1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "DummyConsumer.h"
18
19 #include <gtest/gtest.h>
20
21 #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
22 #include <binder/ProcessState.h>
23 #include <configstore/Utils.h>
24 #include <cutils/properties.h>
25 #include <inttypes.h>
26 #include <gui/BufferItemConsumer.h>
27 #include <gui/IDisplayEventConnection.h>
28 #include <gui/IProducerListener.h>
29 #include <gui/ISurfaceComposer.h>
30 #include <gui/Surface.h>
31 #include <gui/SurfaceComposerClient.h>
32 #include <private/gui/ComposerService.h>
33 #include <ui/Rect.h>
34 #include <utils/String8.h>
35
36 #include <limits>
37 #include <thread>
38
39 namespace android {
40
41 using namespace std::chrono_literals;
42 // retrieve wide-color and hdr settings from configstore
43 using namespace android::hardware::configstore;
44 using namespace android::hardware::configstore::V1_0;
45 using ui::ColorMode;
46
47 using Transaction = SurfaceComposerClient::Transaction;
48
49 static bool hasWideColorDisplay =
50 getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false);
51
52 static bool hasHdrDisplay =
53 getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasHDRDisplay>(false);
54
55 class FakeSurfaceComposer;
56 class FakeProducerFrameEventHistory;
57
58 static constexpr uint64_t NO_FRAME_INDEX = std::numeric_limits<uint64_t>::max();
59
60 class SurfaceTest : public ::testing::Test {
61 protected:
SurfaceTest()62 SurfaceTest() {
63 ProcessState::self()->startThreadPool();
64 }
65
SetUp()66 virtual void SetUp() {
67 mComposerClient = new SurfaceComposerClient;
68 ASSERT_EQ(NO_ERROR, mComposerClient->initCheck());
69
70 // TODO(brianderson): The following sometimes fails and is a source of
71 // test flakiness.
72 mSurfaceControl = mComposerClient->createSurface(
73 String8("Test Surface"), 32, 32, PIXEL_FORMAT_RGBA_8888, 0);
74
75 ASSERT_TRUE(mSurfaceControl != NULL);
76 ASSERT_TRUE(mSurfaceControl->isValid());
77
78 Transaction t;
79 ASSERT_EQ(NO_ERROR, t.setLayer(mSurfaceControl, 0x7fffffff)
80 .show(mSurfaceControl)
81 .apply());
82
83 mSurface = mSurfaceControl->getSurface();
84 ASSERT_TRUE(mSurface != NULL);
85 }
86
TearDown()87 virtual void TearDown() {
88 mComposerClient->dispose();
89 }
90
91 sp<Surface> mSurface;
92 sp<SurfaceComposerClient> mComposerClient;
93 sp<SurfaceControl> mSurfaceControl;
94 };
95
TEST_F(SurfaceTest,CreateSurfaceReturnsErrorBadClient)96 TEST_F(SurfaceTest, CreateSurfaceReturnsErrorBadClient) {
97 mComposerClient->dispose();
98 ASSERT_EQ(NO_INIT, mComposerClient->initCheck());
99
100 sp<SurfaceControl> sc;
101 status_t err = mComposerClient->createSurfaceChecked(
102 String8("Test Surface"), 32, 32, PIXEL_FORMAT_RGBA_8888, &sc, 0);
103 ASSERT_EQ(NO_INIT, err);
104 }
105
TEST_F(SurfaceTest,QueuesToWindowComposerIsTrueWhenVisible)106 TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenVisible) {
107 sp<ANativeWindow> anw(mSurface);
108 int result = -123;
109 int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER,
110 &result);
111 EXPECT_EQ(NO_ERROR, err);
112 EXPECT_EQ(1, result);
113 }
114
TEST_F(SurfaceTest,QueuesToWindowComposerIsTrueWhenPurgatorized)115 TEST_F(SurfaceTest, QueuesToWindowComposerIsTrueWhenPurgatorized) {
116 mSurfaceControl.clear();
117 // Wait for the async clean-up to complete.
118 std::this_thread::sleep_for(50ms);
119
120 sp<ANativeWindow> anw(mSurface);
121 int result = -123;
122 int err = anw->query(anw.get(), NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER,
123 &result);
124 EXPECT_EQ(NO_ERROR, err);
125 EXPECT_EQ(1, result);
126 }
127
128 // This test probably doesn't belong here.
TEST_F(SurfaceTest,ScreenshotsOfProtectedBuffersDontSucceed)129 TEST_F(SurfaceTest, ScreenshotsOfProtectedBuffersDontSucceed) {
130 sp<ANativeWindow> anw(mSurface);
131
132 // Verify the screenshot works with no protected buffers.
133 sp<ISurfaceComposer> sf(ComposerService::getComposerService());
134 sp<IBinder> display(sf->getBuiltInDisplay(
135 ISurfaceComposer::eDisplayIdMain));
136 sp<GraphicBuffer> outBuffer;
137 bool ignored;
138 ASSERT_EQ(NO_ERROR, sf->captureScreen(display, &outBuffer, ignored, Rect(),
139 64, 64, 0, 0x7fffffff, false));
140
141 ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(),
142 NATIVE_WINDOW_API_CPU));
143 // Set the PROTECTED usage bit and verify that the screenshot fails. Note
144 // that we need to dequeue a buffer in order for it to actually get
145 // allocated in SurfaceFlinger.
146 ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(),
147 GRALLOC_USAGE_PROTECTED));
148 ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(anw.get(), 3));
149 ANativeWindowBuffer* buf = 0;
150
151 status_t err = native_window_dequeue_buffer_and_wait(anw.get(), &buf);
152 if (err) {
153 // we could fail if GRALLOC_USAGE_PROTECTED is not supported.
154 // that's okay as long as this is the reason for the failure.
155 // try again without the GRALLOC_USAGE_PROTECTED bit.
156 ASSERT_EQ(NO_ERROR, native_window_set_usage(anw.get(), 0));
157 ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(),
158 &buf));
159 return;
160 }
161 ASSERT_EQ(NO_ERROR, anw->cancelBuffer(anw.get(), buf, -1));
162
163 for (int i = 0; i < 4; i++) {
164 // Loop to make sure SurfaceFlinger has retired a protected buffer.
165 ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(),
166 &buf));
167 ASSERT_EQ(NO_ERROR, anw->queueBuffer(anw.get(), buf, -1));
168 }
169 ASSERT_EQ(NO_ERROR, sf->captureScreen(display, &outBuffer, ignored, Rect(),
170 64, 64, 0, 0x7fffffff, false));
171 }
172
TEST_F(SurfaceTest,ConcreteTypeIsSurface)173 TEST_F(SurfaceTest, ConcreteTypeIsSurface) {
174 sp<ANativeWindow> anw(mSurface);
175 int result = -123;
176 int err = anw->query(anw.get(), NATIVE_WINDOW_CONCRETE_TYPE, &result);
177 EXPECT_EQ(NO_ERROR, err);
178 EXPECT_EQ(NATIVE_WINDOW_SURFACE, result);
179 }
180
TEST_F(SurfaceTest,LayerCountIsOne)181 TEST_F(SurfaceTest, LayerCountIsOne) {
182 sp<ANativeWindow> anw(mSurface);
183 int result = -123;
184 int err = anw->query(anw.get(), NATIVE_WINDOW_LAYER_COUNT, &result);
185 EXPECT_EQ(NO_ERROR, err);
186 EXPECT_EQ(1, result);
187 }
188
TEST_F(SurfaceTest,QueryConsumerUsage)189 TEST_F(SurfaceTest, QueryConsumerUsage) {
190 const int TEST_USAGE_FLAGS =
191 GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER;
192 sp<IGraphicBufferProducer> producer;
193 sp<IGraphicBufferConsumer> consumer;
194 BufferQueue::createBufferQueue(&producer, &consumer);
195 sp<BufferItemConsumer> c = new BufferItemConsumer(consumer,
196 TEST_USAGE_FLAGS);
197 sp<Surface> s = new Surface(producer);
198
199 sp<ANativeWindow> anw(s);
200
201 int flags = -1;
202 int err = anw->query(anw.get(), NATIVE_WINDOW_CONSUMER_USAGE_BITS, &flags);
203
204 ASSERT_EQ(NO_ERROR, err);
205 ASSERT_EQ(TEST_USAGE_FLAGS, flags);
206 }
207
TEST_F(SurfaceTest,QueryDefaultBuffersDataSpace)208 TEST_F(SurfaceTest, QueryDefaultBuffersDataSpace) {
209 const android_dataspace TEST_DATASPACE = HAL_DATASPACE_SRGB;
210 sp<IGraphicBufferProducer> producer;
211 sp<IGraphicBufferConsumer> consumer;
212 BufferQueue::createBufferQueue(&producer, &consumer);
213 sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1);
214
215 cpuConsumer->setDefaultBufferDataSpace(TEST_DATASPACE);
216
217 sp<Surface> s = new Surface(producer);
218
219 sp<ANativeWindow> anw(s);
220
221 android_dataspace dataSpace;
222
223 int err = anw->query(anw.get(), NATIVE_WINDOW_DEFAULT_DATASPACE,
224 reinterpret_cast<int*>(&dataSpace));
225
226 ASSERT_EQ(NO_ERROR, err);
227 ASSERT_EQ(TEST_DATASPACE, dataSpace);
228 }
229
TEST_F(SurfaceTest,SettingGenerationNumber)230 TEST_F(SurfaceTest, SettingGenerationNumber) {
231 sp<IGraphicBufferProducer> producer;
232 sp<IGraphicBufferConsumer> consumer;
233 BufferQueue::createBufferQueue(&producer, &consumer);
234 sp<CpuConsumer> cpuConsumer = new CpuConsumer(consumer, 1);
235 sp<Surface> surface = new Surface(producer);
236 sp<ANativeWindow> window(surface);
237
238 // Allocate a buffer with a generation number of 0
239 ANativeWindowBuffer* buffer;
240 int fenceFd;
241 ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(),
242 NATIVE_WINDOW_API_CPU));
243 ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd));
244 ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, fenceFd));
245
246 // Detach the buffer and check its generation number
247 sp<GraphicBuffer> graphicBuffer;
248 sp<Fence> fence;
249 ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&graphicBuffer, &fence));
250 ASSERT_EQ(0U, graphicBuffer->getGenerationNumber());
251
252 ASSERT_EQ(NO_ERROR, surface->setGenerationNumber(1));
253 buffer = static_cast<ANativeWindowBuffer*>(graphicBuffer.get());
254
255 // This should change the generation number of the GraphicBuffer
256 ASSERT_EQ(NO_ERROR, surface->attachBuffer(buffer));
257
258 // Check that the new generation number sticks with the buffer
259 ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffer, -1));
260 ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fenceFd));
261 graphicBuffer = static_cast<GraphicBuffer*>(buffer);
262 ASSERT_EQ(1U, graphicBuffer->getGenerationNumber());
263 }
264
TEST_F(SurfaceTest,GetConsumerName)265 TEST_F(SurfaceTest, GetConsumerName) {
266 sp<IGraphicBufferProducer> producer;
267 sp<IGraphicBufferConsumer> consumer;
268 BufferQueue::createBufferQueue(&producer, &consumer);
269
270 sp<DummyConsumer> dummyConsumer(new DummyConsumer);
271 consumer->consumerConnect(dummyConsumer, false);
272 consumer->setConsumerName(String8("TestConsumer"));
273
274 sp<Surface> surface = new Surface(producer);
275 sp<ANativeWindow> window(surface);
276 native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU);
277
278 EXPECT_STREQ("TestConsumer", surface->getConsumerName().string());
279 }
280
TEST_F(SurfaceTest,GetWideColorSupport)281 TEST_F(SurfaceTest, GetWideColorSupport) {
282 sp<IGraphicBufferProducer> producer;
283 sp<IGraphicBufferConsumer> consumer;
284 BufferQueue::createBufferQueue(&producer, &consumer);
285
286 sp<DummyConsumer> dummyConsumer(new DummyConsumer);
287 consumer->consumerConnect(dummyConsumer, false);
288 consumer->setConsumerName(String8("TestConsumer"));
289
290 sp<Surface> surface = new Surface(producer);
291 sp<ANativeWindow> window(surface);
292 native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU);
293
294 bool supported;
295 surface->getWideColorSupport(&supported);
296
297 // NOTE: This test assumes that device that supports
298 // wide-color (as indicated by BoardConfig) must also
299 // have a wide-color primary display.
300 // That assumption allows this test to cover devices
301 // that advertised a wide-color color mode without
302 // actually supporting wide-color to pass this test
303 // as well as the case of a device that does support
304 // wide-color (via BoardConfig) and has a wide-color
305 // primary display.
306 // NOT covered at this time is a device that supports
307 // wide color in the BoardConfig but does not support
308 // a wide-color color mode on the primary display.
309 ASSERT_EQ(hasWideColorDisplay, supported);
310 }
311
TEST_F(SurfaceTest,GetHdrSupport)312 TEST_F(SurfaceTest, GetHdrSupport) {
313 sp<IGraphicBufferProducer> producer;
314 sp<IGraphicBufferConsumer> consumer;
315 BufferQueue::createBufferQueue(&producer, &consumer);
316
317 sp<DummyConsumer> dummyConsumer(new DummyConsumer);
318 consumer->consumerConnect(dummyConsumer, false);
319 consumer->setConsumerName(String8("TestConsumer"));
320
321 sp<Surface> surface = new Surface(producer);
322 sp<ANativeWindow> window(surface);
323 native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU);
324
325 bool supported;
326 status_t result = surface->getHdrSupport(&supported);
327 ASSERT_EQ(NO_ERROR, result);
328
329 // NOTE: This is not a CTS test.
330 // This test verifies that when the BoardConfig TARGET_HAS_HDR_DISPLAY
331 // is TRUE, getHdrSupport is also true.
332 // TODO: Add check for an HDR color mode on the primary display.
333 ASSERT_EQ(hasHdrDisplay, supported);
334 }
335
TEST_F(SurfaceTest,SetHdrMetadata)336 TEST_F(SurfaceTest, SetHdrMetadata) {
337 sp<IGraphicBufferProducer> producer;
338 sp<IGraphicBufferConsumer> consumer;
339 BufferQueue::createBufferQueue(&producer, &consumer);
340
341 sp<DummyConsumer> dummyConsumer(new DummyConsumer);
342 consumer->consumerConnect(dummyConsumer, false);
343 consumer->setConsumerName(String8("TestConsumer"));
344
345 sp<Surface> surface = new Surface(producer);
346 sp<ANativeWindow> window(surface);
347 native_window_api_connect(window.get(), NATIVE_WINDOW_API_CPU);
348
349 bool supported;
350 status_t result = surface->getHdrSupport(&supported);
351 ASSERT_EQ(NO_ERROR, result);
352
353 if (!hasHdrDisplay || !supported) {
354 return;
355 }
356 const android_smpte2086_metadata smpte2086 = {
357 {0.680, 0.320},
358 {0.265, 0.690},
359 {0.150, 0.060},
360 {0.3127, 0.3290},
361 100.0,
362 0.1,
363 };
364 const android_cta861_3_metadata cta861_3 = {
365 78.0,
366 62.0,
367 };
368 int error = native_window_set_buffers_smpte2086_metadata(window.get(), &smpte2086);
369 ASSERT_EQ(error, NO_ERROR);
370 error = native_window_set_buffers_cta861_3_metadata(window.get(), &cta861_3);
371 ASSERT_EQ(error, NO_ERROR);
372 }
373
TEST_F(SurfaceTest,DynamicSetBufferCount)374 TEST_F(SurfaceTest, DynamicSetBufferCount) {
375 sp<IGraphicBufferProducer> producer;
376 sp<IGraphicBufferConsumer> consumer;
377 BufferQueue::createBufferQueue(&producer, &consumer);
378
379 sp<DummyConsumer> dummyConsumer(new DummyConsumer);
380 consumer->consumerConnect(dummyConsumer, false);
381 consumer->setConsumerName(String8("TestConsumer"));
382
383 sp<Surface> surface = new Surface(producer);
384 sp<ANativeWindow> window(surface);
385
386 ASSERT_EQ(NO_ERROR, native_window_api_connect(window.get(),
387 NATIVE_WINDOW_API_CPU));
388 native_window_set_buffer_count(window.get(), 4);
389
390 int fence;
391 ANativeWindowBuffer* buffer;
392 ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence));
393 native_window_set_buffer_count(window.get(), 3);
394 ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence));
395 native_window_set_buffer_count(window.get(), 2);
396 ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffer, &fence));
397 ASSERT_EQ(NO_ERROR, window->queueBuffer(window.get(), buffer, fence));
398 }
399
TEST_F(SurfaceTest,GetAndFlushRemovedBuffers)400 TEST_F(SurfaceTest, GetAndFlushRemovedBuffers) {
401 sp<IGraphicBufferProducer> producer;
402 sp<IGraphicBufferConsumer> consumer;
403 BufferQueue::createBufferQueue(&producer, &consumer);
404
405 sp<DummyConsumer> dummyConsumer(new DummyConsumer);
406 consumer->consumerConnect(dummyConsumer, false);
407 consumer->setConsumerName(String8("TestConsumer"));
408
409 sp<Surface> surface = new Surface(producer);
410 sp<ANativeWindow> window(surface);
411 sp<DummyProducerListener> listener = new DummyProducerListener();
412 ASSERT_EQ(OK, surface->connect(
413 NATIVE_WINDOW_API_CPU,
414 /*listener*/listener,
415 /*reportBufferRemoval*/true));
416 const int BUFFER_COUNT = 4;
417 ASSERT_EQ(NO_ERROR, native_window_set_buffer_count(window.get(), BUFFER_COUNT));
418
419 sp<GraphicBuffer> detachedBuffer;
420 sp<Fence> outFence;
421 int fences[BUFFER_COUNT];
422 ANativeWindowBuffer* buffers[BUFFER_COUNT];
423 // Allocate buffers because detachNextBuffer requires allocated buffers
424 for (int i = 0; i < BUFFER_COUNT; i++) {
425 ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i]));
426 }
427 for (int i = 0; i < BUFFER_COUNT; i++) {
428 ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i]));
429 }
430
431 // Test detached buffer is correctly reported
432 ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
433 std::vector<sp<GraphicBuffer>> removedBuffers;
434 ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
435 ASSERT_EQ(1u, removedBuffers.size());
436 ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle);
437 // Test the list is flushed one getAndFlushRemovedBuffers returns
438 ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
439 ASSERT_EQ(0u, removedBuffers.size());
440
441
442 // Test removed buffer list is cleanup after next dequeueBuffer call
443 ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
444 ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[0], &fences[0]));
445 ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
446 ASSERT_EQ(0u, removedBuffers.size());
447 ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[0], fences[0]));
448
449 // Test removed buffer list is cleanup after next detachNextBuffer call
450 ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
451 ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
452 ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
453 ASSERT_EQ(1u, removedBuffers.size());
454 ASSERT_EQ(detachedBuffer->handle, removedBuffers.at(0)->handle);
455
456 // Re-allocate buffers since all buffers are detached up to now
457 for (int i = 0; i < BUFFER_COUNT; i++) {
458 ASSERT_EQ(NO_ERROR, window->dequeueBuffer(window.get(), &buffers[i], &fences[i]));
459 }
460 for (int i = 0; i < BUFFER_COUNT; i++) {
461 ASSERT_EQ(NO_ERROR, window->cancelBuffer(window.get(), buffers[i], fences[i]));
462 }
463
464 ASSERT_EQ(NO_ERROR, surface->detachNextBuffer(&detachedBuffer, &outFence));
465 ASSERT_EQ(NO_ERROR, surface->attachBuffer(detachedBuffer.get()));
466 ASSERT_EQ(OK, surface->getAndFlushRemovedBuffers(&removedBuffers));
467 // Depends on which slot GraphicBufferProducer impl pick, the attach call might
468 // get 0 or 1 buffer removed.
469 ASSERT_LE(removedBuffers.size(), 1u);
470 }
471
TEST_F(SurfaceTest,TestGetLastDequeueStartTime)472 TEST_F(SurfaceTest, TestGetLastDequeueStartTime) {
473 sp<ANativeWindow> anw(mSurface);
474 ASSERT_EQ(NO_ERROR, native_window_api_connect(anw.get(), NATIVE_WINDOW_API_CPU));
475
476 ANativeWindowBuffer* buffer = nullptr;
477 int32_t fenceFd = -1;
478
479 nsecs_t before = systemTime(CLOCK_MONOTONIC);
480 anw->dequeueBuffer(anw.get(), &buffer, &fenceFd);
481 nsecs_t after = systemTime(CLOCK_MONOTONIC);
482
483 nsecs_t lastDequeueTime = mSurface->getLastDequeueStartTime();
484 ASSERT_LE(before, lastDequeueTime);
485 ASSERT_GE(after, lastDequeueTime);
486 }
487
488 class FakeConsumer : public BnConsumerListener {
489 public:
onFrameAvailable(const BufferItem &)490 void onFrameAvailable(const BufferItem& /*item*/) override {}
onBuffersReleased()491 void onBuffersReleased() override {}
onSidebandStreamChanged()492 void onSidebandStreamChanged() override {}
493
addAndGetFrameTimestamps(const NewFrameEventsEntry * newTimestamps,FrameEventHistoryDelta * outDelta)494 void addAndGetFrameTimestamps(
495 const NewFrameEventsEntry* newTimestamps,
496 FrameEventHistoryDelta* outDelta) override {
497 if (newTimestamps) {
498 if (mGetFrameTimestampsEnabled) {
499 EXPECT_GT(mNewFrameEntryOverride.frameNumber, 0u) <<
500 "Test should set mNewFrameEntryOverride before queuing "
501 "a frame.";
502 EXPECT_EQ(newTimestamps->frameNumber,
503 mNewFrameEntryOverride.frameNumber) <<
504 "Test attempting to add NewFrameEntryOverride with "
505 "incorrect frame number.";
506 mFrameEventHistory.addQueue(mNewFrameEntryOverride);
507 mNewFrameEntryOverride.frameNumber = 0;
508 }
509 mAddFrameTimestampsCount++;
510 mLastAddedFrameNumber = newTimestamps->frameNumber;
511 }
512 if (outDelta) {
513 mFrameEventHistory.getAndResetDelta(outDelta);
514 mGetFrameTimestampsCount++;
515 }
516 mAddAndGetFrameTimestampsCallCount++;
517 }
518
519 bool mGetFrameTimestampsEnabled = false;
520
521 ConsumerFrameEventHistory mFrameEventHistory;
522 int mAddAndGetFrameTimestampsCallCount = 0;
523 int mAddFrameTimestampsCount = 0;
524 int mGetFrameTimestampsCount = 0;
525 uint64_t mLastAddedFrameNumber = NO_FRAME_INDEX;
526
527 NewFrameEventsEntry mNewFrameEntryOverride = { 0, 0, 0, nullptr };
528 };
529
530
531 class FakeSurfaceComposer : public ISurfaceComposer{
532 public:
~FakeSurfaceComposer()533 ~FakeSurfaceComposer() override {}
534
setSupportsPresent(bool supportsPresent)535 void setSupportsPresent(bool supportsPresent) {
536 mSupportsPresent = supportsPresent;
537 }
538
createConnection()539 sp<ISurfaceComposerClient> createConnection() override { return nullptr; }
createScopedConnection(const sp<IGraphicBufferProducer> &)540 sp<ISurfaceComposerClient> createScopedConnection(
541 const sp<IGraphicBufferProducer>& /* parent */) override {
542 return nullptr;
543 }
createDisplayEventConnection(ISurfaceComposer::VsyncSource)544 sp<IDisplayEventConnection> createDisplayEventConnection(ISurfaceComposer::VsyncSource)
545 override {
546 return nullptr;
547 }
createDisplay(const String8 &,bool)548 sp<IBinder> createDisplay(const String8& /*displayName*/,
549 bool /*secure*/) override { return nullptr; }
destroyDisplay(const sp<IBinder> &)550 void destroyDisplay(const sp<IBinder>& /*display */) override {}
getBuiltInDisplay(int32_t)551 sp<IBinder> getBuiltInDisplay(int32_t /*id*/) override { return nullptr; }
setTransactionState(const Vector<ComposerState> &,const Vector<DisplayState> &,uint32_t)552 void setTransactionState(const Vector<ComposerState>& /*state*/,
553 const Vector<DisplayState>& /*displays*/, uint32_t /*flags*/)
554 override {}
bootFinished()555 void bootFinished() override {}
authenticateSurfaceTexture(const sp<IGraphicBufferProducer> &) const556 bool authenticateSurfaceTexture(
557 const sp<IGraphicBufferProducer>& /*surface*/) const override {
558 return false;
559 }
560
getSupportedFrameTimestamps(std::vector<FrameEvent> * outSupported) const561 status_t getSupportedFrameTimestamps(std::vector<FrameEvent>* outSupported)
562 const override {
563 *outSupported = {
564 FrameEvent::REQUESTED_PRESENT,
565 FrameEvent::ACQUIRE,
566 FrameEvent::LATCH,
567 FrameEvent::FIRST_REFRESH_START,
568 FrameEvent::LAST_REFRESH_START,
569 FrameEvent::GPU_COMPOSITION_DONE,
570 FrameEvent::DEQUEUE_READY,
571 FrameEvent::RELEASE
572 };
573 if (mSupportsPresent) {
574 outSupported->push_back(
575 FrameEvent::DISPLAY_PRESENT);
576 }
577 return NO_ERROR;
578 }
579
setPowerMode(const sp<IBinder> &,int)580 void setPowerMode(const sp<IBinder>& /*display*/, int /*mode*/) override {}
getDisplayConfigs(const sp<IBinder> &,Vector<DisplayInfo> *)581 status_t getDisplayConfigs(const sp<IBinder>& /*display*/,
582 Vector<DisplayInfo>* /*configs*/) override { return NO_ERROR; }
getDisplayStats(const sp<IBinder> &,DisplayStatInfo *)583 status_t getDisplayStats(const sp<IBinder>& /*display*/,
584 DisplayStatInfo* /*stats*/) override { return NO_ERROR; }
getActiveConfig(const sp<IBinder> &)585 int getActiveConfig(const sp<IBinder>& /*display*/) override { return 0; }
setActiveConfig(const sp<IBinder> &,int)586 status_t setActiveConfig(const sp<IBinder>& /*display*/, int /*id*/)
587 override {
588 return NO_ERROR;
589 }
getDisplayColorModes(const sp<IBinder> &,Vector<ColorMode> *)590 status_t getDisplayColorModes(const sp<IBinder>& /*display*/,
591 Vector<ColorMode>* /*outColorModes*/) override {
592 return NO_ERROR;
593 }
getActiveColorMode(const sp<IBinder> &)594 ColorMode getActiveColorMode(const sp<IBinder>& /*display*/)
595 override {
596 return ColorMode::NATIVE;
597 }
setActiveColorMode(const sp<IBinder> &,ColorMode)598 status_t setActiveColorMode(const sp<IBinder>& /*display*/,
599 ColorMode /*colorMode*/) override { return NO_ERROR; }
captureScreen(const sp<IBinder> &,sp<GraphicBuffer> *,bool &,Rect,uint32_t,uint32_t,int32_t,int32_t,bool,Rotation,bool)600 status_t captureScreen(const sp<IBinder>& /*display*/,
601 sp<GraphicBuffer>* /*outBuffer*/,
602 bool& /* outCapturedSecureLayers */,
603 Rect /*sourceCrop*/, uint32_t /*reqWidth*/, uint32_t /*reqHeight*/,
604 int32_t /*minLayerZ*/, int32_t /*maxLayerZ*/,
605 bool /*useIdentityTransform*/,
606 Rotation /*rotation*/,
607 bool /*captureSecureLayers*/) override { return NO_ERROR; }
captureLayers(const sp<IBinder> &,sp<GraphicBuffer> *,const Rect &,float,bool)608 virtual status_t captureLayers(const sp<IBinder>& /*parentHandle*/,
609 sp<GraphicBuffer>* /*outBuffer*/, const Rect& /*sourceCrop*/,
610 float /*frameScale*/, bool /*childrenOnly*/) override {
611 return NO_ERROR;
612 }
clearAnimationFrameStats()613 status_t clearAnimationFrameStats() override { return NO_ERROR; }
getAnimationFrameStats(FrameStats *) const614 status_t getAnimationFrameStats(FrameStats* /*outStats*/) const override {
615 return NO_ERROR;
616 }
getHdrCapabilities(const sp<IBinder> &,HdrCapabilities *) const617 status_t getHdrCapabilities(const sp<IBinder>& /*display*/,
618 HdrCapabilities* /*outCapabilities*/) const override {
619 return NO_ERROR;
620 }
enableVSyncInjections(bool)621 status_t enableVSyncInjections(bool /*enable*/) override {
622 return NO_ERROR;
623 }
injectVSync(nsecs_t)624 status_t injectVSync(nsecs_t /*when*/) override { return NO_ERROR; }
getLayerDebugInfo(std::vector<LayerDebugInfo> *)625 status_t getLayerDebugInfo(std::vector<LayerDebugInfo>* /*layers*/) override {
626 return NO_ERROR;
627 }
628
629 protected:
onAsBinder()630 IBinder* onAsBinder() override { return nullptr; }
631
632 private:
633 bool mSupportsPresent{true};
634 };
635
636 class FakeProducerFrameEventHistory : public ProducerFrameEventHistory {
637 public:
FakeProducerFrameEventHistory(FenceToFenceTimeMap * fenceMap)638 FakeProducerFrameEventHistory(FenceToFenceTimeMap* fenceMap)
639 : mFenceMap(fenceMap) {}
640
~FakeProducerFrameEventHistory()641 ~FakeProducerFrameEventHistory() {}
642
updateAcquireFence(uint64_t frameNumber,std::shared_ptr<FenceTime> && acquire)643 void updateAcquireFence(uint64_t frameNumber,
644 std::shared_ptr<FenceTime>&& acquire) override {
645 // Verify the acquire fence being added isn't the one from the consumer.
646 EXPECT_NE(mConsumerAcquireFence, acquire);
647 // Override the fence, so we can verify this was called by the
648 // producer after the frame is queued.
649 ProducerFrameEventHistory::updateAcquireFence(frameNumber,
650 std::shared_ptr<FenceTime>(mAcquireFenceOverride));
651 }
652
setAcquireFenceOverride(const std::shared_ptr<FenceTime> & acquireFenceOverride,const std::shared_ptr<FenceTime> & consumerAcquireFence)653 void setAcquireFenceOverride(
654 const std::shared_ptr<FenceTime>& acquireFenceOverride,
655 const std::shared_ptr<FenceTime>& consumerAcquireFence) {
656 mAcquireFenceOverride = acquireFenceOverride;
657 mConsumerAcquireFence = consumerAcquireFence;
658 }
659
660 protected:
createFenceTime(const sp<Fence> & fence) const661 std::shared_ptr<FenceTime> createFenceTime(const sp<Fence>& fence)
662 const override {
663 return mFenceMap->createFenceTimeForTest(fence);
664 }
665
666 FenceToFenceTimeMap* mFenceMap{nullptr};
667
668 std::shared_ptr<FenceTime> mAcquireFenceOverride{FenceTime::NO_FENCE};
669 std::shared_ptr<FenceTime> mConsumerAcquireFence{FenceTime::NO_FENCE};
670 };
671
672
673 class TestSurface : public Surface {
674 public:
TestSurface(const sp<IGraphicBufferProducer> & bufferProducer,FenceToFenceTimeMap * fenceMap)675 TestSurface(const sp<IGraphicBufferProducer>& bufferProducer,
676 FenceToFenceTimeMap* fenceMap)
677 : Surface(bufferProducer),
678 mFakeSurfaceComposer(new FakeSurfaceComposer) {
679 mFakeFrameEventHistory = new FakeProducerFrameEventHistory(fenceMap);
680 mFrameEventHistory.reset(mFakeFrameEventHistory);
681 }
682
~TestSurface()683 ~TestSurface() override {}
684
composerService() const685 sp<ISurfaceComposer> composerService() const override {
686 return mFakeSurfaceComposer;
687 }
688
now() const689 nsecs_t now() const override {
690 return mNow;
691 }
692
setNow(nsecs_t now)693 void setNow(nsecs_t now) {
694 mNow = now;
695 }
696
697 public:
698 sp<FakeSurfaceComposer> mFakeSurfaceComposer;
699 nsecs_t mNow = 0;
700
701 // mFrameEventHistory owns the instance of FakeProducerFrameEventHistory,
702 // but this raw pointer gives access to test functionality.
703 FakeProducerFrameEventHistory* mFakeFrameEventHistory;
704 };
705
706
707 class GetFrameTimestampsTest : public ::testing::Test {
708 protected:
709 struct FenceAndFenceTime {
FenceAndFenceTimeandroid::GetFrameTimestampsTest::FenceAndFenceTime710 explicit FenceAndFenceTime(FenceToFenceTimeMap& fenceMap)
711 : mFence(new Fence),
712 mFenceTime(fenceMap.createFenceTimeForTest(mFence)) {}
713 sp<Fence> mFence { nullptr };
714 std::shared_ptr<FenceTime> mFenceTime { nullptr };
715 };
716
717 struct RefreshEvents {
RefreshEventsandroid::GetFrameTimestampsTest::RefreshEvents718 RefreshEvents(FenceToFenceTimeMap& fenceMap, nsecs_t refreshStart)
719 : mFenceMap(fenceMap),
720 kCompositorTiming(
721 {refreshStart, refreshStart + 1, refreshStart + 2 }),
722 kStartTime(refreshStart + 3),
723 kGpuCompositionDoneTime(refreshStart + 4),
724 kPresentTime(refreshStart + 5) {}
725
signalPostCompositeFencesandroid::GetFrameTimestampsTest::RefreshEvents726 void signalPostCompositeFences() {
727 mFenceMap.signalAllForTest(
728 mGpuCompositionDone.mFence, kGpuCompositionDoneTime);
729 mFenceMap.signalAllForTest(mPresent.mFence, kPresentTime);
730 }
731
732 FenceToFenceTimeMap& mFenceMap;
733
734 FenceAndFenceTime mGpuCompositionDone { mFenceMap };
735 FenceAndFenceTime mPresent { mFenceMap };
736
737 const CompositorTiming kCompositorTiming;
738
739 const nsecs_t kStartTime;
740 const nsecs_t kGpuCompositionDoneTime;
741 const nsecs_t kPresentTime;
742 };
743
744 struct FrameEvents {
FrameEventsandroid::GetFrameTimestampsTest::FrameEvents745 FrameEvents(FenceToFenceTimeMap& fenceMap, nsecs_t frameStartTime)
746 : mFenceMap(fenceMap),
747 kPostedTime(frameStartTime + 100),
748 kRequestedPresentTime(frameStartTime + 200),
749 kProducerAcquireTime(frameStartTime + 300),
750 kConsumerAcquireTime(frameStartTime + 301),
751 kLatchTime(frameStartTime + 500),
752 kDequeueReadyTime(frameStartTime + 600),
753 kReleaseTime(frameStartTime + 700),
754 mRefreshes {
755 { mFenceMap, frameStartTime + 410 },
756 { mFenceMap, frameStartTime + 420 },
757 { mFenceMap, frameStartTime + 430 } } {}
758
signalQueueFencesandroid::GetFrameTimestampsTest::FrameEvents759 void signalQueueFences() {
760 mFenceMap.signalAllForTest(
761 mAcquireConsumer.mFence, kConsumerAcquireTime);
762 mFenceMap.signalAllForTest(
763 mAcquireProducer.mFence, kProducerAcquireTime);
764 }
765
signalRefreshFencesandroid::GetFrameTimestampsTest::FrameEvents766 void signalRefreshFences() {
767 for (auto& re : mRefreshes) {
768 re.signalPostCompositeFences();
769 }
770 }
771
signalReleaseFencesandroid::GetFrameTimestampsTest::FrameEvents772 void signalReleaseFences() {
773 mFenceMap.signalAllForTest(mRelease.mFence, kReleaseTime);
774 }
775
776 FenceToFenceTimeMap& mFenceMap;
777
778 FenceAndFenceTime mAcquireConsumer { mFenceMap };
779 FenceAndFenceTime mAcquireProducer { mFenceMap };
780 FenceAndFenceTime mRelease { mFenceMap };
781
782 const nsecs_t kPostedTime;
783 const nsecs_t kRequestedPresentTime;
784 const nsecs_t kProducerAcquireTime;
785 const nsecs_t kConsumerAcquireTime;
786 const nsecs_t kLatchTime;
787 const nsecs_t kDequeueReadyTime;
788 const nsecs_t kReleaseTime;
789
790 RefreshEvents mRefreshes[3];
791 };
792
GetFrameTimestampsTest()793 GetFrameTimestampsTest() {}
794
SetUp()795 virtual void SetUp() {
796 BufferQueue::createBufferQueue(&mProducer, &mConsumer);
797 mFakeConsumer = new FakeConsumer;
798 mCfeh = &mFakeConsumer->mFrameEventHistory;
799 mConsumer->consumerConnect(mFakeConsumer, false);
800 mConsumer->setConsumerName(String8("TestConsumer"));
801 mSurface = new TestSurface(mProducer, &mFenceMap);
802 mWindow = mSurface;
803
804 ASSERT_EQ(NO_ERROR, native_window_api_connect(mWindow.get(),
805 NATIVE_WINDOW_API_CPU));
806 native_window_set_buffer_count(mWindow.get(), 4);
807 }
808
disableFrameTimestamps()809 void disableFrameTimestamps() {
810 mFakeConsumer->mGetFrameTimestampsEnabled = false;
811 native_window_enable_frame_timestamps(mWindow.get(), 0);
812 mFrameTimestampsEnabled = false;
813 }
814
enableFrameTimestamps()815 void enableFrameTimestamps() {
816 mFakeConsumer->mGetFrameTimestampsEnabled = true;
817 native_window_enable_frame_timestamps(mWindow.get(), 1);
818 mFrameTimestampsEnabled = true;
819 }
820
getAllFrameTimestamps(uint64_t frameId)821 int getAllFrameTimestamps(uint64_t frameId) {
822 return native_window_get_frame_timestamps(mWindow.get(), frameId,
823 &outRequestedPresentTime, &outAcquireTime, &outLatchTime,
824 &outFirstRefreshStartTime, &outLastRefreshStartTime,
825 &outGpuCompositionDoneTime, &outDisplayPresentTime,
826 &outDequeueReadyTime, &outReleaseTime);
827 }
828
resetTimestamps()829 void resetTimestamps() {
830 outRequestedPresentTime = -1;
831 outAcquireTime = -1;
832 outLatchTime = -1;
833 outFirstRefreshStartTime = -1;
834 outLastRefreshStartTime = -1;
835 outGpuCompositionDoneTime = -1;
836 outDisplayPresentTime = -1;
837 outDequeueReadyTime = -1;
838 outReleaseTime = -1;
839 }
840
getNextFrameId()841 uint64_t getNextFrameId() {
842 uint64_t frameId = -1;
843 int status = native_window_get_next_frame_id(mWindow.get(), &frameId);
844 EXPECT_EQ(status, NO_ERROR);
845 return frameId;
846 }
847
dequeueAndQueue(uint64_t frameIndex)848 void dequeueAndQueue(uint64_t frameIndex) {
849 int fence = -1;
850 ANativeWindowBuffer* buffer = nullptr;
851 ASSERT_EQ(NO_ERROR,
852 mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence));
853
854 int oldAddFrameTimestampsCount =
855 mFakeConsumer->mAddFrameTimestampsCount;
856
857 FrameEvents* frame = &mFrames[frameIndex];
858 uint64_t frameNumber = frameIndex + 1;
859
860 NewFrameEventsEntry fe;
861 fe.frameNumber = frameNumber;
862 fe.postedTime = frame->kPostedTime;
863 fe.requestedPresentTime = frame->kRequestedPresentTime;
864 fe.acquireFence = frame->mAcquireConsumer.mFenceTime;
865 mFakeConsumer->mNewFrameEntryOverride = fe;
866
867 mSurface->mFakeFrameEventHistory->setAcquireFenceOverride(
868 frame->mAcquireProducer.mFenceTime,
869 frame->mAcquireConsumer.mFenceTime);
870
871 ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence));
872
873 EXPECT_EQ(frameNumber, mFakeConsumer->mLastAddedFrameNumber);
874
875 EXPECT_EQ(
876 oldAddFrameTimestampsCount + (mFrameTimestampsEnabled ? 1 : 0),
877 mFakeConsumer->mAddFrameTimestampsCount);
878 }
879
addFrameEvents(bool gpuComposited,uint64_t iOldFrame,int64_t iNewFrame)880 void addFrameEvents(
881 bool gpuComposited, uint64_t iOldFrame, int64_t iNewFrame) {
882 FrameEvents* oldFrame =
883 (iOldFrame == NO_FRAME_INDEX) ? nullptr : &mFrames[iOldFrame];
884 FrameEvents* newFrame = &mFrames[iNewFrame];
885
886 uint64_t nOldFrame = (iOldFrame == NO_FRAME_INDEX) ? 0 : iOldFrame + 1;
887 uint64_t nNewFrame = iNewFrame + 1;
888
889 // Latch, Composite, and Release the frames in a plausible order.
890 // Note: The timestamps won't necessarily match the order, but
891 // that's okay for the purposes of this test.
892 std::shared_ptr<FenceTime> gpuDoneFenceTime = FenceTime::NO_FENCE;
893
894 // Composite the previous frame one more time, which helps verify
895 // LastRefresh is updated properly.
896 if (oldFrame != nullptr) {
897 mCfeh->addPreComposition(nOldFrame,
898 oldFrame->mRefreshes[2].kStartTime);
899 gpuDoneFenceTime = gpuComposited ?
900 oldFrame->mRefreshes[2].mGpuCompositionDone.mFenceTime :
901 FenceTime::NO_FENCE;
902 mCfeh->addPostComposition(nOldFrame, gpuDoneFenceTime,
903 oldFrame->mRefreshes[2].mPresent.mFenceTime,
904 oldFrame->mRefreshes[2].kCompositorTiming);
905 }
906
907 // Latch the new frame.
908 mCfeh->addLatch(nNewFrame, newFrame->kLatchTime);
909
910 mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[0].kStartTime);
911 gpuDoneFenceTime = gpuComposited ?
912 newFrame->mRefreshes[0].mGpuCompositionDone.mFenceTime :
913 FenceTime::NO_FENCE;
914 // HWC2 releases the previous buffer after a new latch just before
915 // calling postComposition.
916 if (oldFrame != nullptr) {
917 mCfeh->addRelease(nOldFrame, oldFrame->kDequeueReadyTime,
918 std::shared_ptr<FenceTime>(oldFrame->mRelease.mFenceTime));
919 }
920 mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime,
921 newFrame->mRefreshes[0].mPresent.mFenceTime,
922 newFrame->mRefreshes[0].kCompositorTiming);
923
924 mCfeh->addPreComposition(nNewFrame, newFrame->mRefreshes[1].kStartTime);
925 gpuDoneFenceTime = gpuComposited ?
926 newFrame->mRefreshes[1].mGpuCompositionDone.mFenceTime :
927 FenceTime::NO_FENCE;
928 mCfeh->addPostComposition(nNewFrame, gpuDoneFenceTime,
929 newFrame->mRefreshes[1].mPresent.mFenceTime,
930 newFrame->mRefreshes[1].kCompositorTiming);
931 }
932
933 sp<IGraphicBufferProducer> mProducer;
934 sp<IGraphicBufferConsumer> mConsumer;
935 sp<FakeConsumer> mFakeConsumer;
936 ConsumerFrameEventHistory* mCfeh;
937 sp<TestSurface> mSurface;
938 sp<ANativeWindow> mWindow;
939
940 FenceToFenceTimeMap mFenceMap;
941
942 bool mFrameTimestampsEnabled = false;
943
944 int64_t outRequestedPresentTime = -1;
945 int64_t outAcquireTime = -1;
946 int64_t outLatchTime = -1;
947 int64_t outFirstRefreshStartTime = -1;
948 int64_t outLastRefreshStartTime = -1;
949 int64_t outGpuCompositionDoneTime = -1;
950 int64_t outDisplayPresentTime = -1;
951 int64_t outDequeueReadyTime = -1;
952 int64_t outReleaseTime = -1;
953
954 FrameEvents mFrames[3] {
955 { mFenceMap, 1000 }, { mFenceMap, 2000 }, { mFenceMap, 3000 } };
956 };
957
958
959 // This test verifies that the frame timestamps are not retrieved when not
960 // explicitly enabled via native_window_enable_frame_timestamps.
961 // We want to check this to make sure there's no overhead for users
962 // that don't need the timestamp information.
TEST_F(GetFrameTimestampsTest,DefaultDisabled)963 TEST_F(GetFrameTimestampsTest, DefaultDisabled) {
964 int fence;
965 ANativeWindowBuffer* buffer;
966
967 EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
968 EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
969
970 const uint64_t fId = getNextFrameId();
971
972 // Verify the producer doesn't get frame timestamps piggybacked on dequeue.
973 ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence));
974 EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
975 EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
976
977 // Verify the producer doesn't get frame timestamps piggybacked on queue.
978 // It is okay that frame timestamps are added in the consumer since it is
979 // still needed for SurfaceFlinger dumps.
980 ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence));
981 EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount);
982 EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
983
984 // Verify attempts to get frame timestamps fail.
985 int result = getAllFrameTimestamps(fId);
986 EXPECT_EQ(INVALID_OPERATION, result);
987 EXPECT_EQ(0, mFakeConsumer->mGetFrameTimestampsCount);
988
989 // Verify compositor timing query fails.
990 nsecs_t compositeDeadline = 0;
991 nsecs_t compositeInterval = 0;
992 nsecs_t compositeToPresentLatency = 0;
993 result = native_window_get_compositor_timing(mWindow.get(),
994 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
995 EXPECT_EQ(INVALID_OPERATION, result);
996 }
997
998 // This test verifies that the frame timestamps are retrieved if explicitly
999 // enabled via native_window_enable_frame_timestamps.
TEST_F(GetFrameTimestampsTest,EnabledSimple)1000 TEST_F(GetFrameTimestampsTest, EnabledSimple) {
1001 CompositorTiming initialCompositorTiming {
1002 1000000000, // 1s deadline
1003 16666667, // 16ms interval
1004 50000000, // 50ms present latency
1005 };
1006 mCfeh->initializeCompositorTiming(initialCompositorTiming);
1007
1008 enableFrameTimestamps();
1009
1010 // Verify the compositor timing query gets the initial compositor values
1011 // after timststamps are enabled; even before the first frame is queued
1012 // or dequeued.
1013 nsecs_t compositeDeadline = 0;
1014 nsecs_t compositeInterval = 0;
1015 nsecs_t compositeToPresentLatency = 0;
1016 mSurface->setNow(initialCompositorTiming.deadline - 1);
1017 int result = native_window_get_compositor_timing(mWindow.get(),
1018 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1019 EXPECT_EQ(NO_ERROR, result);
1020 EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
1021 EXPECT_EQ(initialCompositorTiming.interval, compositeInterval);
1022 EXPECT_EQ(initialCompositorTiming.presentLatency,
1023 compositeToPresentLatency);
1024
1025 int fence;
1026 ANativeWindowBuffer* buffer;
1027
1028 EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
1029 EXPECT_EQ(1, mFakeConsumer->mGetFrameTimestampsCount);
1030
1031 const uint64_t fId1 = getNextFrameId();
1032
1033 // Verify getFrameTimestamps is piggybacked on dequeue.
1034 ASSERT_EQ(NO_ERROR, mWindow->dequeueBuffer(mWindow.get(), &buffer, &fence));
1035 EXPECT_EQ(0, mFakeConsumer->mAddFrameTimestampsCount);
1036 EXPECT_EQ(2, mFakeConsumer->mGetFrameTimestampsCount);
1037
1038 NewFrameEventsEntry f1;
1039 f1.frameNumber = 1;
1040 f1.postedTime = mFrames[0].kPostedTime;
1041 f1.requestedPresentTime = mFrames[0].kRequestedPresentTime;
1042 f1.acquireFence = mFrames[0].mAcquireConsumer.mFenceTime;
1043 mSurface->mFakeFrameEventHistory->setAcquireFenceOverride(
1044 mFrames[0].mAcquireProducer.mFenceTime,
1045 mFrames[0].mAcquireConsumer.mFenceTime);
1046 mFakeConsumer->mNewFrameEntryOverride = f1;
1047 mFrames[0].signalQueueFences();
1048
1049 // Verify getFrameTimestamps is piggybacked on queue.
1050 ASSERT_EQ(NO_ERROR, mWindow->queueBuffer(mWindow.get(), buffer, fence));
1051 EXPECT_EQ(1, mFakeConsumer->mAddFrameTimestampsCount);
1052 EXPECT_EQ(1u, mFakeConsumer->mLastAddedFrameNumber);
1053 EXPECT_EQ(3, mFakeConsumer->mGetFrameTimestampsCount);
1054
1055 // Verify queries for timestamps that the producer doesn't know about
1056 // triggers a call to see if the consumer has any new timestamps.
1057 result = getAllFrameTimestamps(fId1);
1058 EXPECT_EQ(NO_ERROR, result);
1059 EXPECT_EQ(4, mFakeConsumer->mGetFrameTimestampsCount);
1060 }
1061
TEST_F(GetFrameTimestampsTest,QueryPresentSupported)1062 TEST_F(GetFrameTimestampsTest, QueryPresentSupported) {
1063 bool displayPresentSupported = true;
1064 mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported);
1065
1066 // Verify supported bits are forwarded.
1067 int supportsPresent = -1;
1068 mWindow.get()->query(mWindow.get(),
1069 NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent);
1070 EXPECT_EQ(displayPresentSupported, supportsPresent);
1071 }
1072
TEST_F(GetFrameTimestampsTest,QueryPresentNotSupported)1073 TEST_F(GetFrameTimestampsTest, QueryPresentNotSupported) {
1074 bool displayPresentSupported = false;
1075 mSurface->mFakeSurfaceComposer->setSupportsPresent(displayPresentSupported);
1076
1077 // Verify supported bits are forwarded.
1078 int supportsPresent = -1;
1079 mWindow.get()->query(mWindow.get(),
1080 NATIVE_WINDOW_FRAME_TIMESTAMPS_SUPPORTS_PRESENT, &supportsPresent);
1081 EXPECT_EQ(displayPresentSupported, supportsPresent);
1082 }
1083
TEST_F(GetFrameTimestampsTest,SnapToNextTickBasic)1084 TEST_F(GetFrameTimestampsTest, SnapToNextTickBasic) {
1085 nsecs_t phase = 4000;
1086 nsecs_t interval = 1000;
1087
1088 // Timestamp in previous interval.
1089 nsecs_t timestamp = 3500;
1090 EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick(
1091 timestamp, phase, interval));
1092
1093 // Timestamp in next interval.
1094 timestamp = 4500;
1095 EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick(
1096 timestamp, phase, interval));
1097
1098 // Timestamp multiple intervals before.
1099 timestamp = 2500;
1100 EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick(
1101 timestamp, phase, interval));
1102
1103 // Timestamp multiple intervals after.
1104 timestamp = 6500;
1105 EXPECT_EQ(7000, ProducerFrameEventHistory::snapToNextTick(
1106 timestamp, phase, interval));
1107
1108 // Timestamp on previous interval.
1109 timestamp = 3000;
1110 EXPECT_EQ(3000, ProducerFrameEventHistory::snapToNextTick(
1111 timestamp, phase, interval));
1112
1113 // Timestamp on next interval.
1114 timestamp = 5000;
1115 EXPECT_EQ(5000, ProducerFrameEventHistory::snapToNextTick(
1116 timestamp, phase, interval));
1117
1118 // Timestamp equal to phase.
1119 timestamp = 4000;
1120 EXPECT_EQ(4000, ProducerFrameEventHistory::snapToNextTick(
1121 timestamp, phase, interval));
1122 }
1123
1124 // int(big_timestamp / interval) < 0, which can cause a crash or invalid result
1125 // if the number of intervals elapsed is internally stored in an int.
TEST_F(GetFrameTimestampsTest,SnapToNextTickOverflow)1126 TEST_F(GetFrameTimestampsTest, SnapToNextTickOverflow) {
1127 nsecs_t phase = 0;
1128 nsecs_t interval = 4000;
1129 nsecs_t big_timestamp = 8635916564000;
1130 int32_t intervals = big_timestamp / interval;
1131
1132 EXPECT_LT(intervals, 0);
1133 EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick(
1134 big_timestamp, phase, interval));
1135 EXPECT_EQ(8635916564000, ProducerFrameEventHistory::snapToNextTick(
1136 big_timestamp, big_timestamp, interval));
1137 }
1138
1139 // This verifies the compositor timing is updated by refresh events
1140 // and piggy backed on a queue, dequeue, and enabling of timestamps..
TEST_F(GetFrameTimestampsTest,CompositorTimingUpdatesBasic)1141 TEST_F(GetFrameTimestampsTest, CompositorTimingUpdatesBasic) {
1142 CompositorTiming initialCompositorTiming {
1143 1000000000, // 1s deadline
1144 16666667, // 16ms interval
1145 50000000, // 50ms present latency
1146 };
1147 mCfeh->initializeCompositorTiming(initialCompositorTiming);
1148
1149 enableFrameTimestamps();
1150
1151 // We get the initial values before any frames are submitted.
1152 nsecs_t compositeDeadline = 0;
1153 nsecs_t compositeInterval = 0;
1154 nsecs_t compositeToPresentLatency = 0;
1155 mSurface->setNow(initialCompositorTiming.deadline - 1);
1156 int result = native_window_get_compositor_timing(mWindow.get(),
1157 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1158 EXPECT_EQ(NO_ERROR, result);
1159 EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
1160 EXPECT_EQ(initialCompositorTiming.interval, compositeInterval);
1161 EXPECT_EQ(initialCompositorTiming.presentLatency,
1162 compositeToPresentLatency);
1163
1164 dequeueAndQueue(0);
1165 addFrameEvents(true, NO_FRAME_INDEX, 0);
1166
1167 // Still get the initial values because the frame events for frame 0
1168 // didn't get a chance to piggyback on a queue or dequeue yet.
1169 result = native_window_get_compositor_timing(mWindow.get(),
1170 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1171 EXPECT_EQ(NO_ERROR, result);
1172 EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
1173 EXPECT_EQ(initialCompositorTiming.interval, compositeInterval);
1174 EXPECT_EQ(initialCompositorTiming.presentLatency,
1175 compositeToPresentLatency);
1176
1177 dequeueAndQueue(1);
1178 addFrameEvents(true, 0, 1);
1179
1180 // Now expect the composite values associated with frame 1.
1181 mSurface->setNow(mFrames[0].mRefreshes[1].kCompositorTiming.deadline);
1182 result = native_window_get_compositor_timing(mWindow.get(),
1183 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1184 EXPECT_EQ(NO_ERROR, result);
1185 EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.deadline,
1186 compositeDeadline);
1187 EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.interval,
1188 compositeInterval);
1189 EXPECT_EQ(mFrames[0].mRefreshes[1].kCompositorTiming.presentLatency,
1190 compositeToPresentLatency);
1191
1192 dequeueAndQueue(2);
1193 addFrameEvents(true, 1, 2);
1194
1195 // Now expect the composite values associated with frame 2.
1196 mSurface->setNow(mFrames[1].mRefreshes[1].kCompositorTiming.deadline);
1197 result = native_window_get_compositor_timing(mWindow.get(),
1198 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1199 EXPECT_EQ(NO_ERROR, result);
1200 EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.deadline,
1201 compositeDeadline);
1202 EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.interval,
1203 compositeInterval);
1204 EXPECT_EQ(mFrames[1].mRefreshes[1].kCompositorTiming.presentLatency,
1205 compositeToPresentLatency);
1206
1207 // Re-enabling frame timestamps should get the latest values.
1208 disableFrameTimestamps();
1209 enableFrameTimestamps();
1210
1211 // Now expect the composite values associated with frame 3.
1212 mSurface->setNow(mFrames[2].mRefreshes[1].kCompositorTiming.deadline);
1213 result = native_window_get_compositor_timing(mWindow.get(),
1214 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1215 EXPECT_EQ(NO_ERROR, result);
1216 EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.deadline,
1217 compositeDeadline);
1218 EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.interval,
1219 compositeInterval);
1220 EXPECT_EQ(mFrames[2].mRefreshes[1].kCompositorTiming.presentLatency,
1221 compositeToPresentLatency);
1222 }
1223
1224 // This verifies the compositor deadline properly snaps to the the next
1225 // deadline based on the current time.
TEST_F(GetFrameTimestampsTest,CompositorTimingDeadlineSnaps)1226 TEST_F(GetFrameTimestampsTest, CompositorTimingDeadlineSnaps) {
1227 CompositorTiming initialCompositorTiming {
1228 1000000000, // 1s deadline
1229 16666667, // 16ms interval
1230 50000000, // 50ms present latency
1231 };
1232 mCfeh->initializeCompositorTiming(initialCompositorTiming);
1233
1234 enableFrameTimestamps();
1235
1236 nsecs_t compositeDeadline = 0;
1237 nsecs_t compositeInterval = 0;
1238 nsecs_t compositeToPresentLatency = 0;
1239
1240 // A "now" just before the deadline snaps to the deadline.
1241 mSurface->setNow(initialCompositorTiming.deadline - 1);
1242 int result = native_window_get_compositor_timing(mWindow.get(),
1243 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1244 EXPECT_EQ(NO_ERROR, result);
1245 EXPECT_EQ(initialCompositorTiming.deadline, compositeDeadline);
1246 nsecs_t expectedDeadline = initialCompositorTiming.deadline;
1247 EXPECT_EQ(expectedDeadline, compositeDeadline);
1248
1249 dequeueAndQueue(0);
1250 addFrameEvents(true, NO_FRAME_INDEX, 0);
1251
1252 // A "now" just after the deadline snaps properly.
1253 mSurface->setNow(initialCompositorTiming.deadline + 1);
1254 result = native_window_get_compositor_timing(mWindow.get(),
1255 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1256 EXPECT_EQ(NO_ERROR, result);
1257 expectedDeadline =
1258 initialCompositorTiming.deadline +initialCompositorTiming.interval;
1259 EXPECT_EQ(expectedDeadline, compositeDeadline);
1260
1261 dequeueAndQueue(1);
1262 addFrameEvents(true, 0, 1);
1263
1264 // A "now" just after the next interval snaps properly.
1265 mSurface->setNow(
1266 mFrames[0].mRefreshes[1].kCompositorTiming.deadline +
1267 mFrames[0].mRefreshes[1].kCompositorTiming.interval + 1);
1268 result = native_window_get_compositor_timing(mWindow.get(),
1269 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1270 EXPECT_EQ(NO_ERROR, result);
1271 expectedDeadline =
1272 mFrames[0].mRefreshes[1].kCompositorTiming.deadline +
1273 mFrames[0].mRefreshes[1].kCompositorTiming.interval * 2;
1274 EXPECT_EQ(expectedDeadline, compositeDeadline);
1275
1276 dequeueAndQueue(2);
1277 addFrameEvents(true, 1, 2);
1278
1279 // A "now" over 1 interval before the deadline snaps properly.
1280 mSurface->setNow(
1281 mFrames[1].mRefreshes[1].kCompositorTiming.deadline -
1282 mFrames[1].mRefreshes[1].kCompositorTiming.interval - 1);
1283 result = native_window_get_compositor_timing(mWindow.get(),
1284 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1285 EXPECT_EQ(NO_ERROR, result);
1286 expectedDeadline =
1287 mFrames[1].mRefreshes[1].kCompositorTiming.deadline -
1288 mFrames[1].mRefreshes[1].kCompositorTiming.interval;
1289 EXPECT_EQ(expectedDeadline, compositeDeadline);
1290
1291 // Re-enabling frame timestamps should get the latest values.
1292 disableFrameTimestamps();
1293 enableFrameTimestamps();
1294
1295 // A "now" over 2 intervals before the deadline snaps properly.
1296 mSurface->setNow(
1297 mFrames[2].mRefreshes[1].kCompositorTiming.deadline -
1298 mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2 - 1);
1299 result = native_window_get_compositor_timing(mWindow.get(),
1300 &compositeDeadline, &compositeInterval, &compositeToPresentLatency);
1301 EXPECT_EQ(NO_ERROR, result);
1302 expectedDeadline =
1303 mFrames[2].mRefreshes[1].kCompositorTiming.deadline -
1304 mFrames[2].mRefreshes[1].kCompositorTiming.interval * 2;
1305 EXPECT_EQ(expectedDeadline, compositeDeadline);
1306 }
1307
1308 // This verifies the timestamps recorded in the consumer's
1309 // FrameTimestampsHistory are properly retrieved by the producer for the
1310 // correct frames.
TEST_F(GetFrameTimestampsTest,TimestampsAssociatedWithCorrectFrame)1311 TEST_F(GetFrameTimestampsTest, TimestampsAssociatedWithCorrectFrame) {
1312 enableFrameTimestamps();
1313
1314 const uint64_t fId1 = getNextFrameId();
1315 dequeueAndQueue(0);
1316 mFrames[0].signalQueueFences();
1317
1318 const uint64_t fId2 = getNextFrameId();
1319 dequeueAndQueue(1);
1320 mFrames[1].signalQueueFences();
1321
1322 addFrameEvents(true, NO_FRAME_INDEX, 0);
1323 mFrames[0].signalRefreshFences();
1324 addFrameEvents(true, 0, 1);
1325 mFrames[0].signalReleaseFences();
1326 mFrames[1].signalRefreshFences();
1327
1328 // Verify timestamps are correct for frame 1.
1329 resetTimestamps();
1330 int result = getAllFrameTimestamps(fId1);
1331 EXPECT_EQ(NO_ERROR, result);
1332 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1333 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1334 EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
1335 EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1336 EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
1337 EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime,
1338 outGpuCompositionDoneTime);
1339 EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime);
1340 EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
1341 EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime);
1342
1343 // Verify timestamps are correct for frame 2.
1344 resetTimestamps();
1345 result = getAllFrameTimestamps(fId2);
1346 EXPECT_EQ(NO_ERROR, result);
1347 EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
1348 EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime);
1349 EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime);
1350 EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1351 EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime);
1352 EXPECT_EQ(mFrames[1].mRefreshes[0].kGpuCompositionDoneTime,
1353 outGpuCompositionDoneTime);
1354 EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime);
1355 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime);
1356 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
1357 }
1358
1359 // This test verifies the acquire fence recorded by the consumer is not sent
1360 // back to the producer and the producer saves its own fence.
TEST_F(GetFrameTimestampsTest,QueueTimestampsNoSync)1361 TEST_F(GetFrameTimestampsTest, QueueTimestampsNoSync) {
1362 enableFrameTimestamps();
1363
1364 // Dequeue and queue frame 1.
1365 const uint64_t fId1 = getNextFrameId();
1366 dequeueAndQueue(0);
1367
1368 // Verify queue-related timestamps for f1 are available immediately in the
1369 // producer without asking the consumer again, even before signaling the
1370 // acquire fence.
1371 resetTimestamps();
1372 int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1373 int result = native_window_get_frame_timestamps(mWindow.get(), fId1,
1374 &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
1375 nullptr, nullptr, nullptr, nullptr, nullptr);
1376 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1377 EXPECT_EQ(NO_ERROR, result);
1378 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1379 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime);
1380
1381 // Signal acquire fences. Verify a sync call still isn't necessary.
1382 mFrames[0].signalQueueFences();
1383
1384 oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1385 result = native_window_get_frame_timestamps(mWindow.get(), fId1,
1386 &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
1387 nullptr, nullptr, nullptr, nullptr, nullptr);
1388 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1389 EXPECT_EQ(NO_ERROR, result);
1390 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1391 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1392
1393 // Dequeue and queue frame 2.
1394 const uint64_t fId2 = getNextFrameId();
1395 dequeueAndQueue(1);
1396
1397 // Verify queue-related timestamps for f2 are available immediately in the
1398 // producer without asking the consumer again, even before signaling the
1399 // acquire fence.
1400 resetTimestamps();
1401 oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1402 result = native_window_get_frame_timestamps(mWindow.get(), fId2,
1403 &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
1404 nullptr, nullptr, nullptr, nullptr, nullptr);
1405 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1406 EXPECT_EQ(NO_ERROR, result);
1407 EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
1408 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outAcquireTime);
1409
1410 // Signal acquire fences. Verify a sync call still isn't necessary.
1411 mFrames[1].signalQueueFences();
1412
1413 oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1414 result = native_window_get_frame_timestamps(mWindow.get(), fId2,
1415 &outRequestedPresentTime, &outAcquireTime, nullptr, nullptr,
1416 nullptr, nullptr, nullptr, nullptr, nullptr);
1417 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1418 EXPECT_EQ(NO_ERROR, result);
1419 EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
1420 EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime);
1421 }
1422
TEST_F(GetFrameTimestampsTest,ZeroRequestedTimestampsNoSync)1423 TEST_F(GetFrameTimestampsTest, ZeroRequestedTimestampsNoSync) {
1424 enableFrameTimestamps();
1425
1426 // Dequeue and queue frame 1.
1427 dequeueAndQueue(0);
1428 mFrames[0].signalQueueFences();
1429
1430 // Dequeue and queue frame 2.
1431 const uint64_t fId2 = getNextFrameId();
1432 dequeueAndQueue(1);
1433 mFrames[1].signalQueueFences();
1434
1435 addFrameEvents(true, NO_FRAME_INDEX, 0);
1436 mFrames[0].signalRefreshFences();
1437 addFrameEvents(true, 0, 1);
1438 mFrames[0].signalReleaseFences();
1439 mFrames[1].signalRefreshFences();
1440
1441 // Verify a request for no timestamps doesn't result in a sync call.
1442 int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1443 int result = native_window_get_frame_timestamps(mWindow.get(), fId2,
1444 nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
1445 nullptr, nullptr);
1446 EXPECT_EQ(NO_ERROR, result);
1447 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1448 }
1449
1450 // This test verifies that fences can signal and update timestamps producer
1451 // side without an additional sync call to the consumer.
TEST_F(GetFrameTimestampsTest,FencesInProducerNoSync)1452 TEST_F(GetFrameTimestampsTest, FencesInProducerNoSync) {
1453 enableFrameTimestamps();
1454
1455 // Dequeue and queue frame 1.
1456 const uint64_t fId1 = getNextFrameId();
1457 dequeueAndQueue(0);
1458 mFrames[0].signalQueueFences();
1459
1460 // Dequeue and queue frame 2.
1461 dequeueAndQueue(1);
1462 mFrames[1].signalQueueFences();
1463
1464 addFrameEvents(true, NO_FRAME_INDEX, 0);
1465 addFrameEvents(true, 0, 1);
1466
1467 // Verify available timestamps are correct for frame 1, before any
1468 // fence has been signaled.
1469 // Note: A sync call is necessary here since the events triggered by
1470 // addFrameEvents didn't get to piggyback on the earlier queues/dequeues.
1471 resetTimestamps();
1472 int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1473 int result = getAllFrameTimestamps(fId1);
1474 EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount);
1475 EXPECT_EQ(NO_ERROR, result);
1476 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1477 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1478 EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
1479 EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1480 EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
1481 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime);
1482 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
1483 EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
1484 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
1485
1486 // Verify available timestamps are correct for frame 1 again, before any
1487 // fence has been signaled.
1488 // This time a sync call should not be necessary.
1489 resetTimestamps();
1490 oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1491 result = getAllFrameTimestamps(fId1);
1492 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1493 EXPECT_EQ(NO_ERROR, result);
1494 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1495 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1496 EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
1497 EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1498 EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
1499 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outGpuCompositionDoneTime);
1500 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
1501 EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
1502 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
1503
1504 // Signal the fences for frame 1.
1505 mFrames[0].signalRefreshFences();
1506 mFrames[0].signalReleaseFences();
1507
1508 // Verify all timestamps are available without a sync call.
1509 resetTimestamps();
1510 oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1511 result = getAllFrameTimestamps(fId1);
1512 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1513 EXPECT_EQ(NO_ERROR, result);
1514 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1515 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1516 EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
1517 EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1518 EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
1519 EXPECT_EQ(mFrames[0].mRefreshes[0].kGpuCompositionDoneTime,
1520 outGpuCompositionDoneTime);
1521 EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime);
1522 EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
1523 EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime);
1524 }
1525
1526 // This test verifies that if the frame wasn't GPU composited but has a refresh
1527 // event a sync call isn't made to get the GPU composite done time since it will
1528 // never exist.
TEST_F(GetFrameTimestampsTest,NoGpuNoSync)1529 TEST_F(GetFrameTimestampsTest, NoGpuNoSync) {
1530 enableFrameTimestamps();
1531
1532 // Dequeue and queue frame 1.
1533 const uint64_t fId1 = getNextFrameId();
1534 dequeueAndQueue(0);
1535 mFrames[0].signalQueueFences();
1536
1537 // Dequeue and queue frame 2.
1538 dequeueAndQueue(1);
1539 mFrames[1].signalQueueFences();
1540
1541 addFrameEvents(false, NO_FRAME_INDEX, 0);
1542 addFrameEvents(false, 0, 1);
1543
1544 // Verify available timestamps are correct for frame 1, before any
1545 // fence has been signaled.
1546 // Note: A sync call is necessary here since the events triggered by
1547 // addFrameEvents didn't get to piggyback on the earlier queues/dequeues.
1548 resetTimestamps();
1549 int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1550 int result = getAllFrameTimestamps(fId1);
1551 EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount);
1552 EXPECT_EQ(NO_ERROR, result);
1553 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1554 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1555 EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
1556 EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1557 EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
1558 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
1559 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
1560 EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
1561 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
1562
1563 // Signal the fences for frame 1.
1564 mFrames[0].signalRefreshFences();
1565 mFrames[0].signalReleaseFences();
1566
1567 // Verify all timestamps, except GPU composition, are available without a
1568 // sync call.
1569 resetTimestamps();
1570 oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1571 result = getAllFrameTimestamps(fId1);
1572 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1573 EXPECT_EQ(NO_ERROR, result);
1574 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1575 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1576 EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
1577 EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1578 EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
1579 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
1580 EXPECT_EQ(mFrames[0].mRefreshes[0].kPresentTime, outDisplayPresentTime);
1581 EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
1582 EXPECT_EQ(mFrames[0].kReleaseTime, outReleaseTime);
1583 }
1584
1585 // This test verifies that if the certain timestamps can't possibly exist for
1586 // the most recent frame, then a sync call is not done.
TEST_F(GetFrameTimestampsTest,NoReleaseNoSync)1587 TEST_F(GetFrameTimestampsTest, NoReleaseNoSync) {
1588 enableFrameTimestamps();
1589
1590 // Dequeue and queue frame 1.
1591 const uint64_t fId1 = getNextFrameId();
1592 dequeueAndQueue(0);
1593 mFrames[0].signalQueueFences();
1594
1595 // Dequeue and queue frame 2.
1596 const uint64_t fId2 = getNextFrameId();
1597 dequeueAndQueue(1);
1598 mFrames[1].signalQueueFences();
1599
1600 addFrameEvents(false, NO_FRAME_INDEX, 0);
1601 addFrameEvents(false, 0, 1);
1602
1603 // Verify available timestamps are correct for frame 1, before any
1604 // fence has been signaled.
1605 // Note: A sync call is necessary here since the events triggered by
1606 // addFrameEvents didn't get to piggyback on the earlier queues/dequeues.
1607 resetTimestamps();
1608 int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1609 int result = getAllFrameTimestamps(fId1);
1610 EXPECT_EQ(oldCount + 1, mFakeConsumer->mGetFrameTimestampsCount);
1611 EXPECT_EQ(NO_ERROR, result);
1612 EXPECT_EQ(mFrames[0].kRequestedPresentTime, outRequestedPresentTime);
1613 EXPECT_EQ(mFrames[0].kProducerAcquireTime, outAcquireTime);
1614 EXPECT_EQ(mFrames[0].kLatchTime, outLatchTime);
1615 EXPECT_EQ(mFrames[0].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1616 EXPECT_EQ(mFrames[0].mRefreshes[2].kStartTime, outLastRefreshStartTime);
1617 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
1618 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDisplayPresentTime);
1619 EXPECT_EQ(mFrames[0].kDequeueReadyTime, outDequeueReadyTime);
1620 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
1621
1622 mFrames[0].signalRefreshFences();
1623 mFrames[0].signalReleaseFences();
1624 mFrames[1].signalRefreshFences();
1625
1626 // Verify querying for all timestmaps of f2 does not do a sync call. Even
1627 // though the lastRefresh, dequeueReady, and release times aren't
1628 // available, a sync call should not occur because it's not possible for f2
1629 // to encounter the final value for those events until another frame is
1630 // queued.
1631 resetTimestamps();
1632 oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1633 result = getAllFrameTimestamps(fId2);
1634 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1635 EXPECT_EQ(NO_ERROR, result);
1636 EXPECT_EQ(mFrames[1].kRequestedPresentTime, outRequestedPresentTime);
1637 EXPECT_EQ(mFrames[1].kProducerAcquireTime, outAcquireTime);
1638 EXPECT_EQ(mFrames[1].kLatchTime, outLatchTime);
1639 EXPECT_EQ(mFrames[1].mRefreshes[0].kStartTime, outFirstRefreshStartTime);
1640 EXPECT_EQ(mFrames[1].mRefreshes[1].kStartTime, outLastRefreshStartTime);
1641 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_INVALID, outGpuCompositionDoneTime);
1642 EXPECT_EQ(mFrames[1].mRefreshes[0].kPresentTime, outDisplayPresentTime);
1643 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outDequeueReadyTime);
1644 EXPECT_EQ(NATIVE_WINDOW_TIMESTAMP_PENDING, outReleaseTime);
1645 }
1646
1647 // This test verifies there are no sync calls for present times
1648 // when they aren't supported and that an error is returned.
1649
TEST_F(GetFrameTimestampsTest,PresentUnsupportedNoSync)1650 TEST_F(GetFrameTimestampsTest, PresentUnsupportedNoSync) {
1651 enableFrameTimestamps();
1652 mSurface->mFakeSurfaceComposer->setSupportsPresent(false);
1653
1654 // Dequeue and queue frame 1.
1655 const uint64_t fId1 = getNextFrameId();
1656 dequeueAndQueue(0);
1657
1658 // Verify a query for the Present times do not trigger a sync call if they
1659 // are not supported.
1660 resetTimestamps();
1661 int oldCount = mFakeConsumer->mGetFrameTimestampsCount;
1662 int result = native_window_get_frame_timestamps(mWindow.get(), fId1,
1663 nullptr, nullptr, nullptr, nullptr, nullptr, nullptr,
1664 &outDisplayPresentTime, nullptr, nullptr);
1665 EXPECT_EQ(oldCount, mFakeConsumer->mGetFrameTimestampsCount);
1666 EXPECT_EQ(BAD_VALUE, result);
1667 EXPECT_EQ(-1, outDisplayPresentTime);
1668 }
1669
1670 } // namespace android
1671