• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 -------------------------------------------------------------------------------
3 lookup3.c, by Bob Jenkins, May 2006, Public Domain.
4 
5 These are functions for producing 32-bit hashes for hash table lookup.
6 hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
7 are externally useful functions.  Routines to test the hash are included
8 if SELF_TEST is defined.  You can use this free for any purpose.  It's in
9 the public domain.  It has no warranty.
10 
11 You probably want to use hashlittle().  hashlittle() and hashbig()
12 hash byte arrays.  hashlittle() is is faster than hashbig() on
13 little-endian machines.  Intel and AMD are little-endian machines.
14 On second thought, you probably want hashlittle2(), which is identical to
15 hashlittle() except it returns two 32-bit hashes for the price of one.
16 You could implement hashbig2() if you wanted but I haven't bothered here.
17 
18 If you want to find a hash of, say, exactly 7 integers, do
19   a = i1;  b = i2;  c = i3;
20   mix(a,b,c);
21   a += i4; b += i5; c += i6;
22   mix(a,b,c);
23   a += i7;
24   final(a,b,c);
25 then use c as the hash value.  If you have a variable length array of
26 4-byte integers to hash, use hashword().  If you have a byte array (like
27 a character string), use hashlittle().  If you have several byte arrays, or
28 a mix of things, see the comments above hashlittle().
29 
30 Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
31 then mix those integers.  This is fast (you can do a lot more thorough
32 mixing with 12*3 instructions on 3 integers than you can with 3 instructions
33 on 1 byte), but shoehorning those bytes into integers efficiently is messy.
34 -------------------------------------------------------------------------------
35 */
36 #define SELF_TEST 1
37 #undef SELF_TEST
38 
39 #include <stdio.h>      /* defines printf for tests */
40 #include <time.h>       /* defines time_t for timings in the test */
41 #include <stdint.h>     /* defines uint32_t etc */
42 #include <sys/param.h>  /* attempt to define endianness */
43 #ifdef linux
44 # include <endian.h>    /* attempt to define endianness */
45 #endif
46 
47 /*
48  * My best guess at if you are big-endian or little-endian.  This may
49  * need adjustment.
50  */
51 #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
52      __BYTE_ORDER == __LITTLE_ENDIAN) || \
53     (defined(i386) || defined(__i386__) || defined(__i486__) || \
54      defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
55 # define HASH_LITTLE_ENDIAN 1
56 # define HASH_BIG_ENDIAN 0
57 #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
58        __BYTE_ORDER == __BIG_ENDIAN) || \
59       (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
60 # define HASH_LITTLE_ENDIAN 0
61 # define HASH_BIG_ENDIAN 1
62 #else
63 # define HASH_LITTLE_ENDIAN 0
64 # define HASH_BIG_ENDIAN 0
65 #endif
66 
67 #define hashsize(n) ((uint32_t)1<<(n))
68 #define hashmask(n) (hashsize(n)-1)
69 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
70 
71 /*
72 -------------------------------------------------------------------------------
73 mix -- mix 3 32-bit values reversibly.
74 
75 This is reversible, so any information in (a,b,c) before mix() is
76 still in (a,b,c) after mix().
77 
78 If four pairs of (a,b,c) inputs are run through mix(), or through
79 mix() in reverse, there are at least 32 bits of the output that
80 are sometimes the same for one pair and different for another pair.
81 This was tested for:
82 * pairs that differed by one bit, by two bits, in any combination
83   of top bits of (a,b,c), or in any combination of bottom bits of
84   (a,b,c).
85 * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
86   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
87   is commonly produced by subtraction) look like a single 1-bit
88   difference.
89 * the base values were pseudorandom, all zero but one bit set, or
90   all zero plus a counter that starts at zero.
91 
92 Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
93 satisfy this are
94     4  6  8 16 19  4
95     9 15  3 18 27 15
96    14  9  3  7 17  3
97 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
98 for "differ" defined as + with a one-bit base and a two-bit delta.  I
99 used http://burtleburtle.net/bob/hash/avalanche.html to choose
100 the operations, constants, and arrangements of the variables.
101 
102 This does not achieve avalanche.  There are input bits of (a,b,c)
103 that fail to affect some output bits of (a,b,c), especially of a.  The
104 most thoroughly mixed value is c, but it doesn't really even achieve
105 avalanche in c.
106 
107 This allows some parallelism.  Read-after-writes are good at doubling
108 the number of bits affected, so the goal of mixing pulls in the opposite
109 direction as the goal of parallelism.  I did what I could.  Rotates
110 seem to cost as much as shifts on every machine I could lay my hands
111 on, and rotates are much kinder to the top and bottom bits, so I used
112 rotates.
113 -------------------------------------------------------------------------------
114 */
115 #define mix(a,b,c) \
116 { \
117   (a) -= (c);  (a) ^= rot(c, 4);  (c) += (b); \
118   (b) -= (a);  (b) ^= rot(a, 6);  (a) += (c); \
119   (c) -= (b);  (c) ^= rot(b, 8);  (b) += (a); \
120   (a) -= (c);  (a) ^= rot(c,16);  (c) += (b); \
121   (b) -= (a);  (b) ^= rot(a,19);  (a) += (c); \
122   (c) -= (b);  (c) ^= rot(b, 4);  (b) += (a); \
123 }
124 
125 /*
126 -------------------------------------------------------------------------------
127 final -- final mixing of 3 32-bit values (a,b,c) into c
128 
129 Pairs of (a,b,c) values differing in only a few bits will usually
130 produce values of c that look totally different.  This was tested for
131 * pairs that differed by one bit, by two bits, in any combination
132   of top bits of (a,b,c), or in any combination of bottom bits of
133   (a,b,c).
134 * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
135   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
136   is commonly produced by subtraction) look like a single 1-bit
137   difference.
138 * the base values were pseudorandom, all zero but one bit set, or
139   all zero plus a counter that starts at zero.
140 
141 These constants passed:
142  14 11 25 16 4 14 24
143  12 14 25 16 4 14 24
144 and these came close:
145   4  8 15 26 3 22 24
146  10  8 15 26 3 22 24
147  11  8 15 26 3 22 24
148 -------------------------------------------------------------------------------
149 */
150 #define final(a,b,c) \
151 { \
152   (c) ^= (b); (c) -= rot(b,14); \
153   (a) ^= (c); (a) -= rot(c,11); \
154   (b) ^= (a); (b) -= rot(a,25); \
155   (c) ^= (b); (c) -= rot(b,16); \
156   (a) ^= (c); (a) -= rot(c,4);  \
157   (b) ^= (a); (b) -= rot(a,14); \
158   (c) ^= (b); (c) -= rot(b,24); \
159 }
160 
161 /*
162 --------------------------------------------------------------------
163  This works on all machines.  To be useful, it requires
164  -- that the key be an array of uint32_t's, and
165  -- that the length be the number of uint32_t's in the key
166 
167  The function hashword() is identical to hashlittle() on little-endian
168  machines, and identical to hashbig() on big-endian machines,
169  except that the length has to be measured in uint32_ts rather than in
170  bytes.  hashlittle() is more complicated than hashword() only because
171  hashlittle() has to dance around fitting the key bytes into registers.
172 --------------------------------------------------------------------
173 */
hashword(const uint32_t * k,size_t length,uint32_t initval)174 uint32_t hashword(
175 const uint32_t *k,                   /* the key, an array of uint32_t values */
176 size_t          length,               /* the length of the key, in uint32_ts */
177 uint32_t        initval)         /* the previous hash, or an arbitrary value */
178 {
179   uint32_t a,b,c;
180 
181   /* Set up the internal state */
182   a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
183 
184   /*------------------------------------------------- handle most of the key */
185   while (length > 3)
186   {
187     a += k[0];
188     b += k[1];
189     c += k[2];
190     mix(a,b,c);
191     length -= 3;
192     k += 3;
193   }
194 
195   /*------------------------------------------- handle the last 3 uint32_t's */
196   switch(length)                     /* all the case statements fall through */
197   {
198   case 3 : c+=k[2];
199   case 2 : b+=k[1];
200   case 1 : a+=k[0];
201     final(a,b,c);
202   case 0:     /* case 0: nothing left to add */
203     break;
204   }
205   /*------------------------------------------------------ report the result */
206   return c;
207 }
208 
209 
210 /*
211 --------------------------------------------------------------------
212 hashword2() -- same as hashword(), but take two seeds and return two
213 32-bit values.  pc and pb must both be nonnull, and *pc and *pb must
214 both be initialized with seeds.  If you pass in (*pb)==0, the output
215 (*pc) will be the same as the return value from hashword().
216 --------------------------------------------------------------------
217 */
hashword2(const uint32_t * k,size_t length,uint32_t * pc,uint32_t * pb)218 void hashword2 (
219 const uint32_t *k,                   /* the key, an array of uint32_t values */
220 size_t          length,               /* the length of the key, in uint32_ts */
221 uint32_t       *pc,                      /* IN: seed OUT: primary hash value */
222 uint32_t       *pb)               /* IN: more seed OUT: secondary hash value */
223 {
224   uint32_t a,b,c;
225 
226   /* Set up the internal state */
227   a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
228   c += *pb;
229 
230   /*------------------------------------------------- handle most of the key */
231   while (length > 3)
232   {
233     a += k[0];
234     b += k[1];
235     c += k[2];
236     mix(a,b,c);
237     length -= 3;
238     k += 3;
239   }
240 
241   /*------------------------------------------- handle the last 3 uint32_t's */
242   switch(length)                     /* all the case statements fall through */
243   {
244   case 3 : c+=k[2];
245   case 2 : b+=k[1];
246   case 1 : a+=k[0];
247     final(a,b,c);
248   case 0:     /* case 0: nothing left to add */
249     break;
250   }
251   /*------------------------------------------------------ report the result */
252   *pc=c; *pb=b;
253 }
254 
255 
256 /*
257 -------------------------------------------------------------------------------
258 hashlittle() -- hash a variable-length key into a 32-bit value
259   k       : the key (the unaligned variable-length array of bytes)
260   length  : the length of the key, counting by bytes
261   initval : can be any 4-byte value
262 Returns a 32-bit value.  Every bit of the key affects every bit of
263 the return value.  Two keys differing by one or two bits will have
264 totally different hash values.
265 
266 The best hash table sizes are powers of 2.  There is no need to do
267 mod a prime (mod is sooo slow!).  If you need less than 32 bits,
268 use a bitmask.  For example, if you need only 10 bits, do
269   h = (h & hashmask(10));
270 In which case, the hash table should have hashsize(10) elements.
271 
272 If you are hashing n strings (uint8_t **)k, do it like this:
273   for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
274 
275 By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
276 code any way you wish, private, educational, or commercial.  It's free.
277 
278 Use for hash table lookup, or anything where one collision in 2^^32 is
279 acceptable.  Do NOT use for cryptographic purposes.
280 -------------------------------------------------------------------------------
281 */
282 
hashlittle(const void * key,size_t length,uint32_t initval)283 uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
284 {
285   uint32_t a,b,c;                                          /* internal state */
286   union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */
287 
288   /* Set up the internal state */
289   a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
290 
291   u.ptr = key;
292   if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
293     const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
294     const uint8_t  *k8;
295 
296     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
297     while (length > 12)
298     {
299       a += k[0];
300       b += k[1];
301       c += k[2];
302       mix(a,b,c);
303       length -= 12;
304       k += 3;
305     }
306 
307     /*----------------------------- handle the last (probably partial) block */
308     /*
309      * "k[2]&0xffffff" actually reads beyond the end of the string, but
310      * then masks off the part it's not allowed to read.  Because the
311      * string is aligned, the masked-off tail is in the same word as the
312      * rest of the string.  Every machine with memory protection I've seen
313      * does it on word boundaries, so is OK with this.  But VALGRIND will
314      * still catch it and complain.  The masking trick does make the hash
315      * noticably faster for short strings (like English words).
316      */
317 #ifndef VALGRIND
318 
319     (void) k8; // unused
320     switch(length)
321     {
322     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
323     case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
324     case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
325     case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
326     case 8 : b+=k[1]; a+=k[0]; break;
327     case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
328     case 6 : b+=k[1]&0xffff; a+=k[0]; break;
329     case 5 : b+=k[1]&0xff; a+=k[0]; break;
330     case 4 : a+=k[0]; break;
331     case 3 : a+=k[0]&0xffffff; break;
332     case 2 : a+=k[0]&0xffff; break;
333     case 1 : a+=k[0]&0xff; break;
334     case 0 : return c;              /* zero length strings require no mixing */
335     }
336 
337 #else /* make valgrind happy */
338 
339     k8 = (const uint8_t *)k;
340     switch(length)
341     {
342     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
343     case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
344     case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
345     case 9 : c+=k8[8];                   /* fall through */
346     case 8 : b+=k[1]; a+=k[0]; break;
347     case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
348     case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
349     case 5 : b+=k8[4];                   /* fall through */
350     case 4 : a+=k[0]; break;
351     case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
352     case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
353     case 1 : a+=k8[0]; break;
354     case 0 : return c;
355     }
356 
357 #endif /* !valgrind */
358 
359   } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
360     const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */
361     const uint8_t  *k8;
362 
363     /*--------------- all but last block: aligned reads and different mixing */
364     while (length > 12)
365     {
366       a += k[0] + (((uint32_t)k[1])<<16);
367       b += k[2] + (((uint32_t)k[3])<<16);
368       c += k[4] + (((uint32_t)k[5])<<16);
369       mix(a,b,c);
370       length -= 12;
371       k += 6;
372     }
373 
374     /*----------------------------- handle the last (probably partial) block */
375     k8 = (const uint8_t *)k;
376     switch(length)
377     {
378     case 12: c+=k[4]+(((uint32_t)k[5])<<16);
379              b+=k[2]+(((uint32_t)k[3])<<16);
380              a+=k[0]+(((uint32_t)k[1])<<16);
381              break;
382     case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
383     case 10: c+=k[4];
384              b+=k[2]+(((uint32_t)k[3])<<16);
385              a+=k[0]+(((uint32_t)k[1])<<16);
386              break;
387     case 9 : c+=k8[8];                      /* fall through */
388     case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
389              a+=k[0]+(((uint32_t)k[1])<<16);
390              break;
391     case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
392     case 6 : b+=k[2];
393              a+=k[0]+(((uint32_t)k[1])<<16);
394              break;
395     case 5 : b+=k8[4];                      /* fall through */
396     case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
397              break;
398     case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
399     case 2 : a+=k[0];
400              break;
401     case 1 : a+=k8[0];
402              break;
403     case 0 : return c;                     /* zero length requires no mixing */
404     }
405 
406   } else {                        /* need to read the key one byte at a time */
407     const uint8_t *k = (const uint8_t *)key;
408 
409     /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
410     while (length > 12)
411     {
412       a += k[0];
413       a += ((uint32_t)k[1])<<8;
414       a += ((uint32_t)k[2])<<16;
415       a += ((uint32_t)k[3])<<24;
416       b += k[4];
417       b += ((uint32_t)k[5])<<8;
418       b += ((uint32_t)k[6])<<16;
419       b += ((uint32_t)k[7])<<24;
420       c += k[8];
421       c += ((uint32_t)k[9])<<8;
422       c += ((uint32_t)k[10])<<16;
423       c += ((uint32_t)k[11])<<24;
424       mix(a,b,c);
425       length -= 12;
426       k += 12;
427     }
428 
429     /*-------------------------------- last block: affect all 32 bits of (c) */
430     switch(length)                   /* all the case statements fall through */
431     {
432     case 12: c+=((uint32_t)k[11])<<24;
433     case 11: c+=((uint32_t)k[10])<<16;
434     case 10: c+=((uint32_t)k[9])<<8;
435     case 9 : c+=k[8];
436     case 8 : b+=((uint32_t)k[7])<<24;
437     case 7 : b+=((uint32_t)k[6])<<16;
438     case 6 : b+=((uint32_t)k[5])<<8;
439     case 5 : b+=k[4];
440     case 4 : a+=((uint32_t)k[3])<<24;
441     case 3 : a+=((uint32_t)k[2])<<16;
442     case 2 : a+=((uint32_t)k[1])<<8;
443     case 1 : a+=k[0];
444              break;
445     case 0 : return c;
446     }
447   }
448 
449   final(a,b,c);
450   return c;
451 }
452 
453 
454 /*
455  * hashlittle2: return 2 32-bit hash values
456  *
457  * This is identical to hashlittle(), except it returns two 32-bit hash
458  * values instead of just one.  This is good enough for hash table
459  * lookup with 2^^64 buckets, or if you want a second hash if you're not
460  * happy with the first, or if you want a probably-unique 64-bit ID for
461  * the key.  *pc is better mixed than *pb, so use *pc first.  If you want
462  * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
463  */
hashlittle2(const void * key,size_t length,uint32_t * pc,uint32_t * pb)464 void hashlittle2(
465   const void *key,       /* the key to hash */
466   size_t      length,    /* length of the key */
467   uint32_t   *pc,        /* IN: primary initval, OUT: primary hash */
468   uint32_t   *pb)        /* IN: secondary initval, OUT: secondary hash */
469 {
470   uint32_t a,b,c;                                          /* internal state */
471   union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */
472 
473   /* Set up the internal state */
474   a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
475   c += *pb;
476 
477   u.ptr = key;
478   if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
479     const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
480     const uint8_t  *k8;
481 
482     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
483     while (length > 12)
484     {
485       a += k[0];
486       b += k[1];
487       c += k[2];
488       mix(a,b,c);
489       length -= 12;
490       k += 3;
491     }
492 
493     /*----------------------------- handle the last (probably partial) block */
494     /*
495      * "k[2]&0xffffff" actually reads beyond the end of the string, but
496      * then masks off the part it's not allowed to read.  Because the
497      * string is aligned, the masked-off tail is in the same word as the
498      * rest of the string.  Every machine with memory protection I've seen
499      * does it on word boundaries, so is OK with this.  But VALGRIND will
500      * still catch it and complain.  The masking trick does make the hash
501      * noticably faster for short strings (like English words).
502      */
503 #ifndef VALGRIND
504 
505     (void) k8; // unused
506     switch(length)
507     {
508     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
509     case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
510     case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
511     case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
512     case 8 : b+=k[1]; a+=k[0]; break;
513     case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
514     case 6 : b+=k[1]&0xffff; a+=k[0]; break;
515     case 5 : b+=k[1]&0xff; a+=k[0]; break;
516     case 4 : a+=k[0]; break;
517     case 3 : a+=k[0]&0xffffff; break;
518     case 2 : a+=k[0]&0xffff; break;
519     case 1 : a+=k[0]&0xff; break;
520     case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
521     }
522 
523 #else /* make valgrind happy */
524 
525     k8 = (const uint8_t *)k;
526     switch(length)
527     {
528     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
529     case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */
530     case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */
531     case 9 : c+=k8[8];                   /* fall through */
532     case 8 : b+=k[1]; a+=k[0]; break;
533     case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */
534     case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */
535     case 5 : b+=k8[4];                   /* fall through */
536     case 4 : a+=k[0]; break;
537     case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */
538     case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */
539     case 1 : a+=k8[0]; break;
540     case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
541     }
542 
543 #endif /* !valgrind */
544 
545   } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
546     const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */
547     const uint8_t  *k8;
548 
549     /*--------------- all but last block: aligned reads and different mixing */
550     while (length > 12)
551     {
552       a += k[0] + (((uint32_t)k[1])<<16);
553       b += k[2] + (((uint32_t)k[3])<<16);
554       c += k[4] + (((uint32_t)k[5])<<16);
555       mix(a,b,c);
556       length -= 12;
557       k += 6;
558     }
559 
560     /*----------------------------- handle the last (probably partial) block */
561     k8 = (const uint8_t *)k;
562     switch(length)
563     {
564     case 12: c+=k[4]+(((uint32_t)k[5])<<16);
565              b+=k[2]+(((uint32_t)k[3])<<16);
566              a+=k[0]+(((uint32_t)k[1])<<16);
567              break;
568     case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */
569     case 10: c+=k[4];
570              b+=k[2]+(((uint32_t)k[3])<<16);
571              a+=k[0]+(((uint32_t)k[1])<<16);
572              break;
573     case 9 : c+=k8[8];                      /* fall through */
574     case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
575              a+=k[0]+(((uint32_t)k[1])<<16);
576              break;
577     case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */
578     case 6 : b+=k[2];
579              a+=k[0]+(((uint32_t)k[1])<<16);
580              break;
581     case 5 : b+=k8[4];                      /* fall through */
582     case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
583              break;
584     case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */
585     case 2 : a+=k[0];
586              break;
587     case 1 : a+=k8[0];
588              break;
589     case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
590     }
591 
592   } else {                        /* need to read the key one byte at a time */
593     const uint8_t *k = (const uint8_t *)key;
594 
595     /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
596     while (length > 12)
597     {
598       a += k[0];
599       a += ((uint32_t)k[1])<<8;
600       a += ((uint32_t)k[2])<<16;
601       a += ((uint32_t)k[3])<<24;
602       b += k[4];
603       b += ((uint32_t)k[5])<<8;
604       b += ((uint32_t)k[6])<<16;
605       b += ((uint32_t)k[7])<<24;
606       c += k[8];
607       c += ((uint32_t)k[9])<<8;
608       c += ((uint32_t)k[10])<<16;
609       c += ((uint32_t)k[11])<<24;
610       mix(a,b,c);
611       length -= 12;
612       k += 12;
613     }
614 
615     /*-------------------------------- last block: affect all 32 bits of (c) */
616     switch(length)                   /* all the case statements fall through */
617     {
618     case 12: c+=((uint32_t)k[11])<<24;
619     case 11: c+=((uint32_t)k[10])<<16;
620     case 10: c+=((uint32_t)k[9])<<8;
621     case 9 : c+=k[8];
622     case 8 : b+=((uint32_t)k[7])<<24;
623     case 7 : b+=((uint32_t)k[6])<<16;
624     case 6 : b+=((uint32_t)k[5])<<8;
625     case 5 : b+=k[4];
626     case 4 : a+=((uint32_t)k[3])<<24;
627     case 3 : a+=((uint32_t)k[2])<<16;
628     case 2 : a+=((uint32_t)k[1])<<8;
629     case 1 : a+=k[0];
630              break;
631     case 0 : *pc=c; *pb=b; return;  /* zero length strings require no mixing */
632     }
633   }
634 
635   final(a,b,c);
636   *pc=c; *pb=b;
637 }
638 
639 
640 
641 /*
642  * hashbig():
643  * This is the same as hashword() on big-endian machines.  It is different
644  * from hashlittle() on all machines.  hashbig() takes advantage of
645  * big-endian byte ordering.
646  */
hashbig(const void * key,size_t length,uint32_t initval)647 uint32_t hashbig( const void *key, size_t length, uint32_t initval)
648 {
649   uint32_t a,b,c;
650   union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
651 
652   /* Set up the internal state */
653   a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
654 
655   u.ptr = key;
656   if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
657     const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */
658     const uint8_t  *k8;
659 
660     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
661     while (length > 12)
662     {
663       a += k[0];
664       b += k[1];
665       c += k[2];
666       mix(a,b,c);
667       length -= 12;
668       k += 3;
669     }
670 
671     /*----------------------------- handle the last (probably partial) block */
672     /*
673      * "k[2]<<8" actually reads beyond the end of the string, but
674      * then shifts out the part it's not allowed to read.  Because the
675      * string is aligned, the illegal read is in the same word as the
676      * rest of the string.  Every machine with memory protection I've seen
677      * does it on word boundaries, so is OK with this.  But VALGRIND will
678      * still catch it and complain.  The masking trick does make the hash
679      * noticably faster for short strings (like English words).
680      */
681 #ifndef VALGRIND
682 
683     (void) k8; // unused
684     switch(length)
685     {
686     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
687     case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
688     case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
689     case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
690     case 8 : b+=k[1]; a+=k[0]; break;
691     case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
692     case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
693     case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
694     case 4 : a+=k[0]; break;
695     case 3 : a+=k[0]&0xffffff00; break;
696     case 2 : a+=k[0]&0xffff0000; break;
697     case 1 : a+=k[0]&0xff000000; break;
698     case 0 : return c;              /* zero length strings require no mixing */
699     }
700 
701 #else  /* make valgrind happy */
702 
703     k8 = (const uint8_t *)k;
704     switch(length)                   /* all the case statements fall through */
705     {
706     case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
707     case 11: c+=((uint32_t)k8[10])<<8;  /* fall through */
708     case 10: c+=((uint32_t)k8[9])<<16;  /* fall through */
709     case 9 : c+=((uint32_t)k8[8])<<24;  /* fall through */
710     case 8 : b+=k[1]; a+=k[0]; break;
711     case 7 : b+=((uint32_t)k8[6])<<8;   /* fall through */
712     case 6 : b+=((uint32_t)k8[5])<<16;  /* fall through */
713     case 5 : b+=((uint32_t)k8[4])<<24;  /* fall through */
714     case 4 : a+=k[0]; break;
715     case 3 : a+=((uint32_t)k8[2])<<8;   /* fall through */
716     case 2 : a+=((uint32_t)k8[1])<<16;  /* fall through */
717     case 1 : a+=((uint32_t)k8[0])<<24; break;
718     case 0 : return c;
719     }
720 
721 #endif /* !VALGRIND */
722 
723   } else {                        /* need to read the key one byte at a time */
724     const uint8_t *k = (const uint8_t *)key;
725 
726     /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
727     while (length > 12)
728     {
729       a += ((uint32_t)k[0])<<24;
730       a += ((uint32_t)k[1])<<16;
731       a += ((uint32_t)k[2])<<8;
732       a += ((uint32_t)k[3]);
733       b += ((uint32_t)k[4])<<24;
734       b += ((uint32_t)k[5])<<16;
735       b += ((uint32_t)k[6])<<8;
736       b += ((uint32_t)k[7]);
737       c += ((uint32_t)k[8])<<24;
738       c += ((uint32_t)k[9])<<16;
739       c += ((uint32_t)k[10])<<8;
740       c += ((uint32_t)k[11]);
741       mix(a,b,c);
742       length -= 12;
743       k += 12;
744     }
745 
746     /*-------------------------------- last block: affect all 32 bits of (c) */
747     switch(length)                   /* all the case statements fall through */
748     {
749     case 12: c+=k[11];
750     case 11: c+=((uint32_t)k[10])<<8;
751     case 10: c+=((uint32_t)k[9])<<16;
752     case 9 : c+=((uint32_t)k[8])<<24;
753     case 8 : b+=k[7];
754     case 7 : b+=((uint32_t)k[6])<<8;
755     case 6 : b+=((uint32_t)k[5])<<16;
756     case 5 : b+=((uint32_t)k[4])<<24;
757     case 4 : a+=k[3];
758     case 3 : a+=((uint32_t)k[2])<<8;
759     case 2 : a+=((uint32_t)k[1])<<16;
760     case 1 : a+=((uint32_t)k[0])<<24;
761              break;
762     case 0 : return c;
763     }
764   }
765 
766   final(a,b,c);
767   return c;
768 }
769 
770 
771 #ifdef SELF_TEST
772 
773 /* used for timings */
driver1()774 void driver1()
775 {
776   uint8_t buf[256];
777   uint32_t i;
778   uint32_t h=0;
779   time_t a,z;
780 
781   time(&a);
782   for (i=0; i<256; ++i) buf[i] = 'x';
783   for (i=0; i<1; ++i)
784   {
785     h = hashlittle(&buf[0],1,h);
786   }
787   time(&z);
788   if (z-a > 0) printf("time %d %.8x\n", z-a, h);
789 }
790 
791 /* check that every input bit changes every output bit half the time */
792 #define HASHSTATE 1
793 #define HASHLEN   1
794 #define MAXPAIR 60
795 #define MAXLEN  70
driver2()796 void driver2()
797 {
798   uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
799   uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
800   uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
801   uint32_t x[HASHSTATE],y[HASHSTATE];
802   uint32_t hlen;
803 
804   printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
805   for (hlen=0; hlen < MAXLEN; ++hlen)
806   {
807     z=0;
808     for (i=0; i<hlen; ++i)  /*----------------------- for each input byte, */
809     {
810       for (j=0; j<8; ++j)   /*------------------------ for each input bit, */
811       {
812 	for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */
813 	{
814 	  for (l=0; l<HASHSTATE; ++l)
815 	    e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
816 
817       	  /*---- check that every output bit is affected by that input bit */
818 	  for (k=0; k<MAXPAIR; k+=2)
819 	  {
820 	    uint32_t finished=1;
821 	    /* keys have one bit different */
822 	    for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
823 	    /* have a and b be two keys differing in only one bit */
824 	    a[i] ^= (k<<j);
825 	    a[i] ^= (k>>(8-j));
826 	     c[0] = hashlittle(a, hlen, m);
827 	    b[i] ^= ((k+1)<<j);
828 	    b[i] ^= ((k+1)>>(8-j));
829 	     d[0] = hashlittle(b, hlen, m);
830 	    /* check every bit is 1, 0, set, and not set at least once */
831 	    for (l=0; l<HASHSTATE; ++l)
832 	    {
833 	      e[l] &= (c[l]^d[l]);
834 	      f[l] &= ~(c[l]^d[l]);
835 	      g[l] &= c[l];
836 	      h[l] &= ~c[l];
837 	      x[l] &= d[l];
838 	      y[l] &= ~d[l];
839 	      if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
840 	    }
841 	    if (finished) break;
842 	  }
843 	  if (k>z) z=k;
844 	  if (k==MAXPAIR)
845 	  {
846 	     printf("Some bit didn't change: ");
847 	     printf("%.8x %.8x %.8x %.8x %.8x %.8x  ",
848 	            e[0],f[0],g[0],h[0],x[0],y[0]);
849 	     printf("i %d j %d m %d len %d\n", i, j, m, hlen);
850 	  }
851 	  if (z==MAXPAIR) goto done;
852 	}
853       }
854     }
855    done:
856     if (z < MAXPAIR)
857     {
858       printf("Mix success  %2d bytes  %2d initvals  ",i,m);
859       printf("required  %d  trials\n", z/2);
860     }
861   }
862   printf("\n");
863 }
864 
865 /* Check for reading beyond the end of the buffer and alignment problems */
driver3()866 void driver3()
867 {
868   uint8_t buf[MAXLEN+20], *b;
869   uint32_t len;
870   uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
871   uint32_t h;
872   uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
873   uint32_t i;
874   uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
875   uint32_t j;
876   uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
877   uint32_t ref,x,y;
878   uint8_t *p;
879 
880   printf("Endianness.  These lines should all be the same (for values filled in):\n");
881   printf("%.8x                            %.8x                            %.8x\n",
882          hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13),
883          hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13),
884          hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13));
885   p = q;
886   printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
887          hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
888          hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
889          hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
890          hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
891          hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
892          hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
893   p = &qq[1];
894   printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
895          hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
896          hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
897          hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
898          hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
899          hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
900          hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
901   p = &qqq[2];
902   printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
903          hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
904          hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
905          hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
906          hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
907          hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
908          hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
909   p = &qqqq[3];
910   printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
911          hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
912          hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
913          hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
914          hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
915          hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
916          hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
917   printf("\n");
918 
919   /* check that hashlittle2 and hashlittle produce the same results */
920   i=47; j=0;
921   hashlittle2(q, sizeof(q), &i, &j);
922   if (hashlittle(q, sizeof(q), 47) != i)
923     printf("hashlittle2 and hashlittle mismatch\n");
924 
925   /* check that hashword2 and hashword produce the same results */
926   len = 0xdeadbeef;
927   i=47, j=0;
928   hashword2(&len, 1, &i, &j);
929   if (hashword(&len, 1, 47) != i)
930     printf("hashword2 and hashword mismatch %x %x\n",
931 	   i, hashword(&len, 1, 47));
932 
933   /* check hashlittle doesn't read before or after the ends of the string */
934   for (h=0, b=buf+1; h<8; ++h, ++b)
935   {
936     for (i=0; i<MAXLEN; ++i)
937     {
938       len = i;
939       for (j=0; j<i; ++j) *(b+j)=0;
940 
941       /* these should all be equal */
942       ref = hashlittle(b, len, (uint32_t)1);
943       *(b+i)=(uint8_t)~0;
944       *(b-1)=(uint8_t)~0;
945       x = hashlittle(b, len, (uint32_t)1);
946       y = hashlittle(b, len, (uint32_t)1);
947       if ((ref != x) || (ref != y))
948       {
949 	printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
950                h, i);
951       }
952     }
953   }
954 }
955 
956 /* check for problems with nulls */
driver4()957  void driver4()
958 {
959   uint8_t buf[1];
960   uint32_t h,i,state[HASHSTATE];
961 
962 
963   buf[0] = ~0;
964   for (i=0; i<HASHSTATE; ++i) state[i] = 1;
965   printf("These should all be different\n");
966   for (i=0, h=0; i<8; ++i)
967   {
968     h = hashlittle(buf, 0, h);
969     printf("%2ld  0-byte strings, hash is  %.8x\n", i, h);
970   }
971 }
972 
driver5()973 void driver5()
974 {
975   uint32_t b,c;
976   b=0, c=0, hashlittle2("", 0, &c, &b);
977   printf("hash is %.8lx %.8lx\n", c, b);   /* deadbeef deadbeef */
978   b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b);
979   printf("hash is %.8lx %.8lx\n", c, b);   /* bd5b7dde deadbeef */
980   b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b);
981   printf("hash is %.8lx %.8lx\n", c, b);   /* 9c093ccd bd5b7dde */
982   b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
983   printf("hash is %.8lx %.8lx\n", c, b);   /* 17770551 ce7226e6 */
984   b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
985   printf("hash is %.8lx %.8lx\n", c, b);   /* e3607cae bd371de4 */
986   b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b);
987   printf("hash is %.8lx %.8lx\n", c, b);   /* cd628161 6cbea4b3 */
988   c = hashlittle("Four score and seven years ago", 30, 0);
989   printf("hash is %.8lx\n", c);   /* 17770551 */
990   c = hashlittle("Four score and seven years ago", 30, 1);
991   printf("hash is %.8lx\n", c);   /* cd628161 */
992 }
993 
994 
main()995 int main()
996 {
997   driver1();   /* test that the key is hashed: used for timings */
998   driver2();   /* test that whole key is hashed thoroughly */
999   driver3();   /* test that nothing but the key is hashed */
1000   driver4();   /* test hashing multiple buffers (all buffers are null) */
1001   driver5();   /* test the hash against known vectors */
1002   return 1;
1003 }
1004 
1005 #endif  /* SELF_TEST */
1006