205     __ PopSafepointRegisters();
3206   }
3207 
3208   Label promote_scheduled_exception;
3209   Label delete_allocated_handles;
3210   Label leave_exit_frame;
3211   Label return_value_loaded;
3212 
3213   // load value from ReturnValue
3214   __ LoadP(r2, return_value_operand);
3215   __ bind(&return_value_loaded);
3216   // No more valid handles (the result handle was the last one). Restore
3217   // previous handle scope.
3218   __ StoreP(r6, MemOperand(r9, kNextOffset));
3219   if (__ emit_debug_code()) {
3220     __ LoadlW(r3, MemOperand(r9, kLevelOffset));
3221     __ CmpP(r3, r8);
3222     __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
3223   }
3224   __ SubP(r8, Operand(1));
3225   __ StoreW(r8, MemOperand(r9, kLevelOffset));
3226   __ CmpP(r7, MemOperand(r9, kLimitOffset));
3227   __ bne(&delete_allocated_handles, Label::kNear);
3228 
3229   // Leave the API exit frame.
3230   __ bind(&leave_exit_frame);
3231   bool restore_context = context_restore_operand != NULL;
3232   if (restore_context) {
3233     __ LoadP(cp, *context_restore_operand);
3234   }
3235   // LeaveExitFrame expects unwind space to be in a register.
3236   if (stack_space_operand != NULL) {
3237     __ l(r6, *stack_space_operand);
3238   } else {
3239     __ mov(r6, Operand(stack_space));
3240   }
3241   __ LeaveExitFrame(false, r6, !restore_context, stack_space_operand != NULL);
3242 
3243   // Check if the function scheduled an exception.
3244   __ mov(r7, Operand(ExternalReference::scheduled_exception_address(isolate)));
3245   __ LoadP(r7, MemOperand(r7));
3246   __ CompareRoot(r7, Heap::kTheHoleValueRootIndex);
3247   __ bne(&promote_scheduled_exception, Label::kNear);
3248 
3249   __ b(r14);
3250 
3251   // Re-throw by promoting a scheduled exception.
3252   __ bind(&promote_scheduled_exception);
3253   __ TailCallRuntime(Runtime::kPromoteScheduledException);
3254 
3255   // HandleScope limit has changed. Delete allocated extensions.
3256   __ bind(&delete_allocated_handles);
3257   __ StoreP(r7, MemOperand(r9, kLimitOffset));
3258   __ LoadRR(r6, r2);
3259   __ PrepareCallCFunction(1, r7);
3260   __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
3261   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
3262                    1);
3263   __ LoadRR(r2, r6);
3264   __ b(&leave_exit_frame, Label::kNear);
3265 }
3266 
Generate(MacroAssembler * masm)3267 void CallApiCallbackStub::Generate(MacroAssembler* masm) {
3268   // ----------- S t a t e -------------
3269   //  -- r2                  : callee
3270   //  -- r6                  : call_data
3271   //  -- r4                  : holder
3272   //  -- r3                  : api_function_address
3273   //  -- cp                  : context
3274   //  --
3275   //  -- sp[0]               : last argument
3276   //  -- ...
3277   //  -- sp[(argc - 1)* 4]   : first argument
3278   //  -- sp[argc * 4]        : receiver
3279   // -----------------------------------
3280 
3281   Register callee = r2;
3282   Register call_data = r6;
3283   Register holder = r4;
3284   Register api_function_address = r3;
3285   Register context = cp;
3286 
3287   typedef FunctionCallbackArguments FCA;
3288 
3289   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
3290   STATIC_ASSERT(FCA::kCalleeIndex == 5);
3291   STATIC_ASSERT(FCA::kDataIndex == 4);
3292   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3293   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3294   STATIC_ASSERT(FCA::kIsolateIndex == 1);
3295   STATIC_ASSERT(FCA::kHolderIndex == 0);
3296   STATIC_ASSERT(FCA::kNewTargetIndex == 7);
3297   STATIC_ASSERT(FCA::kArgsLength == 8);
3298 
3299   // new target
3300   __ PushRoot(Heap::kUndefinedValueRootIndex);
3301 
3302   // context save
3303   __ push(context);
3304   if (!is_lazy()) {
3305     // load context from callee
3306     __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
3307   }
3308 
3309   // callee
3310   __ push(callee);
3311 
3312   // call data
3313   __ push(call_data);
3314 
3315   Register scratch = call_data;
3316   if (!call_data_undefined()) {
3317     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3318   }
3319   // return value
3320   __ push(scratch);
3321   // return value default
3322   __ push(scratch);
3323   // isolate
3324   __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
3325   __ push(scratch);
3326   // holder
3327   __ push(holder);
3328 
3329   // Prepare arguments.
3330   __ LoadRR(scratch, sp);
3331 
3332   // Allocate the v8::Arguments structure in the arguments' space since
3333   // it's not controlled by GC.
3334   // S390 LINUX ABI:
3335   //
3336   // Create 4 extra slots on stack:
3337   //    [0] space for DirectCEntryStub's LR save
3338   //    [1-3] FunctionCallbackInfo
3339   const int kApiStackSpace = 4;
3340   const int kFunctionCallbackInfoOffset =
3341       (kStackFrameExtraParamSlot + 1) * kPointerSize;
3342 
3343   FrameScope frame_scope(masm, StackFrame::MANUAL);
3344   __ EnterExitFrame(false, kApiStackSpace);
3345 
3346   DCHECK(!api_function_address.is(r2) && !scratch.is(r2));
3347   // r2 = FunctionCallbackInfo&
3348   // Arguments is after the return address.
3349   __ AddP(r2, sp, Operand(kFunctionCallbackInfoOffset));
3350   // FunctionCallbackInfo::implicit_args_
3351   __ StoreP(scratch, MemOperand(r2, 0 * kPointerSize));
3352   // FunctionCallbackInfo::values_
3353   __ AddP(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
3354   __ StoreP(ip, MemOperand(r2, 1 * kPointerSize));
3355   // FunctionCallbackInfo::length_ = argc
3356   __ LoadImmP(ip, Operand(argc()));
3357   __ StoreW(ip, MemOperand(r2, 2 * kPointerSize));
3358 
3359   ExternalReference thunk_ref =
3360       ExternalReference::invoke_function_callback(masm->isolate());
3361 
3362   AllowExternalCallThatCantCauseGC scope(masm);
3363   MemOperand context_restore_operand(
3364       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
3365   // Stores return the first js argument
3366   int return_value_offset = 0;
3367   if (is_store()) {
3368     return_value_offset = 2 + FCA::kArgsLength;
3369   } else {
3370     return_value_offset = 2 + FCA::kReturnValueOffset;
3371   }
3372   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
3373   int stack_space = 0;
3374   MemOperand length_operand =
3375       MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize);
3376   MemOperand* stack_space_operand = &length_operand;
3377   stack_space = argc() + FCA::kArgsLength + 1;
3378   stack_space_operand = NULL;
3379   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
3380                            stack_space_operand, return_value_operand,
3381                            &context_restore_operand);
3382 }
3383 
Generate(MacroAssembler * masm)3384 void CallApiGetterStub::Generate(MacroAssembler* masm) {
3385   int arg0Slot = 0;
3386   int accessorInfoSlot = 0;
3387   int apiStackSpace = 0;
3388   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3389   // name below the exit frame to make GC aware of them.
3390   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3391   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3392   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3393   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3394   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3395   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3396   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3397   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3398 
3399   Register receiver = ApiGetterDescriptor::ReceiverRegister();
3400   Register holder = ApiGetterDescriptor::HolderRegister();
3401   Register callback = ApiGetterDescriptor::CallbackRegister();
3402   Register scratch = r6;
3403   DCHECK(!AreAliased(receiver, holder, callback, scratch));
3404 
3405   Register api_function_address = r4;
3406 
3407   __ push(receiver);
3408   // Push data from AccessorInfo.
3409   __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
3410   __ push(scratch);
3411   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3412   __ Push(scratch, scratch);
3413   __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
3414   __ Push(scratch, holder);
3415   __ Push(Smi::kZero);  // should_throw_on_error -> false
3416   __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
3417   __ push(scratch);
3418 
3419   // v8::PropertyCallbackInfo::args_ array and name handle.
3420   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3421 
3422   // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
3423   __ LoadRR(r2, sp);                           // r2 = Handle<Name>
3424   __ AddP(r3, r2, Operand(1 * kPointerSize));  // r3 = v8::PCI::args_
3425 
3426   // If ABI passes Handles (pointer-sized struct) in a register:
3427   //
3428   // Create 2 extra slots on stack:
3429   //    [0] space for DirectCEntryStub's LR save
3430   //    [1] AccessorInfo&
3431   //
3432   // Otherwise:
3433   //
3434   // Create 3 extra slots on stack:
3435   //    [0] space for DirectCEntryStub's LR save
3436   //    [1] copy of Handle (first arg)
3437   //    [2] AccessorInfo&
3438   if (ABI_PASSES_HANDLES_IN_REGS) {
3439     accessorInfoSlot = kStackFrameExtraParamSlot + 1;
3440     apiStackSpace = 2;
3441   } else {
3442     arg0Slot = kStackFrameExtraParamSlot + 1;
3443     accessorInfoSlot = arg0Slot + 1;
3444     apiStackSpace = 3;
3445   }
3446 
3447   FrameScope frame_scope(masm, StackFrame::MANUAL);
3448   __ EnterExitFrame(false, apiStackSpace);
3449 
3450   if (!ABI_PASSES_HANDLES_IN_REGS) {
3451     // pass 1st arg by reference
3452     __ StoreP(r2, MemOperand(sp, arg0Slot * kPointerSize));
3453     __ AddP(r2, sp, Operand(arg0Slot * kPointerSize));
3454   }
3455 
3456   // Create v8::PropertyCallbackInfo object on the stack and initialize
3457   // it's args_ field.
3458   __ StoreP(r3, MemOperand(sp, accessorInfoSlot * kPointerSize));
3459   __ AddP(r3, sp, Operand(accessorInfoSlot * kPointerSize));
3460   // r3 = v8::PropertyCallbackInfo&
3461 
3462   ExternalReference thunk_ref =
3463       ExternalReference::invoke_accessor_getter_callback(isolate());
3464 
3465   __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
3466   __ LoadP(api_function_address,
3467            FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
3468 
3469   // +3 is to skip prolog, return address and name handle.
3470   MemOperand return_value_operand(
3471       fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
3472   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3473                            kStackUnwindSpace, NULL, return_value_operand, NULL);
3474 }
3475 
3476 #undef __
3477 
3478 }  // namespace internal
3479 }  // namespace v8
3480 
3481 #endif  // V8_TARGET_ARCH_S390
3482