• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *   http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.android.calculator2;
18 
19 import com.hp.creals.CR;
20 
21 import java.math.BigInteger;
22 import java.util.Objects;
23 import java.util.Random;
24 
25 /**
26  * Rational numbers that may turn to null if they get too big.
27  * For many operations, if the length of the nuumerator plus the length of the denominator exceeds
28  * a maximum size, we simply return null, and rely on our caller do something else.
29  * We currently never return null for a pure integer or for a BoundedRational that has just been
30  * constructed.
31  *
32  * We also implement a number of irrational functions.  These return a non-null result only when
33  * the result is known to be rational.
34  */
35 public class BoundedRational {
36     // TODO: Consider returning null for integers.  With some care, large factorials might become
37     // much faster.
38     // TODO: Maybe eventually make this extend Number?
39 
40     private static final int MAX_SIZE = 10000; // total, in bits
41 
42     private final BigInteger mNum;
43     private final BigInteger mDen;
44 
BoundedRational(BigInteger n, BigInteger d)45     public BoundedRational(BigInteger n, BigInteger d) {
46         mNum = n;
47         mDen = d;
48     }
49 
BoundedRational(BigInteger n)50     public BoundedRational(BigInteger n) {
51         mNum = n;
52         mDen = BigInteger.ONE;
53     }
54 
BoundedRational(long n, long d)55     public BoundedRational(long n, long d) {
56         mNum = BigInteger.valueOf(n);
57         mDen = BigInteger.valueOf(d);
58     }
59 
BoundedRational(long n)60     public BoundedRational(long n) {
61         mNum = BigInteger.valueOf(n);
62         mDen = BigInteger.valueOf(1);
63     }
64 
65     /**
66      * Produce BoundedRational equal to the given double.
67      */
valueOf(double x)68     public static BoundedRational valueOf(double x) {
69         final long l = Math.round(x);
70         if ((double) l == x && Math.abs(l) <= 1000) {
71             return valueOf(l);
72         }
73         final long allBits = Double.doubleToRawLongBits(Math.abs(x));
74         long mantissa = (allBits & ((1L << 52) - 1));
75         final int biased_exp = (int)(allBits >>> 52);
76         if ((biased_exp & 0x7ff) == 0x7ff) {
77             throw new ArithmeticException("Infinity or NaN not convertible to BoundedRational");
78         }
79         final long sign = x < 0.0 ? -1 : 1;
80         int exp = biased_exp - 1075;  // 1023 + 52; we treat mantissa as integer.
81         if (biased_exp == 0) {
82             exp += 1;  // Denormal exponent is 1 greater.
83         } else {
84             mantissa += (1L << 52);  // Implied leading one.
85         }
86         BigInteger num = BigInteger.valueOf(sign * mantissa);
87         BigInteger den = BigInteger.ONE;
88         if (exp >= 0) {
89             num = num.shiftLeft(exp);
90         } else {
91             den = den.shiftLeft(-exp);
92         }
93         return new BoundedRational(num, den);
94     }
95 
96     /**
97      * Produce BoundedRational equal to the given long.
98      */
99     public static BoundedRational valueOf(long x) {
100         if (x >= -2 && x <= 10) {
101             switch((int) x) {
102               case -2:
103                 return MINUS_TWO;
104               case -1:
105                 return MINUS_ONE;
106               case 0:
107                 return ZERO;
108               case 1:
109                 return ONE;
110               case 2:
111                 return TWO;
112               case 10:
113                 return TEN;
114             }
115         }
116         return new BoundedRational(x);
117     }
118 
119     /**
120      * Convert to String reflecting raw representation.
121      * Debug or log messages only, not pretty.
122      */
123     public String toString() {
124         return mNum.toString() + "/" + mDen.toString();
125     }
126 
127     /**
128      * Convert to readable String.
129      * Intended for output to user.  More expensive, less useful for debugging than
130      * toString().  Not internationalized.
131      */
132     public String toNiceString() {
133         final BoundedRational nicer = reduce().positiveDen();
134         String result = nicer.mNum.toString();
135         if (!nicer.mDen.equals(BigInteger.ONE)) {
136             result += "/" + nicer.mDen;
137         }
138         return result;
139     }
140 
141     public static String toString(BoundedRational r) {
142         if (r == null) {
143             return "not a small rational";
144         }
145         return r.toString();
146     }
147 
148     /**
149      * Returns a truncated (rounded towards 0) representation of the result.
150      * Includes n digits to the right of the decimal point.
151      * @param n result precision, >= 0
152      */
153     public String toStringTruncated(int n) {
154         String digits = mNum.abs().multiply(BigInteger.TEN.pow(n)).divide(mDen.abs()).toString();
155         int len = digits.length();
156         if (len < n + 1) {
157             digits = StringUtils.repeat('0', n + 1 - len) + digits;
158             len = n + 1;
159         }
160         return (signum() < 0 ? "-" : "") + digits.substring(0, len - n) + "."
161                 + digits.substring(len - n);
162     }
163 
164     /**
165      * Return a double approximation.
166      * The result is correctly rounded to nearest, with ties rounded away from zero.
167      * TODO: Should round ties to even.
168      */
169     public double doubleValue() {
170         final int sign = signum();
171         if (sign < 0) {
172             return -BoundedRational.negate(this).doubleValue();
173         }
174         // We get the mantissa by dividing the numerator by denominator, after
175         // suitably prescaling them so that the integral part of the result contains
176         // enough bits. We do the prescaling to avoid any precision loss, so the division result
177         // is correctly truncated towards zero.
178         final int apprExp = mNum.bitLength() - mDen.bitLength();
179         if (apprExp < -1100 || sign == 0) {
180             // Bail fast for clearly zero result.
181             return 0.0;
182         }
183         final int neededPrec = apprExp - 80;
184         final BigInteger dividend = neededPrec < 0 ? mNum.shiftLeft(-neededPrec) : mNum;
185         final BigInteger divisor = neededPrec > 0 ? mDen.shiftLeft(neededPrec) : mDen;
186         final BigInteger quotient = dividend.divide(divisor);
187         final int qLength = quotient.bitLength();
188         int extraBits = qLength - 53;
189         int exponent = neededPrec + qLength;  // Exponent assuming leading binary point.
190         if (exponent >= -1021) {
191             // Binary point is actually to right of leading bit.
192             --exponent;
193         } else {
194             // We're in the gradual underflow range. Drop more bits.
195             extraBits += (-1022 - exponent) + 1;
196             exponent = -1023;
197         }
198         final BigInteger bigMantissa =
199                 quotient.add(BigInteger.ONE.shiftLeft(extraBits - 1)).shiftRight(extraBits);
200         if (exponent > 1024) {
201             return Double.POSITIVE_INFINITY;
202         }
203         if (exponent > -1023 && bigMantissa.bitLength() != 53
204                 || exponent <= -1023 && bigMantissa.bitLength() >= 53) {
205             throw new AssertionError("doubleValue internal error");
206         }
207         final long mantissa = bigMantissa.longValue();
208         final long bits = (mantissa & ((1l << 52) - 1)) | (((long) exponent + 1023) << 52);
209         return Double.longBitsToDouble(bits);
210     }
211 
212     public CR crValue() {
213         return CR.valueOf(mNum).divide(CR.valueOf(mDen));
214     }
215 
216     public int intValue() {
217         BoundedRational reduced = reduce();
218         if (!reduced.mDen.equals(BigInteger.ONE)) {
219             throw new ArithmeticException("intValue of non-int");
220         }
221         return reduced.mNum.intValue();
222     }
223 
224     // Approximate number of bits to left of binary point.
225     // Negative indicates leading zeroes to the right of binary point.
226     public int wholeNumberBits() {
227         if (mNum.signum() == 0) {
228             return Integer.MIN_VALUE;
229         } else {
230             return mNum.bitLength() - mDen.bitLength();
231         }
232     }
233 
234     /**
235      * Is this number too big for us to continue with rational arithmetic?
236      * We return fals for integers on the assumption that we have no better fallback.
237      */
238     private boolean tooBig() {
239         if (mDen.equals(BigInteger.ONE)) {
240             return false;
241         }
242         return (mNum.bitLength() + mDen.bitLength() > MAX_SIZE);
243     }
244 
245     /**
246      * Return an equivalent fraction with a positive denominator.
247      */
248     private BoundedRational positiveDen() {
249         if (mDen.signum() > 0) {
250             return this;
251         }
252         return new BoundedRational(mNum.negate(), mDen.negate());
253     }
254 
255     /**
256      * Return an equivalent fraction in lowest terms.
257      * Denominator sign may remain negative.
258      */
259     private BoundedRational reduce() {
260         if (mDen.equals(BigInteger.ONE)) {
261             return this;  // Optimization only
262         }
263         final BigInteger divisor = mNum.gcd(mDen);
264         return new BoundedRational(mNum.divide(divisor), mDen.divide(divisor));
265     }
266 
267     static Random sReduceRng = new Random();
268 
269     /**
270      * Return a possibly reduced version of r that's not tooBig().
271      * Return null if none exists.
272      */
273     private static BoundedRational maybeReduce(BoundedRational r) {
274         if (r == null) return null;
275         // Reduce randomly, with 1/16 probability, or if the result is too big.
276         if (!r.tooBig() && (sReduceRng.nextInt() & 0xf) != 0) {
277             return r;
278         }
279         BoundedRational result = r.positiveDen();
280         result = result.reduce();
281         if (!result.tooBig()) {
282             return result;
283         }
284         return null;
285     }
286 
287     public int compareTo(BoundedRational r) {
288         // Compare by multiplying both sides by denominators, invert result if denominator product
289         // was negative.
290         return mNum.multiply(r.mDen).compareTo(r.mNum.multiply(mDen)) * mDen.signum()
291                 * r.mDen.signum();
292     }
293 
294     public int signum() {
295         return mNum.signum() * mDen.signum();
296     }
297 
298     @Override
299     public int hashCode() {
300         // Note that this may be too expensive to be useful.
301         BoundedRational reduced = reduce().positiveDen();
302         return Objects.hash(reduced.mNum, reduced.mDen);
303     }
304 
305     @Override
306     public boolean equals(Object r) {
307         return r != null && r instanceof BoundedRational && compareTo((BoundedRational) r) == 0;
308     }
309 
310     // We use static methods for arithmetic, so that we can easily handle the null case.  We try
311     // to catch domain errors whenever possible, sometimes even when one of the arguments is null,
312     // but not relevant.
313 
314     /**
315      * Returns equivalent BigInteger result if it exists, null if not.
316      */
317     public static BigInteger asBigInteger(BoundedRational r) {
318         if (r == null) {
319             return null;
320         }
321         final BigInteger[] quotAndRem = r.mNum.divideAndRemainder(r.mDen);
322         if (quotAndRem[1].signum() == 0) {
323             return quotAndRem[0];
324         } else {
325             return null;
326         }
327     }
328     public static BoundedRational add(BoundedRational r1, BoundedRational r2) {
329         if (r1 == null || r2 == null) {
330             return null;
331         }
332         final BigInteger den = r1.mDen.multiply(r2.mDen);
333         final BigInteger num = r1.mNum.multiply(r2.mDen).add(r2.mNum.multiply(r1.mDen));
334         return maybeReduce(new BoundedRational(num,den));
335     }
336 
337     /**
338      * Return the argument, but with the opposite sign.
339      * Returns null only for a null argument.
340      */
341     public static BoundedRational negate(BoundedRational r) {
342         if (r == null) {
343             return null;
344         }
345         return new BoundedRational(r.mNum.negate(), r.mDen);
346     }
347 
348     public static BoundedRational subtract(BoundedRational r1, BoundedRational r2) {
349         return add(r1, negate(r2));
350     }
351 
352     /**
353      * Return product of r1 and r2 without reducing the result.
354      */
355     private static BoundedRational rawMultiply(BoundedRational r1, BoundedRational r2) {
356         // It's tempting but marginally unsound to reduce 0 * null to 0.  The null could represent
357         // an infinite value, for which we failed to throw an exception because it was too big.
358         if (r1 == null || r2 == null) {
359             return null;
360         }
361         // Optimize the case of our special ONE constant, since that's cheap and somewhat frequent.
362         if (r1 == ONE) {
363             return r2;
364         }
365         if (r2 == ONE) {
366             return r1;
367         }
368         final BigInteger num = r1.mNum.multiply(r2.mNum);
369         final BigInteger den = r1.mDen.multiply(r2.mDen);
370         return new BoundedRational(num,den);
371     }
372 
373     public static BoundedRational multiply(BoundedRational r1, BoundedRational r2) {
374         return maybeReduce(rawMultiply(r1, r2));
375     }
376 
377     public static class ZeroDivisionException extends ArithmeticException {
378         public ZeroDivisionException() {
379             super("Division by zero");
380         }
381     }
382 
383     /**
384      * Return the reciprocal of r (or null if the argument was null).
385      */
386     public static BoundedRational inverse(BoundedRational r) {
387         if (r == null) {
388             return null;
389         }
390         if (r.mNum.signum() == 0) {
391             throw new ZeroDivisionException();
392         }
393         return new BoundedRational(r.mDen, r.mNum);
394     }
395 
396     public static BoundedRational divide(BoundedRational r1, BoundedRational r2) {
397         return multiply(r1, inverse(r2));
398     }
399 
400     public static BoundedRational sqrt(BoundedRational r) {
401         // Return non-null if numerator and denominator are small perfect squares.
402         if (r == null) {
403             return null;
404         }
405         r = r.positiveDen().reduce();
406         if (r.mNum.signum() < 0) {
407             throw new ArithmeticException("sqrt(negative)");
408         }
409         final BigInteger num_sqrt = BigInteger.valueOf(Math.round(Math.sqrt(r.mNum.doubleValue())));
410         if (!num_sqrt.multiply(num_sqrt).equals(r.mNum)) {
411             return null;
412         }
413         final BigInteger den_sqrt = BigInteger.valueOf(Math.round(Math.sqrt(r.mDen.doubleValue())));
414         if (!den_sqrt.multiply(den_sqrt).equals(r.mDen)) {
415             return null;
416         }
417         return new BoundedRational(num_sqrt, den_sqrt);
418     }
419 
420     public final static BoundedRational ZERO = new BoundedRational(0);
421     public final static BoundedRational HALF = new BoundedRational(1,2);
422     public final static BoundedRational MINUS_HALF = new BoundedRational(-1,2);
423     public final static BoundedRational THIRD = new BoundedRational(1,3);
424     public final static BoundedRational QUARTER = new BoundedRational(1,4);
425     public final static BoundedRational SIXTH = new BoundedRational(1,6);
426     public final static BoundedRational ONE = new BoundedRational(1);
427     public final static BoundedRational MINUS_ONE = new BoundedRational(-1);
428     public final static BoundedRational TWO = new BoundedRational(2);
429     public final static BoundedRational MINUS_TWO = new BoundedRational(-2);
430     public final static BoundedRational TEN = new BoundedRational(10);
431     public final static BoundedRational TWELVE = new BoundedRational(12);
432     public final static BoundedRational THIRTY = new BoundedRational(30);
433     public final static BoundedRational MINUS_THIRTY = new BoundedRational(-30);
434     public final static BoundedRational FORTY_FIVE = new BoundedRational(45);
435     public final static BoundedRational MINUS_FORTY_FIVE = new BoundedRational(-45);
436     public final static BoundedRational NINETY = new BoundedRational(90);
437     public final static BoundedRational MINUS_NINETY = new BoundedRational(-90);
438 
439     private static final BigInteger BIG_TWO = BigInteger.valueOf(2);
440     private static final BigInteger BIG_MINUS_ONE = BigInteger.valueOf(-1);
441 
442     /**
443      * Compute integral power of this, assuming this has been reduced and exp is >= 0.
444      */
445     private BoundedRational rawPow(BigInteger exp) {
446         if (exp.equals(BigInteger.ONE)) {
447             return this;
448         }
449         if (exp.and(BigInteger.ONE).intValue() == 1) {
450             return rawMultiply(rawPow(exp.subtract(BigInteger.ONE)), this);
451         }
452         if (exp.signum() == 0) {
453             return ONE;
454         }
455         BoundedRational tmp = rawPow(exp.shiftRight(1));
456         if (Thread.interrupted()) {
457             throw new CR.AbortedException();
458         }
459         BoundedRational result = rawMultiply(tmp, tmp);
460         if (result == null || result.tooBig()) {
461             return null;
462         }
463         return result;
464     }
465 
466     /**
467      * Compute an integral power of this.
468      */
469     public BoundedRational pow(BigInteger exp) {
470         int expSign = exp.signum();
471         if (expSign == 0) {
472             // Questionable if base has undefined or zero value.
473             // java.lang.Math.pow() returns 1 anyway, so we do the same.
474             return BoundedRational.ONE;
475         }
476         if (exp.equals(BigInteger.ONE)) {
477             return this;
478         }
479         // Reducing once at the beginning means there's no point in reducing later.
480         BoundedRational reduced = reduce().positiveDen();
481         // First handle cases in which huge exponents could give compact results.
482         if (reduced.mDen.equals(BigInteger.ONE)) {
483             if (reduced.mNum.equals(BigInteger.ZERO)) {
484                 return ZERO;
485             }
486             if (reduced.mNum.equals(BigInteger.ONE)) {
487                 return ONE;
488             }
489             if (reduced.mNum.equals(BIG_MINUS_ONE)) {
490                 if (exp.testBit(0)) {
491                     return MINUS_ONE;
492                 } else {
493                     return ONE;
494                 }
495             }
496         }
497         if (exp.bitLength() > 1000) {
498             // Stack overflow is likely; a useful rational result is not.
499             return null;
500         }
501         if (expSign < 0) {
502             return inverse(reduced).rawPow(exp.negate());
503         } else {
504             return reduced.rawPow(exp);
505         }
506     }
507 
508     public static BoundedRational pow(BoundedRational base, BoundedRational exp) {
509         if (exp == null) {
510             return null;
511         }
512         if (base == null) {
513             return null;
514         }
515         exp = exp.reduce().positiveDen();
516         if (!exp.mDen.equals(BigInteger.ONE)) {
517             return null;
518         }
519         return base.pow(exp.mNum);
520     }
521 
522 
523     private static final BigInteger BIG_FIVE = BigInteger.valueOf(5);
524 
525     /**
526      * Return the number of decimal digits to the right of the decimal point required to represent
527      * the argument exactly.
528      * Return Integer.MAX_VALUE if that's not possible.  Never returns a value less than zero, even
529      * if r is a power of ten.
530      */
531     public static int digitsRequired(BoundedRational r) {
532         if (r == null) {
533             return Integer.MAX_VALUE;
534         }
535         int powersOfTwo = 0;  // Max power of 2 that divides denominator
536         int powersOfFive = 0;  // Max power of 5 that divides denominator
537         // Try the easy case first to speed things up.
538         if (r.mDen.equals(BigInteger.ONE)) {
539             return 0;
540         }
541         r = r.reduce();
542         BigInteger den = r.mDen;
543         if (den.bitLength() > MAX_SIZE) {
544             return Integer.MAX_VALUE;
545         }
546         while (!den.testBit(0)) {
547             ++powersOfTwo;
548             den = den.shiftRight(1);
549         }
550         while (den.mod(BIG_FIVE).signum() == 0) {
551             ++powersOfFive;
552             den = den.divide(BIG_FIVE);
553         }
554         // If the denominator has a factor of other than 2 or 5 (the divisors of 10), the decimal
555         // expansion does not terminate.  Multiplying the fraction by any number of powers of 10
556         // will not cancel the demoniator.  (Recall the fraction was in lowest terms to start
557         // with.) Otherwise the powers of 10 we need to cancel the denominator is the larger of
558         // powersOfTwo and powersOfFive.
559         if (!den.equals(BigInteger.ONE) && !den.equals(BIG_MINUS_ONE)) {
560             return Integer.MAX_VALUE;
561         }
562         return Math.max(powersOfTwo, powersOfFive);
563     }
564 }
565