1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <utils/String8.h>
18
19 #include "Caches.h"
20 #include "ProgramCache.h"
21 #include "Properties.h"
22
23 namespace android {
24 namespace uirenderer {
25
26 ///////////////////////////////////////////////////////////////////////////////
27 // Defines
28 ///////////////////////////////////////////////////////////////////////////////
29
30 #define MODULATE_OP_NO_MODULATE 0
31 #define MODULATE_OP_MODULATE 1
32 #define MODULATE_OP_MODULATE_A8 2
33
34 #define STR(x) STR1(x)
35 #define STR1(x) #x
36
37 ///////////////////////////////////////////////////////////////////////////////
38 // Vertex shaders snippets
39 ///////////////////////////////////////////////////////////////////////////////
40
41 const char* gVS_Header_Start =
42 "#version 100\n"
43 "attribute vec4 position;\n";
44 const char* gVS_Header_Attributes_TexCoords = "attribute vec2 texCoords;\n";
45 const char* gVS_Header_Attributes_Colors = "attribute vec4 colors;\n";
46 const char* gVS_Header_Attributes_VertexAlphaParameters = "attribute float vtxAlpha;\n";
47 const char* gVS_Header_Uniforms_TextureTransform = "uniform mat4 mainTextureTransform;\n";
48 const char* gVS_Header_Uniforms =
49 "uniform mat4 projection;\n"
50 "uniform mat4 transform;\n";
51 const char* gVS_Header_Uniforms_HasGradient = "uniform mat4 screenSpace;\n";
52 const char* gVS_Header_Uniforms_HasBitmap =
53 "uniform mat4 textureTransform;\n"
54 "uniform mediump vec2 textureDimension;\n";
55 const char* gVS_Header_Uniforms_HasRoundRectClip =
56 "uniform mat4 roundRectInvTransform;\n"
57 "uniform mediump vec4 roundRectInnerRectLTWH;\n"
58 "uniform mediump float roundRectRadius;\n";
59 const char* gVS_Header_Varyings_HasTexture = "varying vec2 outTexCoords;\n";
60 const char* gVS_Header_Varyings_HasColors = "varying vec4 outColors;\n";
61 const char* gVS_Header_Varyings_HasVertexAlpha = "varying float alpha;\n";
62 const char* gVS_Header_Varyings_HasBitmap = "varying highp vec2 outBitmapTexCoords;\n";
63 const char* gVS_Header_Varyings_HasGradient[6] = {
64 // Linear
65 "varying highp vec2 linear;\n", "varying float linear;\n",
66
67 // Circular
68 "varying highp vec2 circular;\n", "varying highp vec2 circular;\n",
69
70 // Sweep
71 "varying highp vec2 sweep;\n", "varying highp vec2 sweep;\n",
72 };
73 const char* gVS_Header_Varyings_HasRoundRectClip = "varying mediump vec2 roundRectPos;\n";
74 const char* gVS_Main = "\nvoid main(void) {\n";
75 const char* gVS_Main_OutTexCoords = " outTexCoords = texCoords;\n";
76 const char* gVS_Main_OutColors = " outColors = colors;\n";
77 const char* gVS_Main_OutTransformedTexCoords =
78 " outTexCoords = (mainTextureTransform * vec4(texCoords, 0.0, 1.0)).xy;\n";
79 const char* gVS_Main_OutGradient[6] = {
80 // Linear
81 " linear = vec2((screenSpace * position).x, 0.5);\n",
82 " linear = (screenSpace * position).x;\n",
83
84 // Circular
85 " circular = (screenSpace * position).xy;\n",
86 " circular = (screenSpace * position).xy;\n",
87
88 // Sweep
89 " sweep = (screenSpace * position).xy;\n", " sweep = (screenSpace * position).xy;\n"};
90 const char* gVS_Main_OutBitmapTexCoords =
91 " outBitmapTexCoords = (textureTransform * position).xy * textureDimension;\n";
92 const char* gVS_Main_Position =
93 " vec4 transformedPosition = projection * transform * position;\n"
94 " gl_Position = transformedPosition;\n";
95
96 const char* gVS_Main_VertexAlpha = " alpha = vtxAlpha;\n";
97
98 const char* gVS_Main_HasRoundRectClip =
99 " roundRectPos = ((roundRectInvTransform * transformedPosition).xy / roundRectRadius) - "
100 "roundRectInnerRectLTWH.xy;\n";
101 const char* gVS_Footer = "}\n\n";
102
103 ///////////////////////////////////////////////////////////////////////////////
104 // Fragment shaders snippets
105 ///////////////////////////////////////////////////////////////////////////////
106
107 const char* gFS_Header_Start = "#version 100\n";
108 const char* gFS_Header_Extension_FramebufferFetch =
109 "#extension GL_NV_shader_framebuffer_fetch : enable\n\n";
110 const char* gFS_Header_Extension_ExternalTexture =
111 "#extension GL_OES_EGL_image_external : require\n\n";
112 const char* gFS_Header = "precision mediump float;\n\n";
113 const char* gFS_Uniforms_Color = "uniform vec4 color;\n";
114 const char* gFS_Uniforms_TextureSampler = "uniform sampler2D baseSampler;\n";
115 const char* gFS_Uniforms_ExternalTextureSampler = "uniform samplerExternalOES baseSampler;\n";
116 const char* gFS_Uniforms_GradientSampler[2] = {
117 "uniform vec2 screenSize;\n"
118 "uniform sampler2D gradientSampler;\n",
119
120 "uniform vec2 screenSize;\n"
121 "uniform vec4 startColor;\n"
122 "uniform vec4 endColor;\n"};
123 const char* gFS_Uniforms_BitmapSampler = "uniform sampler2D bitmapSampler;\n";
124 const char* gFS_Uniforms_BitmapExternalSampler = "uniform samplerExternalOES bitmapSampler;\n";
125 const char* gFS_Uniforms_ColorOp[3] = {
126 // None
127 "",
128 // Matrix
129 "uniform mat4 colorMatrix;\n"
130 "uniform vec4 colorMatrixVector;\n",
131 // PorterDuff
132 "uniform vec4 colorBlend;\n"};
133
134 const char* gFS_Uniforms_HasRoundRectClip =
135 "uniform mediump vec4 roundRectInnerRectLTWH;\n"
136 "uniform mediump float roundRectRadius;\n";
137
138 const char* gFS_Uniforms_ColorSpaceConversion =
139 // TODO: Should we use a 3D LUT to combine the matrix and transfer functions?
140 // 32x32x32 fp16 LUTs (for scRGB output) are large and heavy to generate...
141 "uniform mat3 colorSpaceMatrix;\n";
142
143 const char* gFS_Uniforms_TransferFunction[4] = {
144 // In this order: g, a, b, c, d, e, f
145 // See ColorSpace::TransferParameters
146 // We'll use hardware sRGB conversion as much as possible
147 "", "uniform float transferFunction[7];\n", "uniform float transferFunction[5];\n",
148 "uniform float transferFunctionGamma;\n"};
149
150 const char* gFS_OETF[2] = {
151 R"__SHADER__(
152 vec4 OETF(const vec4 linear) {
153 return linear;
154 }
155 )__SHADER__",
156 // We expect linear data to be scRGB so we mirror the gamma function
157 R"__SHADER__(
158 vec4 OETF(const vec4 linear) {
159 return vec4(sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)), linear.a);
160 }
161 )__SHADER__"};
162
163 const char* gFS_ColorConvert[3] = {
164 // Just OETF
165 R"__SHADER__(
166 vec4 colorConvert(const vec4 color) {
167 return OETF(color);
168 }
169 )__SHADER__",
170 // Full color conversion for opaque bitmaps
171 R"__SHADER__(
172 vec4 colorConvert(const vec4 color) {
173 return OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
174 }
175 )__SHADER__",
176 // Full color conversion for translucent bitmaps
177 // Note: 0.5/256=0.0019
178 R"__SHADER__(
179 vec4 colorConvert(in vec4 color) {
180 color.rgb /= color.a + 0.0019;
181 color = OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
182 color.rgb *= color.a + 0.0019;
183 return color;
184 }
185 )__SHADER__",
186 };
187
188 const char* gFS_sRGB_TransferFunctions = R"__SHADER__(
189 float OETF_sRGB(const float linear) {
190 // IEC 61966-2-1:1999
191 return linear <= 0.0031308 ? linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
192 }
193
194 vec3 OETF_sRGB(const vec3 linear) {
195 return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
196 }
197
198 float EOTF_sRGB(float srgb) {
199 // IEC 61966-2-1:1999
200 return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
201 }
202 )__SHADER__";
203
204 const char* gFS_TransferFunction[4] = {
205 // Conversion done by the texture unit (sRGB)
206 R"__SHADER__(
207 vec3 EOTF_Parametric(const vec3 x) {
208 return x;
209 }
210 )__SHADER__",
211 // Full transfer function
212 // TODO: We should probably use a 1D LUT (256x1 with texelFetch() since input is 8 bit)
213 // TODO: That would cause 3 dependent texture fetches. Is it worth it?
214 R"__SHADER__(
215 float EOTF_Parametric(float x) {
216 return x <= transferFunction[4]
217 ? transferFunction[3] * x + transferFunction[6]
218 : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0])
219 + transferFunction[5];
220 }
221
222 vec3 EOTF_Parametric(const vec3 x) {
223 return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
224 }
225 )__SHADER__",
226 // Limited transfer function, e = f = 0.0
227 R"__SHADER__(
228 float EOTF_Parametric(float x) {
229 return x <= transferFunction[4]
230 ? transferFunction[3] * x
231 : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]);
232 }
233
234 vec3 EOTF_Parametric(const vec3 x) {
235 return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
236 }
237 )__SHADER__",
238 // Gamma transfer function, e = f = 0.0
239 R"__SHADER__(
240 vec3 EOTF_Parametric(const vec3 x) {
241 return vec3(pow(x.r, transferFunctionGamma),
242 pow(x.g, transferFunctionGamma),
243 pow(x.b, transferFunctionGamma));
244 }
245 )__SHADER__"};
246
247 // Dithering must be done in the quantization space
248 // When we are writing to an sRGB framebuffer, we must do the following:
249 // EOTF(OETF(color) + dither)
250 // The dithering pattern is generated with a triangle noise generator in the range [-1.0,1.0]
251 // TODO: Handle linear fp16 render targets
252 const char* gFS_GradientFunctions = R"__SHADER__(
253 float triangleNoise(const highp vec2 n) {
254 highp vec2 p = fract(n * vec2(5.3987, 5.4421));
255 p += dot(p.yx, p.xy + vec2(21.5351, 14.3137));
256 highp float xy = p.x * p.y;
257 return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0;
258 }
259 )__SHADER__";
260
261 const char* gFS_GradientPreamble[2] = {
262 // Linear framebuffer
263 R"__SHADER__(
264 vec4 dither(const vec4 color) {
265 return color + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
266 }
267 )__SHADER__",
268 // sRGB framebuffer
269 R"__SHADER__(
270 vec4 dither(const vec4 color) {
271 vec3 dithered = sqrt(color.rgb) + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
272 return vec4(dithered * dithered, color.a);
273 }
274 )__SHADER__",
275 };
276
277 // Uses luminance coefficients from Rec.709 to choose the appropriate gamma
278 // The gamma() function assumes that bright text will be displayed on a dark
279 // background and that dark text will be displayed on bright background
280 // The gamma coefficient is chosen to thicken or thin the text accordingly
281 // The dot product used to compute the luminance could be approximated with
282 // a simple max(color.r, color.g, color.b)
283 const char* gFS_Gamma_Preamble = R"__SHADER__(
284 #define GAMMA (%.2f)
285 #define GAMMA_INV (%.2f)
286
287 float gamma(float a, const vec3 color) {
288 float luminance = dot(color, vec3(0.2126, 0.7152, 0.0722));
289 return pow(a, luminance < 0.5 ? GAMMA_INV : GAMMA);
290 }
291 )__SHADER__";
292
293 const char* gFS_Main =
294 "\nvoid main(void) {\n"
295 " vec4 fragColor;\n";
296
297 const char* gFS_Main_AddDither = " fragColor = dither(fragColor);\n";
298
299 // General case
300 const char* gFS_Main_FetchColor = " fragColor = color;\n";
301 const char* gFS_Main_ModulateColor = " fragColor *= color.a;\n";
302 const char* gFS_Main_ApplyVertexAlphaLinearInterp = " fragColor *= alpha;\n";
303 const char* gFS_Main_ApplyVertexAlphaShadowInterp =
304 // map alpha through shadow alpha sampler
305 " fragColor *= texture2D(baseSampler, vec2(alpha, 0.5)).a;\n";
306 const char* gFS_Main_FetchTexture[2] = {
307 // Don't modulate
308 " fragColor = colorConvert(texture2D(baseSampler, outTexCoords));\n",
309 // Modulate
310 " fragColor = color * colorConvert(texture2D(baseSampler, outTexCoords));\n"};
311 const char* gFS_Main_FetchA8Texture[4] = {
312 // Don't modulate
313 " fragColor = texture2D(baseSampler, outTexCoords);\n",
314 " fragColor = texture2D(baseSampler, outTexCoords);\n",
315 // Modulate
316 " fragColor = color * texture2D(baseSampler, outTexCoords).a;\n",
317 " fragColor = color * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
318 };
319 const char* gFS_Main_FetchGradient[6] = {
320 // Linear
321 " vec4 gradientColor = texture2D(gradientSampler, linear);\n",
322
323 " vec4 gradientColor = mix(startColor, endColor, clamp(linear, 0.0, 1.0));\n",
324
325 // Circular
326 " vec4 gradientColor = texture2D(gradientSampler, vec2(length(circular), 0.5));\n",
327
328 " vec4 gradientColor = mix(startColor, endColor, clamp(length(circular), 0.0, 1.0));\n",
329
330 // Sweep
331 " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
332 " vec4 gradientColor = texture2D(gradientSampler, vec2(index - floor(index), 0.5));\n",
333
334 " highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
335 " vec4 gradientColor = mix(startColor, endColor, clamp(index - floor(index), 0.0, "
336 "1.0));\n"};
337 const char* gFS_Main_FetchBitmap =
338 " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, outBitmapTexCoords));\n";
339 const char* gFS_Main_FetchBitmapNpot =
340 " vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, "
341 "wrap(outBitmapTexCoords)));\n";
342 const char* gFS_Main_BlendShadersBG = " fragColor = blendShaders(gradientColor, bitmapColor)";
343 const char* gFS_Main_BlendShadersGB = " fragColor = blendShaders(bitmapColor, gradientColor)";
344 const char* gFS_Main_BlendShaders_Modulate[6] = {
345 // Don't modulate
346 ";\n", ";\n",
347 // Modulate
348 " * color.a;\n", " * color.a;\n",
349 // Modulate with alpha 8 texture
350 " * texture2D(baseSampler, outTexCoords).a;\n",
351 " * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
352 };
353 const char* gFS_Main_GradientShader_Modulate[6] = {
354 // Don't modulate
355 " fragColor = gradientColor;\n", " fragColor = gradientColor;\n",
356 // Modulate
357 " fragColor = gradientColor * color.a;\n", " fragColor = gradientColor * color.a;\n",
358 // Modulate with alpha 8 texture
359 " fragColor = gradientColor * texture2D(baseSampler, outTexCoords).a;\n",
360 " fragColor = gradientColor * gamma(texture2D(baseSampler, outTexCoords).a, "
361 "gradientColor.rgb);\n",
362 };
363 const char* gFS_Main_BitmapShader_Modulate[6] = {
364 // Don't modulate
365 " fragColor = bitmapColor;\n", " fragColor = bitmapColor;\n",
366 // Modulate
367 " fragColor = bitmapColor * color.a;\n", " fragColor = bitmapColor * color.a;\n",
368 // Modulate with alpha 8 texture
369 " fragColor = bitmapColor * texture2D(baseSampler, outTexCoords).a;\n",
370 " fragColor = bitmapColor * gamma(texture2D(baseSampler, outTexCoords).a, "
371 "bitmapColor.rgb);\n",
372 };
373 const char* gFS_Main_FragColor = " gl_FragColor = fragColor;\n";
374 const char* gFS_Main_FragColor_HasColors = " gl_FragColor *= outColors;\n";
375 const char* gFS_Main_FragColor_Blend =
376 " gl_FragColor = blendFramebuffer(fragColor, gl_LastFragColor);\n";
377 const char* gFS_Main_FragColor_Blend_Swap =
378 " gl_FragColor = blendFramebuffer(gl_LastFragColor, fragColor);\n";
379 const char* gFS_Main_ApplyColorOp[3] = {
380 // None
381 "",
382 // Matrix
383 " fragColor.rgb /= (fragColor.a + 0.0019);\n" // un-premultiply
384 " fragColor *= colorMatrix;\n"
385 " fragColor += colorMatrixVector;\n"
386 " fragColor.rgb *= (fragColor.a + 0.0019);\n", // re-premultiply
387 // PorterDuff
388 " fragColor = blendColors(colorBlend, fragColor);\n"};
389
390 // Note: LTWH (left top width height) -> xyzw
391 // roundRectPos is now divided by roundRectRadius in vertex shader
392 // after we also subtract roundRectInnerRectLTWH.xy from roundRectPos
393 const char* gFS_Main_FragColor_HasRoundRectClip =
394 " mediump vec2 fragToLT = -roundRectPos;\n"
395 " mediump vec2 fragFromRB = roundRectPos - roundRectInnerRectLTWH.zw;\n"
396
397 // since distance is divided by radius, it's in [0;1] so precision is not an issue
398 // this also lets us clamp(0.0, 1.0) instead of max() which is cheaper on GPUs
399 " mediump vec2 dist = clamp(max(fragToLT, fragFromRB), 0.0, 1.0);\n"
400 " mediump float linearDist = clamp(roundRectRadius - (length(dist) * roundRectRadius), "
401 "0.0, 1.0);\n"
402 " gl_FragColor *= linearDist;\n";
403
404 const char* gFS_Main_DebugHighlight = " gl_FragColor.rgb = vec3(0.0, gl_FragColor.a, 0.0);\n";
405 const char* gFS_Footer = "}\n\n";
406
407 ///////////////////////////////////////////////////////////////////////////////
408 // PorterDuff snippets
409 ///////////////////////////////////////////////////////////////////////////////
410
411 const char* gBlendOps[18] = {
412 // Clear
413 "return vec4(0.0, 0.0, 0.0, 0.0);\n",
414 // Src
415 "return src;\n",
416 // Dst
417 "return dst;\n",
418 // SrcOver
419 "return src + dst * (1.0 - src.a);\n",
420 // DstOver
421 "return dst + src * (1.0 - dst.a);\n",
422 // SrcIn
423 "return src * dst.a;\n",
424 // DstIn
425 "return dst * src.a;\n",
426 // SrcOut
427 "return src * (1.0 - dst.a);\n",
428 // DstOut
429 "return dst * (1.0 - src.a);\n",
430 // SrcAtop
431 "return vec4(src.rgb * dst.a + (1.0 - src.a) * dst.rgb, dst.a);\n",
432 // DstAtop
433 "return vec4(dst.rgb * src.a + (1.0 - dst.a) * src.rgb, src.a);\n",
434 // Xor
435 "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb, "
436 "src.a + dst.a - 2.0 * src.a * dst.a);\n",
437 // Plus
438 "return min(src + dst, 1.0);\n",
439 // Modulate
440 "return src * dst;\n",
441 // Screen
442 "return src + dst - src * dst;\n",
443 // Overlay
444 "return clamp(vec4(mix("
445 "2.0 * src.rgb * dst.rgb + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), "
446 "src.a * dst.a - 2.0 * (dst.a - dst.rgb) * (src.a - src.rgb) + src.rgb * (1.0 - dst.a) + "
447 "dst.rgb * (1.0 - src.a), "
448 "step(dst.a, 2.0 * dst.rgb)), "
449 "src.a + dst.a - src.a * dst.a), 0.0, 1.0);\n",
450 // Darken
451 "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
452 "min(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
453 // Lighten
454 "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
455 "max(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
456 };
457
458 ///////////////////////////////////////////////////////////////////////////////
459 // Constructors/destructors
460 ///////////////////////////////////////////////////////////////////////////////
461
ProgramCache(const Extensions & extensions)462 ProgramCache::ProgramCache(const Extensions& extensions)
463 : mHasES3(extensions.getMajorGlVersion() >= 3)
464 , mHasLinearBlending(extensions.hasLinearBlending()) {}
465
~ProgramCache()466 ProgramCache::~ProgramCache() {
467 clear();
468 }
469
470 ///////////////////////////////////////////////////////////////////////////////
471 // Cache management
472 ///////////////////////////////////////////////////////////////////////////////
473
clear()474 void ProgramCache::clear() {
475 PROGRAM_LOGD("Clearing program cache");
476 mCache.clear();
477 }
478
get(const ProgramDescription & description)479 Program* ProgramCache::get(const ProgramDescription& description) {
480 programid key = description.key();
481 if (key == (PROGRAM_KEY_TEXTURE | PROGRAM_KEY_A8_TEXTURE)) {
482 // program for A8, unmodulated, texture w/o shader (black text/path textures) is equivalent
483 // to standard texture program (bitmaps, patches). Consider them equivalent.
484 key = PROGRAM_KEY_TEXTURE;
485 }
486
487 auto iter = mCache.find(key);
488 Program* program = nullptr;
489 if (iter == mCache.end()) {
490 description.log("Could not find program");
491 program = generateProgram(description, key);
492 mCache[key] = std::unique_ptr<Program>(program);
493 } else {
494 program = iter->second.get();
495 }
496 return program;
497 }
498
499 ///////////////////////////////////////////////////////////////////////////////
500 // Program generation
501 ///////////////////////////////////////////////////////////////////////////////
502
generateProgram(const ProgramDescription & description,programid key)503 Program* ProgramCache::generateProgram(const ProgramDescription& description, programid key) {
504 String8 vertexShader = generateVertexShader(description);
505 String8 fragmentShader = generateFragmentShader(description);
506
507 return new Program(description, vertexShader.string(), fragmentShader.string());
508 }
509
gradientIndex(const ProgramDescription & description)510 static inline size_t gradientIndex(const ProgramDescription& description) {
511 return description.gradientType * 2 + description.isSimpleGradient;
512 }
513
generateVertexShader(const ProgramDescription & description)514 String8 ProgramCache::generateVertexShader(const ProgramDescription& description) {
515 // Add attributes
516 String8 shader(gVS_Header_Start);
517 if (description.hasTexture || description.hasExternalTexture) {
518 shader.append(gVS_Header_Attributes_TexCoords);
519 }
520 if (description.hasVertexAlpha) {
521 shader.append(gVS_Header_Attributes_VertexAlphaParameters);
522 }
523 if (description.hasColors) {
524 shader.append(gVS_Header_Attributes_Colors);
525 }
526 // Uniforms
527 shader.append(gVS_Header_Uniforms);
528 if (description.hasTextureTransform) {
529 shader.append(gVS_Header_Uniforms_TextureTransform);
530 }
531 if (description.hasGradient) {
532 shader.append(gVS_Header_Uniforms_HasGradient);
533 }
534 if (description.hasBitmap) {
535 shader.append(gVS_Header_Uniforms_HasBitmap);
536 }
537 if (description.hasRoundRectClip) {
538 shader.append(gVS_Header_Uniforms_HasRoundRectClip);
539 }
540 // Varyings
541 if (description.hasTexture || description.hasExternalTexture) {
542 shader.append(gVS_Header_Varyings_HasTexture);
543 }
544 if (description.hasVertexAlpha) {
545 shader.append(gVS_Header_Varyings_HasVertexAlpha);
546 }
547 if (description.hasColors) {
548 shader.append(gVS_Header_Varyings_HasColors);
549 }
550 if (description.hasGradient) {
551 shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
552 }
553 if (description.hasBitmap) {
554 shader.append(gVS_Header_Varyings_HasBitmap);
555 }
556 if (description.hasRoundRectClip) {
557 shader.append(gVS_Header_Varyings_HasRoundRectClip);
558 }
559
560 // Begin the shader
561 shader.append(gVS_Main);
562 {
563 if (description.hasTextureTransform) {
564 shader.append(gVS_Main_OutTransformedTexCoords);
565 } else if (description.hasTexture || description.hasExternalTexture) {
566 shader.append(gVS_Main_OutTexCoords);
567 }
568 if (description.hasVertexAlpha) {
569 shader.append(gVS_Main_VertexAlpha);
570 }
571 if (description.hasColors) {
572 shader.append(gVS_Main_OutColors);
573 }
574 if (description.hasBitmap) {
575 shader.append(gVS_Main_OutBitmapTexCoords);
576 }
577 // Output transformed position
578 shader.append(gVS_Main_Position);
579 if (description.hasGradient) {
580 shader.append(gVS_Main_OutGradient[gradientIndex(description)]);
581 }
582 if (description.hasRoundRectClip) {
583 shader.append(gVS_Main_HasRoundRectClip);
584 }
585 }
586 // End the shader
587 shader.append(gVS_Footer);
588
589 PROGRAM_LOGD("*** Generated vertex shader:\n\n%s", shader.string());
590
591 return shader;
592 }
593
shaderOp(const ProgramDescription & description,String8 & shader,const int modulateOp,const char ** snippets)594 static bool shaderOp(const ProgramDescription& description, String8& shader, const int modulateOp,
595 const char** snippets) {
596 int op = description.hasAlpha8Texture ? MODULATE_OP_MODULATE_A8 : modulateOp;
597 op = op * 2 + description.hasGammaCorrection;
598 shader.append(snippets[op]);
599 return description.hasAlpha8Texture;
600 }
601
generateFragmentShader(const ProgramDescription & description)602 String8 ProgramCache::generateFragmentShader(const ProgramDescription& description) {
603 String8 shader(gFS_Header_Start);
604
605 const bool blendFramebuffer = description.framebufferMode >= SkBlendMode::kPlus;
606 if (blendFramebuffer) {
607 shader.append(gFS_Header_Extension_FramebufferFetch);
608 }
609 if (description.hasExternalTexture ||
610 (description.hasBitmap && description.isShaderBitmapExternal)) {
611 shader.append(gFS_Header_Extension_ExternalTexture);
612 }
613
614 shader.append(gFS_Header);
615
616 // Varyings
617 if (description.hasTexture || description.hasExternalTexture) {
618 shader.append(gVS_Header_Varyings_HasTexture);
619 }
620 if (description.hasVertexAlpha) {
621 shader.append(gVS_Header_Varyings_HasVertexAlpha);
622 }
623 if (description.hasColors) {
624 shader.append(gVS_Header_Varyings_HasColors);
625 }
626 if (description.hasGradient) {
627 shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
628 }
629 if (description.hasBitmap) {
630 shader.append(gVS_Header_Varyings_HasBitmap);
631 }
632 if (description.hasRoundRectClip) {
633 shader.append(gVS_Header_Varyings_HasRoundRectClip);
634 }
635
636 // Uniforms
637 int modulateOp = MODULATE_OP_NO_MODULATE;
638 const bool singleColor = !description.hasTexture && !description.hasExternalTexture &&
639 !description.hasGradient && !description.hasBitmap;
640
641 if (description.modulate || singleColor) {
642 shader.append(gFS_Uniforms_Color);
643 if (!singleColor) modulateOp = MODULATE_OP_MODULATE;
644 }
645 if (description.hasTexture || description.useShadowAlphaInterp) {
646 shader.append(gFS_Uniforms_TextureSampler);
647 } else if (description.hasExternalTexture) {
648 shader.append(gFS_Uniforms_ExternalTextureSampler);
649 }
650 if (description.hasGradient) {
651 shader.append(gFS_Uniforms_GradientSampler[description.isSimpleGradient]);
652 }
653 if (description.hasRoundRectClip) {
654 shader.append(gFS_Uniforms_HasRoundRectClip);
655 }
656
657 if (description.hasGammaCorrection) {
658 shader.appendFormat(gFS_Gamma_Preamble, Properties::textGamma,
659 1.0f / Properties::textGamma);
660 }
661
662 if (description.hasBitmap) {
663 if (description.isShaderBitmapExternal) {
664 shader.append(gFS_Uniforms_BitmapExternalSampler);
665 } else {
666 shader.append(gFS_Uniforms_BitmapSampler);
667 }
668 }
669 shader.append(gFS_Uniforms_ColorOp[static_cast<int>(description.colorOp)]);
670
671 if (description.hasColorSpaceConversion) {
672 shader.append(gFS_Uniforms_ColorSpaceConversion);
673 }
674 shader.append(gFS_Uniforms_TransferFunction[static_cast<int>(description.transferFunction)]);
675
676 // Generate required functions
677 if (description.hasGradient && description.hasBitmap) {
678 generateBlend(shader, "blendShaders", description.shadersMode);
679 }
680 if (description.colorOp == ProgramDescription::ColorFilterMode::Blend) {
681 generateBlend(shader, "blendColors", description.colorMode);
682 }
683 if (blendFramebuffer) {
684 generateBlend(shader, "blendFramebuffer", description.framebufferMode);
685 }
686 if (description.useShaderBasedWrap) {
687 generateTextureWrap(shader, description.bitmapWrapS, description.bitmapWrapT);
688 }
689 if (description.hasGradient || description.hasLinearTexture ||
690 description.hasColorSpaceConversion) {
691 shader.append(gFS_sRGB_TransferFunctions);
692 }
693 if (description.hasBitmap || ((description.hasTexture || description.hasExternalTexture) &&
694 !description.hasAlpha8Texture)) {
695 shader.append(gFS_TransferFunction[static_cast<int>(description.transferFunction)]);
696 shader.append(
697 gFS_OETF[(description.hasLinearTexture || description.hasColorSpaceConversion) &&
698 !mHasLinearBlending]);
699 shader.append(gFS_ColorConvert[description.hasColorSpaceConversion
700 ? 1 + description.hasTranslucentConversion
701 : 0]);
702 }
703 if (description.hasGradient) {
704 shader.append(gFS_GradientFunctions);
705 shader.append(gFS_GradientPreamble[mHasLinearBlending]);
706 }
707
708 // Begin the shader
709 shader.append(gFS_Main);
710 {
711 // Stores the result in fragColor directly
712 if (description.hasTexture || description.hasExternalTexture) {
713 if (description.hasAlpha8Texture) {
714 if (!description.hasGradient && !description.hasBitmap) {
715 shader.append(gFS_Main_FetchA8Texture[modulateOp * 2 +
716 description.hasGammaCorrection]);
717 }
718 } else {
719 shader.append(gFS_Main_FetchTexture[modulateOp]);
720 }
721 } else {
722 if (!description.hasGradient && !description.hasBitmap) {
723 shader.append(gFS_Main_FetchColor);
724 }
725 }
726 if (description.hasGradient) {
727 shader.append(gFS_Main_FetchGradient[gradientIndex(description)]);
728 }
729 if (description.hasBitmap) {
730 if (!description.useShaderBasedWrap) {
731 shader.append(gFS_Main_FetchBitmap);
732 } else {
733 shader.append(gFS_Main_FetchBitmapNpot);
734 }
735 }
736 bool applyModulate = false;
737 // Case when we have two shaders set
738 if (description.hasGradient && description.hasBitmap) {
739 if (description.isBitmapFirst) {
740 shader.append(gFS_Main_BlendShadersBG);
741 } else {
742 shader.append(gFS_Main_BlendShadersGB);
743 }
744 applyModulate =
745 shaderOp(description, shader, modulateOp, gFS_Main_BlendShaders_Modulate);
746 } else {
747 if (description.hasGradient) {
748 applyModulate =
749 shaderOp(description, shader, modulateOp, gFS_Main_GradientShader_Modulate);
750 } else if (description.hasBitmap) {
751 applyModulate =
752 shaderOp(description, shader, modulateOp, gFS_Main_BitmapShader_Modulate);
753 }
754 }
755
756 if (description.modulate && applyModulate) {
757 shader.append(gFS_Main_ModulateColor);
758 }
759
760 // Apply the color op if needed
761 shader.append(gFS_Main_ApplyColorOp[static_cast<int>(description.colorOp)]);
762
763 if (description.hasVertexAlpha) {
764 if (description.useShadowAlphaInterp) {
765 shader.append(gFS_Main_ApplyVertexAlphaShadowInterp);
766 } else {
767 shader.append(gFS_Main_ApplyVertexAlphaLinearInterp);
768 }
769 }
770
771 if (description.hasGradient) {
772 shader.append(gFS_Main_AddDither);
773 }
774
775 // Output the fragment
776 if (!blendFramebuffer) {
777 shader.append(gFS_Main_FragColor);
778 } else {
779 shader.append(!description.swapSrcDst ? gFS_Main_FragColor_Blend
780 : gFS_Main_FragColor_Blend_Swap);
781 }
782 if (description.hasColors) {
783 shader.append(gFS_Main_FragColor_HasColors);
784 }
785 if (description.hasRoundRectClip) {
786 shader.append(gFS_Main_FragColor_HasRoundRectClip);
787 }
788 if (description.hasDebugHighlight) {
789 shader.append(gFS_Main_DebugHighlight);
790 }
791 }
792 // End the shader
793 shader.append(gFS_Footer);
794
795 #if DEBUG_PROGRAMS
796 PROGRAM_LOGD("*** Generated fragment shader:\n\n");
797 printLongString(shader);
798 #endif
799
800 return shader;
801 }
802
generateBlend(String8 & shader,const char * name,SkBlendMode mode)803 void ProgramCache::generateBlend(String8& shader, const char* name, SkBlendMode mode) {
804 shader.append("\nvec4 ");
805 shader.append(name);
806 shader.append("(vec4 src, vec4 dst) {\n");
807 shader.append(" ");
808 shader.append(gBlendOps[(int)mode]);
809 shader.append("}\n");
810 }
811
generateTextureWrap(String8 & shader,GLenum wrapS,GLenum wrapT)812 void ProgramCache::generateTextureWrap(String8& shader, GLenum wrapS, GLenum wrapT) {
813 shader.append("\nhighp vec2 wrap(highp vec2 texCoords) {\n");
814 if (wrapS == GL_MIRRORED_REPEAT) {
815 shader.append(" highp float xMod2 = mod(texCoords.x, 2.0);\n");
816 shader.append(" if (xMod2 > 1.0) xMod2 = 2.0 - xMod2;\n");
817 }
818 if (wrapT == GL_MIRRORED_REPEAT) {
819 shader.append(" highp float yMod2 = mod(texCoords.y, 2.0);\n");
820 shader.append(" if (yMod2 > 1.0) yMod2 = 2.0 - yMod2;\n");
821 }
822 shader.append(" return vec2(");
823 switch (wrapS) {
824 case GL_CLAMP_TO_EDGE:
825 shader.append("texCoords.x");
826 break;
827 case GL_REPEAT:
828 shader.append("mod(texCoords.x, 1.0)");
829 break;
830 case GL_MIRRORED_REPEAT:
831 shader.append("xMod2");
832 break;
833 }
834 shader.append(", ");
835 switch (wrapT) {
836 case GL_CLAMP_TO_EDGE:
837 shader.append("texCoords.y");
838 break;
839 case GL_REPEAT:
840 shader.append("mod(texCoords.y, 1.0)");
841 break;
842 case GL_MIRRORED_REPEAT:
843 shader.append("yMod2");
844 break;
845 }
846 shader.append(");\n");
847 shader.append("}\n");
848 }
849
printLongString(const String8 & shader) const850 void ProgramCache::printLongString(const String8& shader) const {
851 ssize_t index = 0;
852 ssize_t lastIndex = 0;
853 const char* str = shader.string();
854 while ((index = shader.find("\n", index)) > -1) {
855 String8 line(str, index - lastIndex);
856 if (line.length() == 0) line.append("\n");
857 ALOGD("%s", line.string());
858 index++;
859 str += (index - lastIndex);
860 lastIndex = index;
861 }
862 }
863
864 }; // namespace uirenderer
865 }; // namespace android
866