• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/common_sse2.h"
21 #include "src/dsp/lossless_common.h"
22 
23 // For sign-extended multiplying constants, pre-shifted by 5:
24 #define CST_5b(X)  (((int16_t)((uint16_t)(X) << 8)) >> 5)
25 
26 //------------------------------------------------------------------------------
27 // Subtract-Green Transform
28 
SubtractGreenFromBlueAndRed_SSE2(uint32_t * argb_data,int num_pixels)29 static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
30                                              int num_pixels) {
31   int i;
32   for (i = 0; i + 4 <= num_pixels; i += 4) {
33     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
34     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
35     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
36     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
37     const __m128i out = _mm_sub_epi8(in, C);
38     _mm_storeu_si128((__m128i*)&argb_data[i], out);
39   }
40   // fallthrough and finish off with plain-C
41   if (i != num_pixels) {
42     VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
43   }
44 }
45 
46 //------------------------------------------------------------------------------
47 // Color Transform
48 
TransformColor_SSE2(const VP8LMultipliers * const m,uint32_t * argb_data,int num_pixels)49 static void TransformColor_SSE2(const VP8LMultipliers* const m,
50                                 uint32_t* argb_data, int num_pixels) {
51   const __m128i mults_rb = _mm_set_epi16(
52       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
53       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
54       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
55       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
56   const __m128i mults_b2 = _mm_set_epi16(
57       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0,
58       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0);
59   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
60   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);  // red-blue masks
61   int i;
62   for (i = 0; i + 4 <= num_pixels; i += 4) {
63     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
64     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
65     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
66     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
67     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
68     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
69     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
70     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
71     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
72     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
73     const __m128i out = _mm_sub_epi8(in, I);
74     _mm_storeu_si128((__m128i*)&argb_data[i], out);
75   }
76   // fallthrough and finish off with plain-C
77   if (i != num_pixels) {
78     VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
79   }
80 }
81 
82 //------------------------------------------------------------------------------
83 #define SPAN 8
CollectColorBlueTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,int histo[])84 static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
85                                             int tile_width, int tile_height,
86                                             int green_to_blue, int red_to_blue,
87                                             int histo[]) {
88   const __m128i mults_r = _mm_set_epi16(
89       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0,
90       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0);
91   const __m128i mults_g = _mm_set_epi16(
92       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue),
93       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue));
94   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
95   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
96   int y;
97   for (y = 0; y < tile_height; ++y) {
98     const uint32_t* const src = argb + y * stride;
99     int i, x;
100     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
101       uint16_t values[SPAN];
102       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
103       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
104       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
105       const __m128i A1 = _mm_slli_epi16(in1, 8);
106       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
107       const __m128i B1 = _mm_and_si128(in1, mask_g);
108       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
109       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
110       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
111       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
112       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
113       const __m128i E1 = _mm_sub_epi8(in1, D1);
114       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
115       const __m128i F1 = _mm_srli_epi32(C1, 16);
116       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
117       const __m128i G1 = _mm_sub_epi8(E1, F1);
118       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
119       const __m128i H1 = _mm_and_si128(G1, mask_b);
120       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
121       _mm_storeu_si128((__m128i*)values, I);
122       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
123     }
124   }
125   {
126     const int left_over = tile_width & (SPAN - 1);
127     if (left_over > 0) {
128       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
129                                        left_over, tile_height,
130                                        green_to_blue, red_to_blue, histo);
131     }
132   }
133 }
134 
CollectColorRedTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_red,int histo[])135 static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
136                                            int tile_width, int tile_height,
137                                            int green_to_red, int histo[]) {
138   const __m128i mults_g = _mm_set_epi16(
139       0, CST_5b(green_to_red), 0, CST_5b(green_to_red),
140       0, CST_5b(green_to_red), 0, CST_5b(green_to_red));
141   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
142   const __m128i mask = _mm_set1_epi32(0xff);
143 
144   int y;
145   for (y = 0; y < tile_height; ++y) {
146     const uint32_t* const src = argb + y * stride;
147     int i, x;
148     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
149       uint16_t values[SPAN];
150       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
151       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
152       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
153       const __m128i A1 = _mm_and_si128(in1, mask_g);
154       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
155       const __m128i B1 = _mm_srli_epi32(in1, 16);
156       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
157       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
158       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
159       const __m128i E1 = _mm_sub_epi8(B1, C1);
160       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
161       const __m128i F1 = _mm_and_si128(E1, mask);
162       const __m128i I = _mm_packs_epi32(F0, F1);
163       _mm_storeu_si128((__m128i*)values, I);
164       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
165     }
166   }
167   {
168     const int left_over = tile_width & (SPAN - 1);
169     if (left_over > 0) {
170       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
171                                       left_over, tile_height,
172                                       green_to_red, histo);
173     }
174   }
175 }
176 #undef SPAN
177 
178 //------------------------------------------------------------------------------
179 
180 #define LINE_SIZE 16    // 8 or 16
AddVector_SSE2(const uint32_t * a,const uint32_t * b,uint32_t * out,int size)181 static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out,
182                            int size) {
183   int i;
184   assert(size % LINE_SIZE == 0);
185   for (i = 0; i < size; i += LINE_SIZE) {
186     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
187     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
188 #if (LINE_SIZE == 16)
189     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
190     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
191 #endif
192     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
193     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
194 #if (LINE_SIZE == 16)
195     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
196     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
197 #endif
198     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
199     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
200 #if (LINE_SIZE == 16)
201     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
202     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
203 #endif
204   }
205 }
206 
AddVectorEq_SSE2(const uint32_t * a,uint32_t * out,int size)207 static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) {
208   int i;
209   assert(size % LINE_SIZE == 0);
210   for (i = 0; i < size; i += LINE_SIZE) {
211     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
212     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
213 #if (LINE_SIZE == 16)
214     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
215     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
216 #endif
217     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
218     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
219 #if (LINE_SIZE == 16)
220     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
221     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
222 #endif
223     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
224     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
225 #if (LINE_SIZE == 16)
226     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
227     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
228 #endif
229   }
230 }
231 #undef LINE_SIZE
232 
233 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
234 // that's ok since the histogram values are less than 1<<28 (max picture size).
HistogramAdd_SSE2(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)235 static void HistogramAdd_SSE2(const VP8LHistogram* const a,
236                               const VP8LHistogram* const b,
237                               VP8LHistogram* const out) {
238   int i;
239   const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
240   assert(a->palette_code_bits_ == b->palette_code_bits_);
241   if (b != out) {
242     AddVector_SSE2(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
243     AddVector_SSE2(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
244     AddVector_SSE2(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
245     AddVector_SSE2(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
246   } else {
247     AddVectorEq_SSE2(a->literal_, out->literal_, NUM_LITERAL_CODES);
248     AddVectorEq_SSE2(a->red_, out->red_, NUM_LITERAL_CODES);
249     AddVectorEq_SSE2(a->blue_, out->blue_, NUM_LITERAL_CODES);
250     AddVectorEq_SSE2(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
251   }
252   for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
253     out->literal_[i] = a->literal_[i] + b->literal_[i];
254   }
255   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
256     out->distance_[i] = a->distance_[i] + b->distance_[i];
257   }
258 }
259 
260 //------------------------------------------------------------------------------
261 // Entropy
262 
263 // Checks whether the X or Y contribution is worth computing and adding.
264 // Used in loop unrolling.
265 #define ANALYZE_X_OR_Y(x_or_y, j)                                           \
266   do {                                                                      \
267     if ((x_or_y)[i + (j)] != 0) retval -= VP8LFastSLog2((x_or_y)[i + (j)]); \
268   } while (0)
269 
270 // Checks whether the X + Y contribution is worth computing and adding.
271 // Used in loop unrolling.
272 #define ANALYZE_XY(j)                  \
273   do {                                 \
274     if (tmp[j] != 0) {                 \
275       retval -= VP8LFastSLog2(tmp[j]); \
276       ANALYZE_X_OR_Y(X, j);            \
277     }                                  \
278   } while (0)
279 
CombinedShannonEntropy_SSE2(const int X[256],const int Y[256])280 static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) {
281   int i;
282   double retval = 0.;
283   int sumX, sumXY;
284   int32_t tmp[4];
285   __m128i zero = _mm_setzero_si128();
286   // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
287   __m128i sumXY_128 = zero;
288   __m128i sumX_128 = zero;
289 
290   for (i = 0; i < 256; i += 4) {
291     const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
292     const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
293 
294     // Check if any X is non-zero: this actually provides a speedup as X is
295     // usually sparse.
296     if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
297       const __m128i xy_128 = _mm_add_epi32(x, y);
298       sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
299 
300       sumX_128 = _mm_add_epi32(sumX_128, x);
301 
302       // Analyze the different X + Y.
303       _mm_storeu_si128((__m128i*)tmp, xy_128);
304 
305       ANALYZE_XY(0);
306       ANALYZE_XY(1);
307       ANALYZE_XY(2);
308       ANALYZE_XY(3);
309     } else {
310       // X is fully 0, so only deal with Y.
311       sumXY_128 = _mm_add_epi32(sumXY_128, y);
312 
313       ANALYZE_X_OR_Y(Y, 0);
314       ANALYZE_X_OR_Y(Y, 1);
315       ANALYZE_X_OR_Y(Y, 2);
316       ANALYZE_X_OR_Y(Y, 3);
317     }
318   }
319 
320   // Sum up sumX_128 to get sumX.
321   _mm_storeu_si128((__m128i*)tmp, sumX_128);
322   sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
323 
324   // Sum up sumXY_128 to get sumXY.
325   _mm_storeu_si128((__m128i*)tmp, sumXY_128);
326   sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
327 
328   retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
329   return (float)retval;
330 }
331 #undef ANALYZE_X_OR_Y
332 #undef ANALYZE_XY
333 
334 //------------------------------------------------------------------------------
335 
VectorMismatch_SSE2(const uint32_t * const array1,const uint32_t * const array2,int length)336 static int VectorMismatch_SSE2(const uint32_t* const array1,
337                                const uint32_t* const array2, int length) {
338   int match_len;
339 
340   if (length >= 12) {
341     __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
342     __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
343     match_len = 0;
344     do {
345       // Loop unrolling and early load both provide a speedup of 10% for the
346       // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
347       const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
348       const __m128i B0 =
349           _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
350       const __m128i B1 =
351           _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
352       if (_mm_movemask_epi8(cmpA) != 0xffff) break;
353       match_len += 4;
354 
355       {
356         const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
357         A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
358         A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
359         if (_mm_movemask_epi8(cmpB) != 0xffff) break;
360         match_len += 4;
361       }
362     } while (match_len + 12 < length);
363   } else {
364     match_len = 0;
365     // Unroll the potential first two loops.
366     if (length >= 4 &&
367         _mm_movemask_epi8(_mm_cmpeq_epi32(
368             _mm_loadu_si128((const __m128i*)&array1[0]),
369             _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
370       match_len = 4;
371       if (length >= 8 &&
372           _mm_movemask_epi8(_mm_cmpeq_epi32(
373               _mm_loadu_si128((const __m128i*)&array1[4]),
374               _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
375         match_len = 8;
376       }
377     }
378   }
379 
380   while (match_len < length && array1[match_len] == array2[match_len]) {
381     ++match_len;
382   }
383   return match_len;
384 }
385 
386 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
BundleColorMap_SSE2(const uint8_t * const row,int width,int xbits,uint32_t * dst)387 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
388                                 uint32_t* dst) {
389   int x;
390   assert(xbits >= 0);
391   assert(xbits <= 3);
392   switch (xbits) {
393     case 0: {
394       const __m128i ff = _mm_set1_epi16(0xff00);
395       const __m128i zero = _mm_setzero_si128();
396       // Store 0xff000000 | (row[x] << 8).
397       for (x = 0; x + 16 <= width; x += 16, dst += 16) {
398         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
399         const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
400         const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
401         const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
402         const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
403         const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
404         const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
405         _mm_storeu_si128((__m128i*)&dst[0], dst0);
406         _mm_storeu_si128((__m128i*)&dst[4], dst1);
407         _mm_storeu_si128((__m128i*)&dst[8], dst2);
408         _mm_storeu_si128((__m128i*)&dst[12], dst3);
409       }
410       break;
411     }
412     case 1: {
413       const __m128i ff = _mm_set1_epi16(0xff00);
414       const __m128i mul = _mm_set1_epi16(0x110);
415       for (x = 0; x + 16 <= width; x += 16, dst += 8) {
416         // 0a0b | (where a/b are 4 bits).
417         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
418         const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
419         const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
420         const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
421         const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
422         _mm_storeu_si128((__m128i*)&dst[0], dst0);
423         _mm_storeu_si128((__m128i*)&dst[4], dst1);
424       }
425       break;
426     }
427     case 2: {
428       const __m128i mask_or = _mm_set1_epi32(0xff000000);
429       const __m128i mul_cst = _mm_set1_epi16(0x0104);
430       const __m128i mask_mul = _mm_set1_epi16(0x0f00);
431       for (x = 0; x + 16 <= width; x += 16, dst += 4) {
432         // 000a000b000c000d | (where a/b/c/d are 2 bits).
433         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
434         const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
435         const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
436         const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
437         const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
438         // Convert to 0xff00**00.
439         const __m128i res = _mm_or_si128(pack, mask_or);
440         _mm_storeu_si128((__m128i*)dst, res);
441       }
442       break;
443     }
444     default: {
445       assert(xbits == 3);
446       for (x = 0; x + 16 <= width; x += 16, dst += 2) {
447         // 0000000a00000000b... | (where a/b are 1 bit).
448         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
449         const __m128i shift = _mm_slli_epi64(in, 7);
450         const uint32_t move = _mm_movemask_epi8(shift);
451         dst[0] = 0xff000000 | ((move & 0xff) << 8);
452         dst[1] = 0xff000000 | (move & 0xff00);
453       }
454       break;
455     }
456   }
457   if (x != width) {
458     VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
459   }
460 }
461 
462 //------------------------------------------------------------------------------
463 // Batch version of Predictor Transform subtraction
464 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)465 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
466                                        const __m128i* const a1,
467                                        __m128i* const avg) {
468   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
469   const __m128i ones = _mm_set1_epi8(1);
470   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
471   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
472   *avg = _mm_sub_epi8(avg1, one);
473 }
474 
475 // Predictor0: ARGB_BLACK.
PredictorSub0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)476 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
477                                int num_pixels, uint32_t* out) {
478   int i;
479   const __m128i black = _mm_set1_epi32(ARGB_BLACK);
480   for (i = 0; i + 4 <= num_pixels; i += 4) {
481     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
482     const __m128i res = _mm_sub_epi8(src, black);
483     _mm_storeu_si128((__m128i*)&out[i], res);
484   }
485   if (i != num_pixels) {
486     VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
487   }
488 }
489 
490 #define GENERATE_PREDICTOR_1(X, IN)                                           \
491 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
492                                    int num_pixels, uint32_t* out) {           \
493   int i;                                                                      \
494   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
495     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
496     const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));              \
497     const __m128i res = _mm_sub_epi8(src, pred);                              \
498     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
499   }                                                                           \
500   if (i != num_pixels) {                                                      \
501     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
502   }                                                                           \
503 }
504 
505 GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
506 GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
507 GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
508 GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
509 #undef GENERATE_PREDICTOR_1
510 
511 // Predictor5: avg2(avg2(L, TR), T)
PredictorSub5_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)512 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
513                                int num_pixels, uint32_t* out) {
514   int i;
515   for (i = 0; i + 4 <= num_pixels; i += 4) {
516     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
517     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
518     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
519     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
520     __m128i avg, pred, res;
521     Average2_m128i(&L, &TR, &avg);
522     Average2_m128i(&avg, &T, &pred);
523     res = _mm_sub_epi8(src, pred);
524     _mm_storeu_si128((__m128i*)&out[i], res);
525   }
526   if (i != num_pixels) {
527     VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
528   }
529 }
530 
531 #define GENERATE_PREDICTOR_2(X, A, B)                                         \
532 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
533                                    int num_pixels, uint32_t* out) {           \
534   int i;                                                                      \
535   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
536     const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
537     const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
538     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
539     __m128i pred, res;                                                        \
540     Average2_m128i(&tA, &tB, &pred);                                          \
541     res = _mm_sub_epi8(src, pred);                                            \
542     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
543   }                                                                           \
544   if (i != num_pixels) {                                                      \
545     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
546   }                                                                           \
547 }
548 
549 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
550 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
551 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
552 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
553 #undef GENERATE_PREDICTOR_2
554 
555 // Predictor10: avg(avg(L,TL), avg(T, TR)).
PredictorSub10_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)556 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
557                                 int num_pixels, uint32_t* out) {
558   int i;
559   for (i = 0; i + 4 <= num_pixels; i += 4) {
560     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
561     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
562     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
563     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
564     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
565     __m128i avgTTR, avgLTL, avg, res;
566     Average2_m128i(&T, &TR, &avgTTR);
567     Average2_m128i(&L, &TL, &avgLTL);
568     Average2_m128i(&avgTTR, &avgLTL, &avg);
569     res = _mm_sub_epi8(src, avg);
570     _mm_storeu_si128((__m128i*)&out[i], res);
571   }
572   if (i != num_pixels) {
573     VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
574   }
575 }
576 
577 // Predictor11: select.
GetSumAbsDiff32_SSE2(const __m128i * const A,const __m128i * const B,__m128i * const out)578 static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
579                                  __m128i* const out) {
580   // We can unpack with any value on the upper 32 bits, provided it's the same
581   // on both operands (to that their sum of abs diff is zero). Here we use *A.
582   const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
583   const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
584   const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
585   const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
586   const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
587   const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
588   *out = _mm_packs_epi32(s_lo, s_hi);
589 }
590 
PredictorSub11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)591 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
592                                 int num_pixels, uint32_t* out) {
593   int i;
594   for (i = 0; i + 4 <= num_pixels; i += 4) {
595     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
596     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
597     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
598     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
599     __m128i pa, pb;
600     GetSumAbsDiff32_SSE2(&T, &TL, &pa);   // pa = sum |T-TL|
601     GetSumAbsDiff32_SSE2(&L, &TL, &pb);   // pb = sum |L-TL|
602     {
603       const __m128i mask = _mm_cmpgt_epi32(pb, pa);
604       const __m128i A = _mm_and_si128(mask, L);
605       const __m128i B = _mm_andnot_si128(mask, T);
606       const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
607       const __m128i res = _mm_sub_epi8(src, pred);
608       _mm_storeu_si128((__m128i*)&out[i], res);
609     }
610   }
611   if (i != num_pixels) {
612     VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
613   }
614 }
615 
616 // Predictor12: ClampedSubSubtractFull.
PredictorSub12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)617 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
618                                 int num_pixels, uint32_t* out) {
619   int i;
620   const __m128i zero = _mm_setzero_si128();
621   for (i = 0; i + 4 <= num_pixels; i += 4) {
622     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
623     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
624     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
625     const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
626     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
627     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
628     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
629     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
630     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
631     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
632     const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
633     const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
634     const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
635     const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
636     const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
637     const __m128i res = _mm_sub_epi8(src, pred);
638     _mm_storeu_si128((__m128i*)&out[i], res);
639   }
640   if (i != num_pixels) {
641     VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
642   }
643 }
644 
645 // Predictors13: ClampedAddSubtractHalf
PredictorSub13_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)646 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
647                                 int num_pixels, uint32_t* out) {
648   int i;
649   const __m128i zero = _mm_setzero_si128();
650   for (i = 0; i + 2 <= num_pixels; i += 2) {
651     // we can only process two pixels at a time
652     const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
653     const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
654     const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
655     const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
656     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
657     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
658     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
659     const __m128i sum = _mm_add_epi16(T_lo, L_lo);
660     const __m128i avg = _mm_srli_epi16(sum, 1);
661     const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
662     const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
663     const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
664     const __m128i A3 = _mm_srai_epi16(A2, 1);
665     const __m128i A4 = _mm_add_epi16(avg, A3);
666     const __m128i pred = _mm_packus_epi16(A4, A4);
667     const __m128i res = _mm_sub_epi8(src, pred);
668     _mm_storel_epi64((__m128i*)&out[i], res);
669   }
670   if (i != num_pixels) {
671     VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
672   }
673 }
674 
675 //------------------------------------------------------------------------------
676 // Entry point
677 
678 extern void VP8LEncDspInitSSE2(void);
679 
VP8LEncDspInitSSE2(void)680 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
681   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
682   VP8LTransformColor = TransformColor_SSE2;
683   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
684   VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
685   VP8LHistogramAdd = HistogramAdd_SSE2;
686   VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
687   VP8LVectorMismatch = VectorMismatch_SSE2;
688   VP8LBundleColorMap = BundleColorMap_SSE2;
689 
690   VP8LPredictorsSub[0] = PredictorSub0_SSE2;
691   VP8LPredictorsSub[1] = PredictorSub1_SSE2;
692   VP8LPredictorsSub[2] = PredictorSub2_SSE2;
693   VP8LPredictorsSub[3] = PredictorSub3_SSE2;
694   VP8LPredictorsSub[4] = PredictorSub4_SSE2;
695   VP8LPredictorsSub[5] = PredictorSub5_SSE2;
696   VP8LPredictorsSub[6] = PredictorSub6_SSE2;
697   VP8LPredictorsSub[7] = PredictorSub7_SSE2;
698   VP8LPredictorsSub[8] = PredictorSub8_SSE2;
699   VP8LPredictorsSub[9] = PredictorSub9_SSE2;
700   VP8LPredictorsSub[10] = PredictorSub10_SSE2;
701   VP8LPredictorsSub[11] = PredictorSub11_SSE2;
702   VP8LPredictorsSub[12] = PredictorSub12_SSE2;
703   VP8LPredictorsSub[13] = PredictorSub13_SSE2;
704   VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
705   VP8LPredictorsSub[15] = PredictorSub0_SSE2;
706 }
707 
708 #else  // !WEBP_USE_SSE2
709 
710 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
711 
712 #endif  // WEBP_USE_SSE2
713