• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/strtod.h"
6 
7 #include <stdarg.h>
8 #include <cmath>
9 
10 #include "src/bignum.h"
11 #include "src/cached-powers.h"
12 #include "src/double.h"
13 #include "src/globals.h"
14 #include "src/utils.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 // 2^53 = 9007199254740992.
20 // Any integer with at most 15 decimal digits will hence fit into a double
21 // (which has a 53bit significand) without loss of precision.
22 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
23 // 2^64 = 18446744073709551616 > 10^19
24 static const int kMaxUint64DecimalDigits = 19;
25 
26 // Max double: 1.7976931348623157 x 10^308
27 // Min non-zero double: 4.9406564584124654 x 10^-324
28 // Any x >= 10^309 is interpreted as +infinity.
29 // Any x <= 10^-324 is interpreted as 0.
30 // Note that 2.5e-324 (despite being smaller than the min double) will be read
31 // as non-zero (equal to the min non-zero double).
32 static const int kMaxDecimalPower = 309;
33 static const int kMinDecimalPower = -324;
34 
35 // 2^64 = 18446744073709551616
36 static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
37 
38 
39 static const double exact_powers_of_ten[] = {
40   1.0,  // 10^0
41   10.0,
42   100.0,
43   1000.0,
44   10000.0,
45   100000.0,
46   1000000.0,
47   10000000.0,
48   100000000.0,
49   1000000000.0,
50   10000000000.0,  // 10^10
51   100000000000.0,
52   1000000000000.0,
53   10000000000000.0,
54   100000000000000.0,
55   1000000000000000.0,
56   10000000000000000.0,
57   100000000000000000.0,
58   1000000000000000000.0,
59   10000000000000000000.0,
60   100000000000000000000.0,  // 10^20
61   1000000000000000000000.0,
62   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
63   10000000000000000000000.0
64 };
65 static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
66 
67 // Maximum number of significant digits in the decimal representation.
68 // In fact the value is 772 (see conversions.cc), but to give us some margin
69 // we round up to 780.
70 static const int kMaxSignificantDecimalDigits = 780;
71 
TrimLeadingZeros(Vector<const char> buffer)72 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
73   for (int i = 0; i < buffer.length(); i++) {
74     if (buffer[i] != '0') {
75       return buffer.SubVector(i, buffer.length());
76     }
77   }
78   return Vector<const char>(buffer.start(), 0);
79 }
80 
81 
TrimTrailingZeros(Vector<const char> buffer)82 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
83   for (int i = buffer.length() - 1; i >= 0; --i) {
84     if (buffer[i] != '0') {
85       return buffer.SubVector(0, i + 1);
86     }
87   }
88   return Vector<const char>(buffer.start(), 0);
89 }
90 
91 
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)92 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
93                                        int exponent,
94                                        char* significant_buffer,
95                                        int* significant_exponent) {
96   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
97     significant_buffer[i] = buffer[i];
98   }
99   // The input buffer has been trimmed. Therefore the last digit must be
100   // different from '0'.
101   DCHECK(buffer[buffer.length() - 1] != '0');
102   // Set the last digit to be non-zero. This is sufficient to guarantee
103   // correct rounding.
104   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
105   *significant_exponent =
106       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
107 }
108 
109 
110 // Reads digits from the buffer and converts them to a uint64.
111 // Reads in as many digits as fit into a uint64.
112 // When the string starts with "1844674407370955161" no further digit is read.
113 // Since 2^64 = 18446744073709551616 it would still be possible read another
114 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)115 static uint64_t ReadUint64(Vector<const char> buffer,
116                            int* number_of_read_digits) {
117   uint64_t result = 0;
118   int i = 0;
119   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
120     int digit = buffer[i++] - '0';
121     DCHECK(0 <= digit && digit <= 9);
122     result = 10 * result + digit;
123   }
124   *number_of_read_digits = i;
125   return result;
126 }
127 
128 
129 // Reads a DiyFp from the buffer.
130 // The returned DiyFp is not necessarily normalized.
131 // If remaining_decimals is zero then the returned DiyFp is accurate.
132 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)133 static void ReadDiyFp(Vector<const char> buffer,
134                       DiyFp* result,
135                       int* remaining_decimals) {
136   int read_digits;
137   uint64_t significand = ReadUint64(buffer, &read_digits);
138   if (buffer.length() == read_digits) {
139     *result = DiyFp(significand, 0);
140     *remaining_decimals = 0;
141   } else {
142     // Round the significand.
143     if (buffer[read_digits] >= '5') {
144       significand++;
145     }
146     // Compute the binary exponent.
147     int exponent = 0;
148     *result = DiyFp(significand, exponent);
149     *remaining_decimals = buffer.length() - read_digits;
150   }
151 }
152 
153 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)154 static bool DoubleStrtod(Vector<const char> trimmed,
155                          int exponent,
156                          double* result) {
157 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 || defined(USE_SIMULATOR)) && \
158     !defined(_MSC_VER)
159   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
160   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
161   // result is not accurate.
162   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
163   // therefore accurate.
164   // Note that the ARM and MIPS simulators are compiled for 32bits. They
165   // therefore exhibit the same problem.
166   return false;
167 #endif
168   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
169     int read_digits;
170     // The trimmed input fits into a double.
171     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
172     // can compute the result-double simply by multiplying (resp. dividing) the
173     // two numbers.
174     // This is possible because IEEE guarantees that floating-point operations
175     // return the best possible approximation.
176     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
177       // 10^-exponent fits into a double.
178       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
179       DCHECK(read_digits == trimmed.length());
180       *result /= exact_powers_of_ten[-exponent];
181       return true;
182     }
183     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
184       // 10^exponent fits into a double.
185       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
186       DCHECK(read_digits == trimmed.length());
187       *result *= exact_powers_of_ten[exponent];
188       return true;
189     }
190     int remaining_digits =
191         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
192     if ((0 <= exponent) &&
193         (exponent - remaining_digits < kExactPowersOfTenSize)) {
194       // The trimmed string was short and we can multiply it with
195       // 10^remaining_digits. As a result the remaining exponent now fits
196       // into a double too.
197       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
198       DCHECK(read_digits == trimmed.length());
199       *result *= exact_powers_of_ten[remaining_digits];
200       *result *= exact_powers_of_ten[exponent - remaining_digits];
201       return true;
202     }
203   }
204   return false;
205 }
206 
207 
208 // Returns 10^exponent as an exact DiyFp.
209 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)210 static DiyFp AdjustmentPowerOfTen(int exponent) {
211   DCHECK(0 < exponent);
212   DCHECK(exponent < PowersOfTenCache::kDecimalExponentDistance);
213   // Simply hardcode the remaining powers for the given decimal exponent
214   // distance.
215   DCHECK(PowersOfTenCache::kDecimalExponentDistance == 8);
216   switch (exponent) {
217     case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
218     case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
219     case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
220     case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
221     case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
222     case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
223     case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
224     default:
225       UNREACHABLE();
226       return DiyFp(0, 0);
227   }
228 }
229 
230 
231 // If the function returns true then the result is the correct double.
232 // Otherwise it is either the correct double or the double that is just below
233 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)234 static bool DiyFpStrtod(Vector<const char> buffer,
235                         int exponent,
236                         double* result) {
237   DiyFp input;
238   int remaining_decimals;
239   ReadDiyFp(buffer, &input, &remaining_decimals);
240   // Since we may have dropped some digits the input is not accurate.
241   // If remaining_decimals is different than 0 than the error is at most
242   // .5 ulp (unit in the last place).
243   // We don't want to deal with fractions and therefore keep a common
244   // denominator.
245   const int kDenominatorLog = 3;
246   const int kDenominator = 1 << kDenominatorLog;
247   // Move the remaining decimals into the exponent.
248   exponent += remaining_decimals;
249   int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
250 
251   int old_e = input.e();
252   input.Normalize();
253   error <<= old_e - input.e();
254 
255   DCHECK(exponent <= PowersOfTenCache::kMaxDecimalExponent);
256   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
257     *result = 0.0;
258     return true;
259   }
260   DiyFp cached_power;
261   int cached_decimal_exponent;
262   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
263                                                      &cached_power,
264                                                      &cached_decimal_exponent);
265 
266   if (cached_decimal_exponent != exponent) {
267     int adjustment_exponent = exponent - cached_decimal_exponent;
268     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
269     input.Multiply(adjustment_power);
270     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
271       // The product of input with the adjustment power fits into a 64 bit
272       // integer.
273       DCHECK(DiyFp::kSignificandSize == 64);
274     } else {
275       // The adjustment power is exact. There is hence only an error of 0.5.
276       error += kDenominator / 2;
277     }
278   }
279 
280   input.Multiply(cached_power);
281   // The error introduced by a multiplication of a*b equals
282   //   error_a + error_b + error_a*error_b/2^64 + 0.5
283   // Substituting a with 'input' and b with 'cached_power' we have
284   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
285   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
286   int error_b = kDenominator / 2;
287   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
288   int fixed_error = kDenominator / 2;
289   error += error_b + error_ab + fixed_error;
290 
291   old_e = input.e();
292   input.Normalize();
293   error <<= old_e - input.e();
294 
295   // See if the double's significand changes if we add/subtract the error.
296   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
297   int effective_significand_size =
298       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
299   int precision_digits_count =
300       DiyFp::kSignificandSize - effective_significand_size;
301   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
302     // This can only happen for very small denormals. In this case the
303     // half-way multiplied by the denominator exceeds the range of an uint64.
304     // Simply shift everything to the right.
305     int shift_amount = (precision_digits_count + kDenominatorLog) -
306         DiyFp::kSignificandSize + 1;
307     input.set_f(input.f() >> shift_amount);
308     input.set_e(input.e() + shift_amount);
309     // We add 1 for the lost precision of error, and kDenominator for
310     // the lost precision of input.f().
311     error = (error >> shift_amount) + 1 + kDenominator;
312     precision_digits_count -= shift_amount;
313   }
314   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
315   DCHECK(DiyFp::kSignificandSize == 64);
316   DCHECK(precision_digits_count < 64);
317   uint64_t one64 = 1;
318   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
319   uint64_t precision_bits = input.f() & precision_bits_mask;
320   uint64_t half_way = one64 << (precision_digits_count - 1);
321   precision_bits *= kDenominator;
322   half_way *= kDenominator;
323   DiyFp rounded_input(input.f() >> precision_digits_count,
324                       input.e() + precision_digits_count);
325   if (precision_bits >= half_way + error) {
326     rounded_input.set_f(rounded_input.f() + 1);
327   }
328   // If the last_bits are too close to the half-way case than we are too
329   // inaccurate and round down. In this case we return false so that we can
330   // fall back to a more precise algorithm.
331 
332   *result = Double(rounded_input).value();
333   if (half_way - error < precision_bits && precision_bits < half_way + error) {
334     // Too imprecise. The caller will have to fall back to a slower version.
335     // However the returned number is guaranteed to be either the correct
336     // double, or the next-lower double.
337     return false;
338   } else {
339     return true;
340   }
341 }
342 
343 
344 // Returns the correct double for the buffer*10^exponent.
345 // The variable guess should be a close guess that is either the correct double
346 // or its lower neighbor (the nearest double less than the correct one).
347 // Preconditions:
348 //   buffer.length() + exponent <= kMaxDecimalPower + 1
349 //   buffer.length() + exponent > kMinDecimalPower
350 //   buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)351 static double BignumStrtod(Vector<const char> buffer,
352                            int exponent,
353                            double guess) {
354   if (guess == V8_INFINITY) {
355     return guess;
356   }
357 
358   DiyFp upper_boundary = Double(guess).UpperBoundary();
359 
360   DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1);
361   DCHECK(buffer.length() + exponent > kMinDecimalPower);
362   DCHECK(buffer.length() <= kMaxSignificantDecimalDigits);
363   // Make sure that the Bignum will be able to hold all our numbers.
364   // Our Bignum implementation has a separate field for exponents. Shifts will
365   // consume at most one bigit (< 64 bits).
366   // ln(10) == 3.3219...
367   DCHECK(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
368   Bignum input;
369   Bignum boundary;
370   input.AssignDecimalString(buffer);
371   boundary.AssignUInt64(upper_boundary.f());
372   if (exponent >= 0) {
373     input.MultiplyByPowerOfTen(exponent);
374   } else {
375     boundary.MultiplyByPowerOfTen(-exponent);
376   }
377   if (upper_boundary.e() > 0) {
378     boundary.ShiftLeft(upper_boundary.e());
379   } else {
380     input.ShiftLeft(-upper_boundary.e());
381   }
382   int comparison = Bignum::Compare(input, boundary);
383   if (comparison < 0) {
384     return guess;
385   } else if (comparison > 0) {
386     return Double(guess).NextDouble();
387   } else if ((Double(guess).Significand() & 1) == 0) {
388     // Round towards even.
389     return guess;
390   } else {
391     return Double(guess).NextDouble();
392   }
393 }
394 
395 
Strtod(Vector<const char> buffer,int exponent)396 double Strtod(Vector<const char> buffer, int exponent) {
397   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
398   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
399   exponent += left_trimmed.length() - trimmed.length();
400   if (trimmed.length() == 0) return 0.0;
401   if (trimmed.length() > kMaxSignificantDecimalDigits) {
402     char significant_buffer[kMaxSignificantDecimalDigits];
403     int significant_exponent;
404     TrimToMaxSignificantDigits(trimmed, exponent,
405                                significant_buffer, &significant_exponent);
406     return Strtod(Vector<const char>(significant_buffer,
407                                      kMaxSignificantDecimalDigits),
408                   significant_exponent);
409   }
410   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
411   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
412 
413   double guess;
414   if (DoubleStrtod(trimmed, exponent, &guess) ||
415       DiyFpStrtod(trimmed, exponent, &guess)) {
416     return guess;
417   }
418   return BignumStrtod(trimmed, exponent, guess);
419 }
420 
421 }  // namespace internal
422 }  // namespace v8
423