1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include "src/dsp/dsp.h"
15
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/common_sse2.h"
21 #include "src/dsp/lossless_common.h"
22
23 // For sign-extended multiplying constants, pre-shifted by 5:
24 #define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5)
25
26 //------------------------------------------------------------------------------
27 // Subtract-Green Transform
28
SubtractGreenFromBlueAndRed_SSE2(uint32_t * argb_data,int num_pixels)29 static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
30 int num_pixels) {
31 int i;
32 for (i = 0; i + 4 <= num_pixels; i += 4) {
33 const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
34 const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
35 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
36 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
37 const __m128i out = _mm_sub_epi8(in, C);
38 _mm_storeu_si128((__m128i*)&argb_data[i], out);
39 }
40 // fallthrough and finish off with plain-C
41 if (i != num_pixels) {
42 VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
43 }
44 }
45
46 //------------------------------------------------------------------------------
47 // Color Transform
48
TransformColor_SSE2(const VP8LMultipliers * const m,uint32_t * argb_data,int num_pixels)49 static void TransformColor_SSE2(const VP8LMultipliers* const m,
50 uint32_t* argb_data, int num_pixels) {
51 const __m128i mults_rb = _mm_set_epi16(
52 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
53 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
54 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
55 CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
56 const __m128i mults_b2 = _mm_set_epi16(
57 CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0,
58 CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0);
59 const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks
60 const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks
61 int i;
62 for (i = 0; i + 4 <= num_pixels; i += 4) {
63 const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
64 const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
65 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
66 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
67 const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
68 const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0
69 const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0
70 const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2
71 const __m128i H = _mm_add_epi8(G, D); // x dr x db
72 const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db
73 const __m128i out = _mm_sub_epi8(in, I);
74 _mm_storeu_si128((__m128i*)&argb_data[i], out);
75 }
76 // fallthrough and finish off with plain-C
77 if (i != num_pixels) {
78 VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
79 }
80 }
81
82 //------------------------------------------------------------------------------
83 #define SPAN 8
CollectColorBlueTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,int histo[])84 static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
85 int tile_width, int tile_height,
86 int green_to_blue, int red_to_blue,
87 int histo[]) {
88 const __m128i mults_r = _mm_set_epi16(
89 CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0,
90 CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0);
91 const __m128i mults_g = _mm_set_epi16(
92 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue),
93 0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue));
94 const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
95 const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask
96 int y;
97 for (y = 0; y < tile_height; ++y) {
98 const uint32_t* const src = argb + y * stride;
99 int i, x;
100 for (x = 0; x + SPAN <= tile_width; x += SPAN) {
101 uint16_t values[SPAN];
102 const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
103 const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
104 const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0
105 const __m128i A1 = _mm_slli_epi16(in1, 8);
106 const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0
107 const __m128i B1 = _mm_and_si128(in1, mask_g);
108 const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0
109 const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
110 const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db
111 const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
112 const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b'
113 const __m128i E1 = _mm_sub_epi8(in1, D1);
114 const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db
115 const __m128i F1 = _mm_srli_epi32(C1, 16);
116 const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b'
117 const __m128i G1 = _mm_sub_epi8(E1, F1);
118 const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b
119 const __m128i H1 = _mm_and_si128(G1, mask_b);
120 const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b'
121 _mm_storeu_si128((__m128i*)values, I);
122 for (i = 0; i < SPAN; ++i) ++histo[values[i]];
123 }
124 }
125 {
126 const int left_over = tile_width & (SPAN - 1);
127 if (left_over > 0) {
128 VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
129 left_over, tile_height,
130 green_to_blue, red_to_blue, histo);
131 }
132 }
133 }
134
CollectColorRedTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_red,int histo[])135 static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
136 int tile_width, int tile_height,
137 int green_to_red, int histo[]) {
138 const __m128i mults_g = _mm_set_epi16(
139 0, CST_5b(green_to_red), 0, CST_5b(green_to_red),
140 0, CST_5b(green_to_red), 0, CST_5b(green_to_red));
141 const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
142 const __m128i mask = _mm_set1_epi32(0xff);
143
144 int y;
145 for (y = 0; y < tile_height; ++y) {
146 const uint32_t* const src = argb + y * stride;
147 int i, x;
148 for (x = 0; x + SPAN <= tile_width; x += SPAN) {
149 uint16_t values[SPAN];
150 const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
151 const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
152 const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0
153 const __m128i A1 = _mm_and_si128(in1, mask_g);
154 const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r
155 const __m128i B1 = _mm_srli_epi32(in1, 16);
156 const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr
157 const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
158 const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r'
159 const __m128i E1 = _mm_sub_epi8(B1, C1);
160 const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r'
161 const __m128i F1 = _mm_and_si128(E1, mask);
162 const __m128i I = _mm_packs_epi32(F0, F1);
163 _mm_storeu_si128((__m128i*)values, I);
164 for (i = 0; i < SPAN; ++i) ++histo[values[i]];
165 }
166 }
167 {
168 const int left_over = tile_width & (SPAN - 1);
169 if (left_over > 0) {
170 VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
171 left_over, tile_height,
172 green_to_red, histo);
173 }
174 }
175 }
176 #undef SPAN
177
178 //------------------------------------------------------------------------------
179
180 #define LINE_SIZE 16 // 8 or 16
AddVector_SSE2(const uint32_t * a,const uint32_t * b,uint32_t * out,int size)181 static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out,
182 int size) {
183 int i;
184 assert(size % LINE_SIZE == 0);
185 for (i = 0; i < size; i += LINE_SIZE) {
186 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
187 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
188 #if (LINE_SIZE == 16)
189 const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]);
190 const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
191 #endif
192 const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]);
193 const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]);
194 #if (LINE_SIZE == 16)
195 const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]);
196 const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
197 #endif
198 _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
199 _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
200 #if (LINE_SIZE == 16)
201 _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2));
202 _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
203 #endif
204 }
205 }
206
AddVectorEq_SSE2(const uint32_t * a,uint32_t * out,int size)207 static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) {
208 int i;
209 assert(size % LINE_SIZE == 0);
210 for (i = 0; i < size; i += LINE_SIZE) {
211 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
212 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
213 #if (LINE_SIZE == 16)
214 const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]);
215 const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
216 #endif
217 const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]);
218 const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]);
219 #if (LINE_SIZE == 16)
220 const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]);
221 const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
222 #endif
223 _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
224 _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
225 #if (LINE_SIZE == 16)
226 _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2));
227 _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
228 #endif
229 }
230 }
231 #undef LINE_SIZE
232
233 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
234 // that's ok since the histogram values are less than 1<<28 (max picture size).
HistogramAdd_SSE2(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)235 static void HistogramAdd_SSE2(const VP8LHistogram* const a,
236 const VP8LHistogram* const b,
237 VP8LHistogram* const out) {
238 int i;
239 const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
240 assert(a->palette_code_bits_ == b->palette_code_bits_);
241 if (b != out) {
242 AddVector_SSE2(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
243 AddVector_SSE2(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
244 AddVector_SSE2(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
245 AddVector_SSE2(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
246 } else {
247 AddVectorEq_SSE2(a->literal_, out->literal_, NUM_LITERAL_CODES);
248 AddVectorEq_SSE2(a->red_, out->red_, NUM_LITERAL_CODES);
249 AddVectorEq_SSE2(a->blue_, out->blue_, NUM_LITERAL_CODES);
250 AddVectorEq_SSE2(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
251 }
252 for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
253 out->literal_[i] = a->literal_[i] + b->literal_[i];
254 }
255 for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
256 out->distance_[i] = a->distance_[i] + b->distance_[i];
257 }
258 }
259
260 //------------------------------------------------------------------------------
261 // Entropy
262
263 // Checks whether the X or Y contribution is worth computing and adding.
264 // Used in loop unrolling.
265 #define ANALYZE_X_OR_Y(x_or_y, j) \
266 do { \
267 if ((x_or_y)[i + (j)] != 0) retval -= VP8LFastSLog2((x_or_y)[i + (j)]); \
268 } while (0)
269
270 // Checks whether the X + Y contribution is worth computing and adding.
271 // Used in loop unrolling.
272 #define ANALYZE_XY(j) \
273 do { \
274 if (tmp[j] != 0) { \
275 retval -= VP8LFastSLog2(tmp[j]); \
276 ANALYZE_X_OR_Y(X, j); \
277 } \
278 } while (0)
279
CombinedShannonEntropy_SSE2(const int X[256],const int Y[256])280 static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) {
281 int i;
282 double retval = 0.;
283 int sumX, sumXY;
284 int32_t tmp[4];
285 __m128i zero = _mm_setzero_si128();
286 // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
287 __m128i sumXY_128 = zero;
288 __m128i sumX_128 = zero;
289
290 for (i = 0; i < 256; i += 4) {
291 const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
292 const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
293
294 // Check if any X is non-zero: this actually provides a speedup as X is
295 // usually sparse.
296 if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
297 const __m128i xy_128 = _mm_add_epi32(x, y);
298 sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
299
300 sumX_128 = _mm_add_epi32(sumX_128, x);
301
302 // Analyze the different X + Y.
303 _mm_storeu_si128((__m128i*)tmp, xy_128);
304
305 ANALYZE_XY(0);
306 ANALYZE_XY(1);
307 ANALYZE_XY(2);
308 ANALYZE_XY(3);
309 } else {
310 // X is fully 0, so only deal with Y.
311 sumXY_128 = _mm_add_epi32(sumXY_128, y);
312
313 ANALYZE_X_OR_Y(Y, 0);
314 ANALYZE_X_OR_Y(Y, 1);
315 ANALYZE_X_OR_Y(Y, 2);
316 ANALYZE_X_OR_Y(Y, 3);
317 }
318 }
319
320 // Sum up sumX_128 to get sumX.
321 _mm_storeu_si128((__m128i*)tmp, sumX_128);
322 sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
323
324 // Sum up sumXY_128 to get sumXY.
325 _mm_storeu_si128((__m128i*)tmp, sumXY_128);
326 sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
327
328 retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
329 return (float)retval;
330 }
331 #undef ANALYZE_X_OR_Y
332 #undef ANALYZE_XY
333
334 //------------------------------------------------------------------------------
335
VectorMismatch_SSE2(const uint32_t * const array1,const uint32_t * const array2,int length)336 static int VectorMismatch_SSE2(const uint32_t* const array1,
337 const uint32_t* const array2, int length) {
338 int match_len;
339
340 if (length >= 12) {
341 __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
342 __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
343 match_len = 0;
344 do {
345 // Loop unrolling and early load both provide a speedup of 10% for the
346 // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
347 const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
348 const __m128i B0 =
349 _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
350 const __m128i B1 =
351 _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
352 if (_mm_movemask_epi8(cmpA) != 0xffff) break;
353 match_len += 4;
354
355 {
356 const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
357 A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
358 A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
359 if (_mm_movemask_epi8(cmpB) != 0xffff) break;
360 match_len += 4;
361 }
362 } while (match_len + 12 < length);
363 } else {
364 match_len = 0;
365 // Unroll the potential first two loops.
366 if (length >= 4 &&
367 _mm_movemask_epi8(_mm_cmpeq_epi32(
368 _mm_loadu_si128((const __m128i*)&array1[0]),
369 _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
370 match_len = 4;
371 if (length >= 8 &&
372 _mm_movemask_epi8(_mm_cmpeq_epi32(
373 _mm_loadu_si128((const __m128i*)&array1[4]),
374 _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
375 match_len = 8;
376 }
377 }
378 }
379
380 while (match_len < length && array1[match_len] == array2[match_len]) {
381 ++match_len;
382 }
383 return match_len;
384 }
385
386 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
BundleColorMap_SSE2(const uint8_t * const row,int width,int xbits,uint32_t * dst)387 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
388 uint32_t* dst) {
389 int x;
390 assert(xbits >= 0);
391 assert(xbits <= 3);
392 switch (xbits) {
393 case 0: {
394 const __m128i ff = _mm_set1_epi16(0xff00);
395 const __m128i zero = _mm_setzero_si128();
396 // Store 0xff000000 | (row[x] << 8).
397 for (x = 0; x + 16 <= width; x += 16, dst += 16) {
398 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
399 const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
400 const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
401 const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
402 const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
403 const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
404 const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
405 _mm_storeu_si128((__m128i*)&dst[0], dst0);
406 _mm_storeu_si128((__m128i*)&dst[4], dst1);
407 _mm_storeu_si128((__m128i*)&dst[8], dst2);
408 _mm_storeu_si128((__m128i*)&dst[12], dst3);
409 }
410 break;
411 }
412 case 1: {
413 const __m128i ff = _mm_set1_epi16(0xff00);
414 const __m128i mul = _mm_set1_epi16(0x110);
415 for (x = 0; x + 16 <= width; x += 16, dst += 8) {
416 // 0a0b | (where a/b are 4 bits).
417 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
418 const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0
419 const __m128i pack = _mm_and_si128(tmp, ff); // ab00
420 const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
421 const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
422 _mm_storeu_si128((__m128i*)&dst[0], dst0);
423 _mm_storeu_si128((__m128i*)&dst[4], dst1);
424 }
425 break;
426 }
427 case 2: {
428 const __m128i mask_or = _mm_set1_epi32(0xff000000);
429 const __m128i mul_cst = _mm_set1_epi16(0x0104);
430 const __m128i mask_mul = _mm_set1_epi16(0x0f00);
431 for (x = 0; x + 16 <= width; x += 16, dst += 4) {
432 // 000a000b000c000d | (where a/b/c/d are 2 bits).
433 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
434 const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0
435 const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000
436 const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000
437 const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000
438 // Convert to 0xff00**00.
439 const __m128i res = _mm_or_si128(pack, mask_or);
440 _mm_storeu_si128((__m128i*)dst, res);
441 }
442 break;
443 }
444 default: {
445 assert(xbits == 3);
446 for (x = 0; x + 16 <= width; x += 16, dst += 2) {
447 // 0000000a00000000b... | (where a/b are 1 bit).
448 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
449 const __m128i shift = _mm_slli_epi64(in, 7);
450 const uint32_t move = _mm_movemask_epi8(shift);
451 dst[0] = 0xff000000 | ((move & 0xff) << 8);
452 dst[1] = 0xff000000 | (move & 0xff00);
453 }
454 break;
455 }
456 }
457 if (x != width) {
458 VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
459 }
460 }
461
462 //------------------------------------------------------------------------------
463 // Batch version of Predictor Transform subtraction
464
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)465 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
466 const __m128i* const a1,
467 __m128i* const avg) {
468 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
469 const __m128i ones = _mm_set1_epi8(1);
470 const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
471 const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
472 *avg = _mm_sub_epi8(avg1, one);
473 }
474
475 // Predictor0: ARGB_BLACK.
PredictorSub0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)476 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
477 int num_pixels, uint32_t* out) {
478 int i;
479 const __m128i black = _mm_set1_epi32(ARGB_BLACK);
480 for (i = 0; i + 4 <= num_pixels; i += 4) {
481 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
482 const __m128i res = _mm_sub_epi8(src, black);
483 _mm_storeu_si128((__m128i*)&out[i], res);
484 }
485 if (i != num_pixels) {
486 VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
487 }
488 }
489
490 #define GENERATE_PREDICTOR_1(X, IN) \
491 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
492 int num_pixels, uint32_t* out) { \
493 int i; \
494 for (i = 0; i + 4 <= num_pixels; i += 4) { \
495 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
496 const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \
497 const __m128i res = _mm_sub_epi8(src, pred); \
498 _mm_storeu_si128((__m128i*)&out[i], res); \
499 } \
500 if (i != num_pixels) { \
501 VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
502 } \
503 }
504
505 GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L
506 GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T
507 GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR
508 GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL
509 #undef GENERATE_PREDICTOR_1
510
511 // Predictor5: avg2(avg2(L, TR), T)
PredictorSub5_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)512 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
513 int num_pixels, uint32_t* out) {
514 int i;
515 for (i = 0; i + 4 <= num_pixels; i += 4) {
516 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
517 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
518 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
519 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
520 __m128i avg, pred, res;
521 Average2_m128i(&L, &TR, &avg);
522 Average2_m128i(&avg, &T, &pred);
523 res = _mm_sub_epi8(src, pred);
524 _mm_storeu_si128((__m128i*)&out[i], res);
525 }
526 if (i != num_pixels) {
527 VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
528 }
529 }
530
531 #define GENERATE_PREDICTOR_2(X, A, B) \
532 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
533 int num_pixels, uint32_t* out) { \
534 int i; \
535 for (i = 0; i + 4 <= num_pixels; i += 4) { \
536 const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \
537 const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \
538 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
539 __m128i pred, res; \
540 Average2_m128i(&tA, &tB, &pred); \
541 res = _mm_sub_epi8(src, pred); \
542 _mm_storeu_si128((__m128i*)&out[i], res); \
543 } \
544 if (i != num_pixels) { \
545 VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
546 } \
547 }
548
549 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL)
550 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T)
551 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T)
552 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR)
553 #undef GENERATE_PREDICTOR_2
554
555 // Predictor10: avg(avg(L,TL), avg(T, TR)).
PredictorSub10_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)556 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
557 int num_pixels, uint32_t* out) {
558 int i;
559 for (i = 0; i + 4 <= num_pixels; i += 4) {
560 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
561 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
562 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
563 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
564 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
565 __m128i avgTTR, avgLTL, avg, res;
566 Average2_m128i(&T, &TR, &avgTTR);
567 Average2_m128i(&L, &TL, &avgLTL);
568 Average2_m128i(&avgTTR, &avgLTL, &avg);
569 res = _mm_sub_epi8(src, avg);
570 _mm_storeu_si128((__m128i*)&out[i], res);
571 }
572 if (i != num_pixels) {
573 VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
574 }
575 }
576
577 // Predictor11: select.
GetSumAbsDiff32_SSE2(const __m128i * const A,const __m128i * const B,__m128i * const out)578 static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
579 __m128i* const out) {
580 // We can unpack with any value on the upper 32 bits, provided it's the same
581 // on both operands (to that their sum of abs diff is zero). Here we use *A.
582 const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
583 const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
584 const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
585 const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
586 const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
587 const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
588 *out = _mm_packs_epi32(s_lo, s_hi);
589 }
590
PredictorSub11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)591 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
592 int num_pixels, uint32_t* out) {
593 int i;
594 for (i = 0; i + 4 <= num_pixels; i += 4) {
595 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
596 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
597 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
598 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
599 __m128i pa, pb;
600 GetSumAbsDiff32_SSE2(&T, &TL, &pa); // pa = sum |T-TL|
601 GetSumAbsDiff32_SSE2(&L, &TL, &pb); // pb = sum |L-TL|
602 {
603 const __m128i mask = _mm_cmpgt_epi32(pb, pa);
604 const __m128i A = _mm_and_si128(mask, L);
605 const __m128i B = _mm_andnot_si128(mask, T);
606 const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T
607 const __m128i res = _mm_sub_epi8(src, pred);
608 _mm_storeu_si128((__m128i*)&out[i], res);
609 }
610 }
611 if (i != num_pixels) {
612 VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
613 }
614 }
615
616 // Predictor12: ClampedSubSubtractFull.
PredictorSub12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)617 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
618 int num_pixels, uint32_t* out) {
619 int i;
620 const __m128i zero = _mm_setzero_si128();
621 for (i = 0; i + 4 <= num_pixels; i += 4) {
622 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
623 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
624 const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
625 const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
626 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
627 const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
628 const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
629 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
630 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
631 const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
632 const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
633 const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
634 const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
635 const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
636 const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
637 const __m128i res = _mm_sub_epi8(src, pred);
638 _mm_storeu_si128((__m128i*)&out[i], res);
639 }
640 if (i != num_pixels) {
641 VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
642 }
643 }
644
645 // Predictors13: ClampedAddSubtractHalf
PredictorSub13_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)646 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
647 int num_pixels, uint32_t* out) {
648 int i;
649 const __m128i zero = _mm_setzero_si128();
650 for (i = 0; i + 2 <= num_pixels; i += 2) {
651 // we can only process two pixels at a time
652 const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
653 const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
654 const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
655 const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
656 const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
657 const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
658 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
659 const __m128i sum = _mm_add_epi16(T_lo, L_lo);
660 const __m128i avg = _mm_srli_epi16(sum, 1);
661 const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
662 const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
663 const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
664 const __m128i A3 = _mm_srai_epi16(A2, 1);
665 const __m128i A4 = _mm_add_epi16(avg, A3);
666 const __m128i pred = _mm_packus_epi16(A4, A4);
667 const __m128i res = _mm_sub_epi8(src, pred);
668 _mm_storel_epi64((__m128i*)&out[i], res);
669 }
670 if (i != num_pixels) {
671 VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
672 }
673 }
674
675 //------------------------------------------------------------------------------
676 // Entry point
677
678 extern void VP8LEncDspInitSSE2(void);
679
VP8LEncDspInitSSE2(void)680 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
681 VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
682 VP8LTransformColor = TransformColor_SSE2;
683 VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
684 VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
685 VP8LHistogramAdd = HistogramAdd_SSE2;
686 VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
687 VP8LVectorMismatch = VectorMismatch_SSE2;
688 VP8LBundleColorMap = BundleColorMap_SSE2;
689
690 VP8LPredictorsSub[0] = PredictorSub0_SSE2;
691 VP8LPredictorsSub[1] = PredictorSub1_SSE2;
692 VP8LPredictorsSub[2] = PredictorSub2_SSE2;
693 VP8LPredictorsSub[3] = PredictorSub3_SSE2;
694 VP8LPredictorsSub[4] = PredictorSub4_SSE2;
695 VP8LPredictorsSub[5] = PredictorSub5_SSE2;
696 VP8LPredictorsSub[6] = PredictorSub6_SSE2;
697 VP8LPredictorsSub[7] = PredictorSub7_SSE2;
698 VP8LPredictorsSub[8] = PredictorSub8_SSE2;
699 VP8LPredictorsSub[9] = PredictorSub9_SSE2;
700 VP8LPredictorsSub[10] = PredictorSub10_SSE2;
701 VP8LPredictorsSub[11] = PredictorSub11_SSE2;
702 VP8LPredictorsSub[12] = PredictorSub12_SSE2;
703 VP8LPredictorsSub[13] = PredictorSub13_SSE2;
704 VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels
705 VP8LPredictorsSub[15] = PredictorSub0_SSE2;
706 }
707
708 #else // !WEBP_USE_SSE2
709
710 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
711
712 #endif // WEBP_USE_SSE2
713