1 // Copyright 2015, VIXL authors 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are met: 6 // 7 // * Redistributions of source code must retain the above copyright notice, 8 // this list of conditions and the following disclaimer. 9 // * Redistributions in binary form must reproduce the above copyright notice, 10 // this list of conditions and the following disclaimer in the documentation 11 // and/or other materials provided with the distribution. 12 // * Neither the name of ARM Limited nor the names of its contributors may be 13 // used to endorse or promote products derived from this software without 14 // specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND 17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE 20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 27 #ifndef VIXL_EXAMPLE_EXAMPLES_H_ 28 #define VIXL_EXAMPLE_EXAMPLES_H_ 29 30 #include "aarch64/debugger-aarch64.h" 31 #include "aarch64/macro-assembler-aarch64.h" 32 33 using namespace vixl; 34 using namespace vixl::aarch64; 35 36 // Generate a function with the following prototype: 37 // uint64_t factorial(uint64_t n) 38 // 39 // It provides an iterative implementation of the factorial computation. 40 void GenerateFactorial(MacroAssembler* masm); 41 42 // Generate a function with the following prototype: 43 // uint64_t factorial_rec(uint64_t n) 44 // 45 // It provides a recursive implementation of the factorial computation. 46 void GenerateFactorialRec(MacroAssembler* masm); 47 48 // Generate a function with the following prototype: 49 // void neon_matrix_multiply(float* dst, float* mat1, float* mat2) 50 // 51 // It provides an implementation of a column-major 4x4 matrix multiplication. 52 void GenerateNEONMatrixMultiply(MacroAssembler* masm); 53 54 // Generate a function with the following prototype: 55 // void add2_vectors(int8_t *vecA, const int8_t *vecB, unsigned size) 56 // 57 // Demonstrate how to add two vectors using NEON. The result is stored in vecA. 58 void GenerateAdd2Vectors(MacroAssembler* masm); 59 60 // Generate a function with the following prototype: 61 // double add3_double(double x, double y, double z) 62 // 63 // This example is intended to show the calling convention with double 64 // floating point arguments. 65 void GenerateAdd3Double(MacroAssembler* masm); 66 67 // Generate a function with the following prototype: 68 // double add4_double(uint64_t a, double b, uint64_t c, double d) 69 // 70 // The generated function pictures the calling convention for functions 71 // mixing integer and floating point arguments. 72 void GenerateAdd4Double(MacroAssembler* masm); 73 74 // Generate a function with the following prototype: 75 // uint32_t sum_array(uint8_t* array, uint32_t size) 76 // 77 // The generated function computes the sum of all the elements in 78 // the given array. 79 void GenerateSumArray(MacroAssembler* masm); 80 81 // Generate a function with the following prototype: 82 // int64_t abs(int64_t x) 83 // 84 // The generated function computes the absolute value of an integer. 85 void GenerateAbs(MacroAssembler* masm); 86 87 // Generate a function with the following prototype: 88 // uint64_t check_bounds(uint64_t value, uint64_t low, uint64_t high) 89 // 90 // The goal of this example is to illustrate the use of conditional 91 // instructions. The generated function will check that the given value is 92 // contained within the given boundaries. It returns 1 if 'value' is between 93 // 'low' and 'high' (ie. low <= value <= high). 94 void GenerateCheckBounds(MacroAssembler* masm); 95 96 // Generate a function with the following prototype: 97 // uint32_t crc32(const char *msg, size_t msg_length) 98 // 99 // The generated function computes the CRC-32 checksum on the input msg 100 // with specified length, and returns the result. 101 void GenerateCrc32(MacroAssembler* masm); 102 103 // Generate a function which uses the stack to swap the content of the x0, x1, 104 // x2 and x3 registers. 105 void GenerateSwap4(MacroAssembler* masm); 106 107 // Generate a function which swaps the content of w0 and w1. 108 // This example demonstrates some interesting features of VIXL's stack 109 // operations. 110 void GenerateSwapInt32(MacroAssembler* masm); 111 112 // Generate a function with the following prototype: 113 // uint64_t demo_function(uint64_t x) 114 // 115 // This is the example used in doc/getting-started-aarch64.txt 116 void GenerateDemoFunction(MacroAssembler* masm); 117 118 // This function generates and runs code that uses literals to sum the `a` and 119 // `b` inputs. 120 int64_t LiteralExample(int64_t a, int64_t b); 121 122 // Generate a few examples of runtime calls. 123 void GenerateRuntimeCallExamples(MacroAssembler* masm); 124 125 #endif // VIXL_EXAMPLE_EXAMPLES_H_ 126