• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "audio_utils_primitives_tests"
19 
20 #include <math.h>
21 #include <vector>
22 
23 #include <gtest/gtest.h>
24 #include <log/log.h>
25 
26 #include <audio_utils/primitives.h>
27 #include <audio_utils/format.h>
28 #include <audio_utils/channels.h>
29 
30 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
31 
32 static const int32_t lim8pos = 255;
33 static const int32_t lim8neg = 0;
34 static const int32_t lim16pos = (1 << 15) - 1;
35 static const int32_t lim16neg = -(1 << 15);
36 static const int32_t lim24pos = (1 << 23) - 1;
37 static const int32_t lim24neg = -(1 << 23);
38 static const int64_t lim32pos = 0x000000007fffffff;
39 static const int64_t lim32neg = 0xffffffff80000000;
40 
41 // Use memset here since it is generally the fastest method of clearing data,
42 // but could be changed to std::fill or assignment should those prove faster.
43 template <typename T>
zeroFill(T & container)44 static void zeroFill(T &container) {
45     memset(container.data(), 0, container.size() * sizeof(container[0]));
46 }
47 
testClamp8(float f)48 inline void testClamp8(float f)
49 {
50     // f is in native u8 scaling to test rounding
51     uint8_t uval = clamp8_from_float((f - 128) / (1 << 7));
52 
53     // test clamping
54     ALOGV("clamp8_from_float(%f) = %u\n", f, uval);
55     if (f > lim8pos) {
56         EXPECT_EQ(lim8pos, uval);
57     } else if (f < lim8neg) {
58         EXPECT_EQ(lim8neg, uval);
59     }
60 
61     // if in range, make sure round trip clamp and conversion is correct.
62     if (f < lim8pos - 1. && f > lim8neg + 1.) {
63         uint8_t uval2 = clamp8_from_float(float_from_u8(uval));
64         int diff = abs(uval - uval2);
65         EXPECT_LE(diff, 1);
66     }
67 }
68 
testClamp16(float f)69 inline void testClamp16(float f)
70 {
71     int16_t ival = clamp16_from_float(f / (1 << 15));
72 
73     // test clamping
74     ALOGV("clamp16_from_float(%f) = %d\n", f, ival);
75     if (f > lim16pos) {
76         EXPECT_EQ(lim16pos, ival);
77     } else if (f < lim16neg) {
78         EXPECT_EQ(lim16neg, ival);
79     }
80 
81     // if in range, make sure round trip clamp and conversion is correct.
82     if (f < lim16pos - 1. && f > lim16neg + 1.) {
83         int ival2 = clamp16_from_float(float_from_i16(ival));
84         int diff = abs(ival - ival2);
85         EXPECT_LE(diff, 1);
86     }
87 }
88 
testClamp24(float f)89 inline void testClamp24(float f)
90 {
91     int32_t ival = clamp24_from_float(f / (1 << 23));
92 
93     // test clamping
94     ALOGV("clamp24_from_float(%f) = %d\n", f, ival);
95     if (f > lim24pos) {
96         EXPECT_EQ(lim24pos, ival);
97     } else if (f < lim24neg) {
98         EXPECT_EQ(lim24neg, ival);
99     }
100 
101     // if in range, make sure round trip clamp and conversion is correct.
102     if (f < lim24pos - 1. && f > lim24neg + 1.) {
103         int ival2 = clamp24_from_float(float_from_q8_23(ival));
104         int diff = abs(ival - ival2);
105         EXPECT_LE(diff, 1);
106     }
107 }
108 
109 template<typename T>
checkMonotone(const T * ary,size_t size)110 void checkMonotone(const T *ary, size_t size)
111 {
112     for (size_t i = 1; i < size; ++i) {
113         EXPECT_LT(ary[i-1], ary[i]);
114     }
115 }
116 
checkMonotonep24(uint8_t * pary,size_t size)117 void checkMonotonep24(uint8_t * pary, size_t size)
118 {
119     size_t frames = size/3;
120     for (size_t i = 1; i < frames; ++i) {
121         EXPECT_LT(i32_from_p24(pary + 3*(i-1)), i32_from_p24(pary + 3*i));
122     }
123 }
124 
TEST(audio_utils_primitives,clamp_to_int)125 TEST(audio_utils_primitives, clamp_to_int) {
126     static const float testArray[] = {
127             -NAN, -INFINITY,
128             -1.e20, -32768., 63.9,
129             -3.5, -3.4, -2.5, 2.4, -1.5, -1.4, -0.5, -0.2, 0., 0.2, 0.5, 0.8,
130             1.4, 1.5, 1.8, 2.4, 2.5, 2.6, 3.4, 3.5,
131             32767., 32768., 1.e20,
132             INFINITY, NAN };
133 
134     for (size_t i = 0; i < ARRAY_SIZE(testArray); ++i) {
135         testClamp8(testArray[i]);
136     }
137     for (size_t i = 0; i < ARRAY_SIZE(testArray); ++i) {
138         testClamp16(testArray[i]);
139     }
140     for (size_t i = 0; i < ARRAY_SIZE(testArray); ++i) {
141         testClamp24(testArray[i]);
142     }
143 
144     // used for ULP testing (tweaking the lsb of the float)
145     union {
146         int32_t i;
147         float f;
148     } val;
149     int32_t res;
150 
151     // check clampq4_27_from_float()
152     val.f = 16.;
153     res = clampq4_27_from_float(val.f);
154     EXPECT_EQ(0x7fffffff, res);
155     val.i--;
156     res = clampq4_27_from_float(val.f);
157     EXPECT_LE(res, 0x7fffffff);
158     EXPECT_GE(res, 0x7fff0000);
159     val.f = -16.;
160     res = clampq4_27_from_float(val.f);
161     EXPECT_EQ((int32_t)0x80000000, res); // negative
162     val.i++;
163     res = clampq4_27_from_float(val.f);
164     EXPECT_GE(res, (int32_t)0x80000000); // negative
165     EXPECT_LE(res, (int32_t)0x80008000); // negative
166 
167     // check u4_28_from_float and u4_12_from_float
168     uint32_t ures;
169     uint16_t ures16;
170     val.f = 16.;
171     ures = u4_28_from_float(val.f);
172     EXPECT_EQ(0xffffffff, ures);
173     ures16 = u4_12_from_float(val.f);
174     EXPECT_EQ(0xffff, ures16);
175 
176     val.f = -1.;
177     ures = u4_28_from_float(val.f);
178     EXPECT_EQ((uint32_t)0, ures);
179     ures16 = u4_12_from_float(val.f);
180     EXPECT_EQ(0, ures16);
181 
182     // check float_from_u4_28 and float_from_u4_12 (roundtrip)
183     for (uint32_t v = 0x100000; v <= 0xff000000; v += 0x100000) {
184         ures = u4_28_from_float(float_from_u4_28(v));
185         EXPECT_EQ(ures, v);
186     }
187     for (uint32_t v = 0; v <= 0xffff; ++v) { // uint32_t prevents overflow
188         ures16 = u4_12_from_float(float_from_u4_12(v));
189         EXPECT_EQ(ures16, v);
190     }
191 
192     // check infinity
193     EXPECT_EQ(0, clamp8_from_float(-INFINITY));
194     EXPECT_EQ(255, clamp8_from_float(INFINITY));
195 }
196 
TEST(audio_utils_primitives,memcpy)197 TEST(audio_utils_primitives, memcpy) {
198     // test round-trip.
199     constexpr size_t size = 65536;
200     std::vector<int16_t> i16ref(size);
201     std::vector<int16_t> i16ary(size);
202     std::vector<int32_t> i32ary(size);
203     std::vector<float> fary(size);
204     std::vector<uint8_t> pary(size * 3);
205 
206 
207     // set signed reference monotonic array from -32768 to 32767
208     for (size_t i = 0; i < i16ref.size(); ++i) {
209         i16ref[i] = i16ary[i] = i - 32768;
210     }
211 
212     // do round-trip testing i16 and float
213     memcpy_to_float_from_i16(fary.data(), i16ary.data(), fary.size());
214     zeroFill(i16ary);
215     checkMonotone(fary.data(), fary.size());
216 
217     memcpy_to_i16_from_float(i16ary.data(), fary.data(), i16ary.size());
218     zeroFill(fary);
219     checkMonotone(i16ary.data(), i16ary.size());
220 
221     // TODO make a template case for the following?
222 
223     // do round-trip testing p24 to i16 and float
224     memcpy_to_p24_from_i16(pary.data(), i16ary.data(), size /* note pary elem is 3 bytes */);
225     zeroFill(i16ary);
226 
227     // check an intermediate format at a position(???)
228 #if 0
229     printf("pary[%d].0 = %u  pary[%d].1 = %u  pary[%d].2 = %u\n",
230             1025, (unsigned) pary[1025*3],
231             1025, (unsigned) pary[1025*3+1],
232             1025, (unsigned) pary[1025*3+2]
233     );
234 #endif
235 
236     memcpy_to_float_from_p24(fary.data(), pary.data(), fary.size());
237     zeroFill(pary);
238     checkMonotone(fary.data(), fary.size());
239 
240     memcpy_to_p24_from_float(pary.data(), fary.data(), size /* note pary elem is 3 bytes */);
241     zeroFill(fary);
242     checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
243 
244     memcpy_to_i16_from_p24(i16ary.data(), pary.data(), i16ary.size());
245     zeroFill(pary);
246     checkMonotone(i16ary.data(), i16ary.size());
247 
248     // do round-trip testing q8_23 to i16 and float
249     memcpy_to_q8_23_from_i16(i32ary.data(), i16ary.data(), i32ary.size());
250     zeroFill(i16ary);
251     checkMonotone(i32ary.data(), i32ary.size());
252 
253     memcpy_to_float_from_q8_23(fary.data(), i32ary.data(), fary.size());
254     zeroFill(i32ary);
255     checkMonotone(fary.data(), fary.size());
256 
257     memcpy_to_q8_23_from_float_with_clamp(i32ary.data(), fary.data(), i32ary.size());
258     zeroFill(fary);
259     checkMonotone(i32ary.data(), i32ary.size());
260 
261     memcpy_to_i16_from_q8_23(i16ary.data(), i32ary.data(), i16ary.size());
262     zeroFill(i32ary);
263     checkMonotone(i16ary.data(), i16ary.size());
264 
265     // do round-trip testing i32 to i16 and float
266     memcpy_to_i32_from_i16(i32ary.data(), i16ary.data(), i32ary.size());
267     zeroFill(i16ary);
268     checkMonotone(i32ary.data(), i32ary.size());
269 
270     memcpy_to_float_from_i32(fary.data(), i32ary.data(), fary.size());
271     zeroFill(i32ary);
272     checkMonotone(fary.data(), fary.size());
273 
274     memcpy_to_i32_from_float(i32ary.data(), fary.data(), i32ary.size());
275     zeroFill(fary);
276     checkMonotone(i32ary.data(), i32ary.size());
277 
278     memcpy_to_i16_from_i32(i16ary.data(), i32ary.data(), i16ary.size());
279     zeroFill(i32ary);
280     checkMonotone(i16ary.data(), i16ary.size());
281 
282     // do round-trip test i16 -> p24 -> i32 -> p24 -> q8_23 -> p24 -> i16
283     memcpy_to_p24_from_i16(pary.data(), i16ary.data(), size /* note pary elem is 3 bytes */);
284     zeroFill(i16ary);
285     checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
286 
287     memcpy_to_i32_from_p24(i32ary.data(), pary.data(), i32ary.size());
288     zeroFill(pary);
289     checkMonotone(i32ary.data(), i32ary.size());
290 
291     memcpy_to_p24_from_i32(pary.data(), i32ary.data(), size /* note pary elem is 3 bytes */);
292     zeroFill(i32ary);
293     checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
294 
295     memcpy_to_q8_23_from_p24(i32ary.data(), pary.data(), i32ary.size());
296     zeroFill(pary);
297     checkMonotone(i32ary.data(), i32ary.size());
298 
299     memcpy_to_p24_from_q8_23(pary.data(), i32ary.data(), size /* note pary elem is 3 bytes */);
300     zeroFill(i32ary);
301     checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
302 
303     memcpy_to_i16_from_p24(i16ary.data(), pary.data(), i16ary.size());
304     zeroFill(pary);
305     checkMonotone(i16ary.data(), i16ary.size());
306 
307     // do partial round-trip testing q4_27 to i16 and float
308     memcpy_to_float_from_i16(fary.data(), i16ary.data(), fary.size());
309     zeroFill(i16ary);
310 
311     memcpy_to_q4_27_from_float(i32ary.data(), fary.data(), i32ary.size());
312     zeroFill(fary);
313     checkMonotone(i32ary.data(), i32ary.size());
314 
315     memcpy_to_i16_from_q4_27(i16ary.data(), i32ary.data(), i16ary.size());
316     checkMonotone(i16ary.data(), i16ary.size());
317     EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), i16ary.size() * sizeof(i16ary[0])));
318 
319     zeroFill(i16ary);
320 
321     // ditherAndClamp() has non-standard parameters - memcpy_to_float_from_q4_27() is preferred
322     ditherAndClamp(reinterpret_cast<int32_t *>(i16ary.data()),
323             i32ary.data(), i16ary.size() / 2);
324     checkMonotone(i16ary.data(), i16ary.size());
325     EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), i16ary.size() * sizeof(i16ary[0])));
326 
327     memcpy_to_float_from_q4_27(fary.data(), i32ary.data(), fary.size());
328     zeroFill(i32ary);
329     checkMonotone(fary.data(), fary.size());
330 
331     // at the end, our i16ary must be the same. (Monotone should be equivalent to this)
332     EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), i16ary.size() * sizeof(i16ary[0])));
333 
334     // test round-trip for u8 and float.
335     constexpr size_t u8size = 256;
336     std::vector<uint8_t> u8ref(u8size);
337     std::vector<uint8_t> u8ary(u8size);
338 
339     for (size_t i = 0; i < u8ref.size(); ++i) {
340         u8ref[i] = i;
341     }
342 
343     constexpr size_t testsize = std::min(u8size, size);
344     memcpy_to_float_from_u8(fary.data(), u8ref.data(), testsize);
345     memcpy_to_u8_from_float(u8ary.data(), fary.data(), testsize);
346 
347     EXPECT_EQ(0, memcmp(u8ary.data(), u8ref.data(), u8ary.size() * sizeof(u8ary[0])));
348 }
349 
350 template<typename T>
checkMonotoneOrZero(const T * ary,size_t size)351 void checkMonotoneOrZero(const T *ary, size_t size)
352 {
353     T least = 0;
354 
355     for (size_t i = 1; i < size; ++i) {
356         if (ary[i]) {
357             EXPECT_LT(least, ary[i]);
358             least = ary[i];
359         }
360     }
361 }
362 
TEST(audio_utils_primitives,memcpy_by_channel_mask)363 TEST(audio_utils_primitives, memcpy_by_channel_mask) {
364     uint32_t dst_mask;
365     uint32_t src_mask;
366     uint16_t *u16ref = new uint16_t[65536];
367     uint16_t *u16ary = new uint16_t[65536];
368 
369     for (size_t i = 0; i < 65536; ++i) {
370         u16ref[i] = i;
371     }
372 
373     // Test when src mask is 0.  Everything copied is zero.
374     src_mask = 0;
375     dst_mask = 0x8d;
376     memset(u16ary, 0x99, 65536 * sizeof(u16ref[0]));
377     memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
378             65536 / popcount(dst_mask));
379     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
380 
381     // Test when dst_mask is 0.  Nothing should be copied.
382     src_mask = 0;
383     dst_mask = 0;
384     memset(u16ary, 0, 65536 * sizeof(u16ref[0]));
385     memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
386             65536);
387     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
388 
389     // Test when masks are the same.  One to one copy.
390     src_mask = dst_mask = 0x8d;
391     memset(u16ary, 0x99, 65536 * sizeof(u16ref[0]));
392     memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]), 555);
393     EXPECT_EQ(0, memcmp(u16ary, u16ref, 555 * sizeof(u16ref[0]) * popcount(dst_mask)));
394 
395     // Test with a gap in source:
396     // Input 3 samples, output 4 samples, one zero inserted.
397     src_mask = 0x8c;
398     dst_mask = 0x8d;
399     memset(u16ary, 0x9, 65536 * sizeof(u16ary[0]));
400     memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
401             65536 / popcount(dst_mask));
402     checkMonotoneOrZero(u16ary, 65536);
403     EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
404 
405     // Test with a gap in destination:
406     // Input 4 samples, output 3 samples, one deleted
407     src_mask = 0x8d;
408     dst_mask = 0x8c;
409     memset(u16ary, 0x9, 65536 * sizeof(u16ary[0]));
410     memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
411             65536 / popcount(src_mask));
412     checkMonotone(u16ary, 65536 * 3 / 4);
413 
414     delete[] u16ref;
415     delete[] u16ary;
416 }
417 
memcpy_by_channel_mask2(void * dst,uint32_t dst_mask,const void * src,uint32_t src_mask,size_t sample_size,size_t count)418 void memcpy_by_channel_mask2(void *dst, uint32_t dst_mask,
419         const void *src, uint32_t src_mask, size_t sample_size, size_t count)
420 {
421     int8_t idxary[32];
422     uint32_t src_channels = popcount(src_mask);
423     uint32_t dst_channels =
424             memcpy_by_index_array_initialization(idxary, 32, dst_mask, src_mask);
425 
426     memcpy_by_index_array(dst, dst_channels, src, src_channels, idxary, sample_size, count);
427 }
428 
429 // a modified version of the memcpy_by_channel_mask test
430 // but using 24 bit type and memcpy_by_index_array()
TEST(audio_utils_primitives,memcpy_by_index_array)431 TEST(audio_utils_primitives, memcpy_by_index_array) {
432     uint32_t dst_mask;
433     uint32_t src_mask;
434     typedef struct {uint8_t c[3];} __attribute__((__packed__)) uint8x3_t;
435     uint8x3_t *u24ref = new uint8x3_t[65536];
436     uint8x3_t *u24ary = new uint8x3_t[65536];
437     uint16_t *u16ref = new uint16_t[65536];
438     uint16_t *u16ary = new uint16_t[65536];
439 
440     EXPECT_EQ((size_t)3, sizeof(uint8x3_t)); // 3 bytes per struct
441 
442     // tests prepare_index_array_from_masks()
443     EXPECT_EQ((size_t)4, memcpy_by_index_array_initialization(NULL, 0, 0x8d, 0x8c));
444     EXPECT_EQ((size_t)3, memcpy_by_index_array_initialization(NULL, 0, 0x8c, 0x8d));
445 
446     for (size_t i = 0; i < 65536; ++i) {
447         u16ref[i] = i;
448     }
449     memcpy_to_p24_from_i16((uint8_t*)u24ref, (int16_t*)u16ref, 65536);
450 
451     // Test when src mask is 0.  Everything copied is zero.
452     src_mask = 0;
453     dst_mask = 0x8d;
454     memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
455     memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
456             65536 / popcount(dst_mask));
457     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
458     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
459 
460     // Test when dst_mask is 0.  Nothing should be copied.
461     src_mask = 0;
462     dst_mask = 0;
463     memset(u24ary, 0, 65536 * sizeof(u24ary[0]));
464     memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
465             65536);
466     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
467     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
468 
469     // Test when masks are the same.  One to one copy.
470     src_mask = dst_mask = 0x8d;
471     memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
472     memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
473     EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
474 
475     // Test with a gap in source:
476     // Input 3 samples, output 4 samples, one zero inserted.
477     src_mask = 0x8c;
478     dst_mask = 0x8d;
479     memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
480     memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
481             65536 / popcount(dst_mask));
482     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
483     checkMonotoneOrZero(u16ary, 65536);
484     EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
485 
486     // Test with a gap in destination:
487     // Input 4 samples, output 3 samples, one deleted
488     src_mask = 0x8d;
489     dst_mask = 0x8c;
490     memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
491     memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
492             65536 / popcount(src_mask));
493     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
494     checkMonotone(u16ary, 65536 * 3 / 4);
495 
496     delete[] u16ref;
497     delete[] u16ary;
498     delete[] u24ref;
499     delete[] u24ary;
500 }
501 
memcpy_by_channel_mask_dst_index(void * dst,uint32_t dst_mask,const void * src,uint32_t src_mask,size_t sample_size,size_t count)502 void memcpy_by_channel_mask_dst_index(void *dst, uint32_t dst_mask,
503         const void *src, uint32_t src_mask, size_t sample_size, size_t count)
504 {
505     int8_t idxary[32];
506     uint32_t src_channels = popcount(src_mask);
507     uint32_t dst_channels =
508             memcpy_by_index_array_initialization_dst_index(idxary, 32, dst_mask, src_mask);
509 
510     memcpy_by_index_array(dst, dst_channels, src, src_channels, idxary, sample_size, count);
511 }
512 
513 // a modified version of the memcpy_by_channel_mask test
514 // but using 24 bit type and memcpy_by_index_array()
TEST(audio_utils_primitives,memcpy_by_index_array_dst_index)515 TEST(audio_utils_primitives, memcpy_by_index_array_dst_index) {
516     uint32_t dst_mask;
517     uint32_t src_mask;
518     typedef struct {uint8_t c[3];} __attribute__((__packed__)) uint8x3_t;
519     uint8x3_t *u24ref = new uint8x3_t[65536];
520     uint8x3_t *u24ary = new uint8x3_t[65536];
521     uint16_t *u16ref = new uint16_t[65536];
522     uint16_t *u16ary = new uint16_t[65536];
523 
524     EXPECT_EQ((size_t)3, sizeof(uint8x3_t)); // 3 bytes per struct
525 
526     // tests prepare_index_array_from_masks()
527     EXPECT_EQ((size_t)4, memcpy_by_index_array_initialization_dst_index(NULL, 0, 0x8d, 0x8c));
528     EXPECT_EQ((size_t)3, memcpy_by_index_array_initialization_dst_index(NULL, 0, 0x8c, 0x8d));
529 
530     for (size_t i = 0; i < 65536; ++i) {
531         u16ref[i] = i;
532     }
533     memcpy_to_p24_from_i16((uint8_t*)u24ref, (int16_t*)u16ref, 65536);
534 
535     // Test when src mask is 0.  Everything copied is zero.
536     src_mask = 0;
537     dst_mask = 0x8d;
538     memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
539     memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
540             65536 / popcount(dst_mask));
541     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
542     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
543 
544     // Test when dst_mask is 0.  Nothing should be copied.
545     src_mask = 0;
546     dst_mask = 0;
547     memset(u24ary, 0, 65536 * sizeof(u24ary[0]));
548     memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
549             65536);
550     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
551     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
552 
553     // Test when dst mask equals source count size.  One to one copy.
554     src_mask = 0x8d;
555     dst_mask = 0x0f;
556     memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
557     memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
558     EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
559 
560     // Test with a gap in source:
561     // Input 3 samples, output 4 samples, one zero inserted.
562     src_mask = 0x8c;
563     dst_mask = 0x0f;
564     memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
565     memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
566             65536 / popcount(dst_mask));
567     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
568     checkMonotoneOrZero(u16ary, 65536);
569     EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
570 
571     // Test with a gap in destination:
572     // Input 4 samples, output 3 samples, one deleted
573     src_mask = 0x8d;
574     dst_mask = 0x07;
575     memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
576     memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
577             65536 / popcount(src_mask));
578     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
579     checkMonotone(u16ary, 65536 * 3 / 4);
580 
581     delete[] u16ref;
582     delete[] u16ary;
583     delete[] u24ref;
584     delete[] u24ary;
585 }
586 
memcpy_by_channel_mask_src_index(void * dst,uint32_t dst_mask,const void * src,uint32_t src_mask,size_t sample_size,size_t count)587 void memcpy_by_channel_mask_src_index(void *dst, uint32_t dst_mask,
588         const void *src, uint32_t src_mask, size_t sample_size, size_t count)
589 {
590     int8_t idxary[32];
591     uint32_t src_channels = popcount(src_mask);
592     uint32_t dst_channels =
593             memcpy_by_index_array_initialization_src_index(idxary, 32, dst_mask, src_mask);
594 
595     memcpy_by_index_array(dst, dst_channels, src, src_channels, idxary, sample_size, count);
596 }
597 
598 // a modified version of the memcpy_by_channel_mask test
599 // but using 24 bit type and memcpy_by_index_array()
TEST(audio_utils_primitives,memcpy_by_index_array_src_index)600 TEST(audio_utils_primitives, memcpy_by_index_array_src_index) {
601     uint32_t dst_mask;
602     uint32_t src_mask;
603     typedef struct {uint8_t c[3];} __attribute__((__packed__)) uint8x3_t;
604     uint8x3_t *u24ref = new uint8x3_t[65536];
605     uint8x3_t *u24ary = new uint8x3_t[65536];
606     uint16_t *u16ref = new uint16_t[65536];
607     uint16_t *u16ary = new uint16_t[65536];
608 
609     EXPECT_EQ((size_t)3, sizeof(uint8x3_t)); // 3 bytes per struct
610 
611     // tests prepare_index_array_from_masks()
612     EXPECT_EQ((size_t)4, memcpy_by_index_array_initialization_src_index(NULL, 0, 0x8d, 0x8c));
613     EXPECT_EQ((size_t)3, memcpy_by_index_array_initialization_src_index(NULL, 0, 0x8c, 0x8d));
614 
615     for (size_t i = 0; i < 65536; ++i) {
616         u16ref[i] = i;
617     }
618     memcpy_to_p24_from_i16((uint8_t*)u24ref, (int16_t*)u16ref, 65536);
619 
620     // Test when src mask is 0.  Everything copied is zero.
621     src_mask = 0;
622     dst_mask = 0x8d;
623     memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
624     memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
625             65536 / popcount(dst_mask));
626     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
627     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
628 
629     // Test when dst_mask is 0.  Nothing should be copied.
630     src_mask = 0;
631     dst_mask = 0;
632     memset(u24ary, 0, 65536 * sizeof(u24ary[0]));
633     memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
634             65536);
635     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
636     EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
637 
638     // Test when source mask must copy to dst mask.  One to one copy.
639     src_mask = 0xf;
640     dst_mask = 0xf;
641     memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
642     memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
643     EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
644 
645     // Test when source mask must copy to dst mask.  One to one copy.
646     src_mask = 0xf;
647     dst_mask = 0x8d;
648     memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
649     memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
650     EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
651 
652     // Test with a gap in source:
653     // Input 3 samples, output 4 samples, one zero inserted.
654     src_mask = 0x07;
655     dst_mask = 0x8d;
656     memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
657     memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
658             65536 / popcount(dst_mask));
659     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
660     checkMonotoneOrZero(u16ary, 65536);
661     EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
662 
663     // Test with a gap in destination:
664     // Input 4 samples, output 3 samples, one deleted
665     src_mask = 0x0f;
666     dst_mask = 0x8c;
667     memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
668     memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
669             65536 / popcount(src_mask));
670     memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
671     checkMonotone(u16ary, 65536 * 3 / 4);
672 
673     delete[] u16ref;
674     delete[] u16ary;
675     delete[] u24ref;
676     delete[] u24ary;
677 }
678 
TEST(audio_utils_primitives,updown_mix)679 TEST(audio_utils_primitives, updown_mix) {
680     const size_t size = 32767;
681     std::vector<int16_t> i16ref(size * 2);
682     std::vector<int16_t> i16ary(size * 2);
683 
684     for (size_t i = 0; i < size; ++i) {
685         i16ref[i] = i;
686     }
687     upmix_to_stereo_i16_from_mono_i16(i16ary.data(), i16ref.data(), size);
688     downmix_to_mono_i16_from_stereo_i16(i16ary.data(), i16ary.data(), size);
689 
690     EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), sizeof(i16ref[0]) * size));
691 }
692 
693 template<typename T, typename TComparison>
checkAddedClamped(T * out,const T * in1,const T * in2,size_t size,TComparison limNeg,TComparison limPos)694 void checkAddedClamped(T *out, const T *in1, const T *in2, size_t size,
695         TComparison limNeg, TComparison limPos)
696 {
697     for (size_t i = 0; i < size; ++i) {
698         TComparison added = (TComparison)in1[i] + in2[i];
699         if (added <= limNeg) {
700             EXPECT_EQ(limNeg, out[i]);
701         } else if (added >= limPos) {
702             EXPECT_EQ(limPos, out[i]);
703         } else {
704             EXPECT_EQ(added, out[i]);
705         }
706     }
707 }
708 
checkAddedClampedp24(uint8_t * pary,const uint8_t * in1,const uint8_t * in2,size_t size)709 void checkAddedClampedp24(uint8_t *pary, const uint8_t *in1,
710         const uint8_t *in2, size_t size) {
711     // Convert to q8_23 for comparison.
712     int32_t *outi32ary = new int32_t[size];
713     int32_t *in1i32ary = new int32_t[size];
714     int32_t *in2i32ary = new int32_t[size];
715     memcpy_to_q8_23_from_p24(outi32ary, pary, size);
716     memcpy_to_q8_23_from_p24(in1i32ary, in1, size);
717     memcpy_to_q8_23_from_p24(in2i32ary, in2, size);
718     checkAddedClamped(
719             outi32ary, in1i32ary, in2i32ary, size, lim24neg, lim24pos);
720     delete[] in2i32ary;
721     delete[] in1i32ary;
722     delete[] outi32ary;
723 }
724 
checkAddedClampedu8(uint8_t * out,const uint8_t * in1,const uint8_t * in2,size_t size)725 void checkAddedClampedu8(uint8_t *out, const uint8_t *in1,
726         const uint8_t *in2, size_t size) {
727     // uint8_t data is centered around 0x80, not 0, so checkAddedClamped
728     // won't work. Convert to i16 first.
729     int16_t *outi16ary = new int16_t[size];
730     int16_t *in1i16ary = new int16_t[size];
731     int16_t *in2i16ary = new int16_t[size];
732     memcpy_to_i16_from_u8(outi16ary, out, size);
733     memcpy_to_i16_from_u8(in1i16ary, in1, size);
734     memcpy_to_i16_from_u8(in2i16ary, in2, size);
735     // Only the higher order bits are used.
736     checkAddedClamped(outi16ary, in1i16ary, in2i16ary, size,
737             -0x8000, 0x7f00);
738     delete[] in2i16ary;
739     delete[] in1i16ary;
740     delete[] outi16ary;
741 }
742 
TEST(audio_utils_primitives,accumulate)743 TEST(audio_utils_primitives, accumulate) {
744     int16_t *i16ref = new int16_t[65536];
745     int16_t *i16add = new int16_t[65536];
746     int16_t *i16ary = new int16_t[65536];
747 
748     for (size_t i = 0; i < 65536; ++i) {
749         i16ref[i] = i16ary[i] = i16add[(i+1) % 65536] = i - 32768;
750     }
751 
752     // Test i16.
753     accumulate_i16(i16ary, i16add, 65536);
754     checkAddedClamped(i16ary, i16ref, i16add, 65536, lim16neg,
755             lim16pos);
756 
757     // Test i32.
758     int32_t *i32ary = new int32_t[65536];
759     int32_t *i32add = new int32_t[65536];
760     int32_t *i32ref = new int32_t[65536];
761     // Convert sample data to i32 to perform accumulate function.
762     memcpy_to_i32_from_i16(i32ary, i16ref, 65536);
763     memcpy_to_i32_from_i16(i32add, i16add, 65536);
764     // Ensure the reference matches the inital output after conversion.
765     memcpy(i32ref, i32ary, 65536 * sizeof(i32ary[0]));
766     // Accumulate and check.
767     accumulate_i32(i32ary, i32add, 65536);
768     checkAddedClamped(
769             i32ary, i32ref, i32add, 65536, lim32neg, lim32pos);
770     // Cleanup
771     delete[] i32ref;
772     delete[] i32add;
773     delete[] i32ary;
774 
775     // Test u8.
776     uint8_t *u8ary = new uint8_t[65536];
777     uint8_t *u8add = new uint8_t[65536];
778     uint8_t *u8ref = new uint8_t[65536];
779     // Convert sample data to u8 to perform accumulate function.
780     memcpy_to_u8_from_i16(u8ary, i16ref, 65536);
781     memcpy_to_u8_from_i16(u8add, i16add, 65536);
782     // Ensure the reference matches the inital output after conversion.
783     memcpy(u8ref, u8ary, 65536 * sizeof(u8ary[0]));
784     // Accumulate and check.
785     accumulate_u8(u8ary, u8add, 65536);
786     checkAddedClampedu8(u8ary, u8ref, u8add, 65536);
787     // Cleanup.
788     delete[] u8ref;
789     delete[] u8add;
790     delete[] u8ary;
791 
792     // Test 24 bit packed.
793     uint8_t *pary = new uint8_t[65536 * 3];
794     uint8_t *padd = new uint8_t[65536 * 3];
795     uint8_t *pref = new uint8_t[65536 * 3];
796     // Convert sample data to p24 to perform accumulate function.
797     memcpy_to_p24_from_i16(pary, i16ref, 65536);
798     memcpy_to_p24_from_i16(padd, i16add, 65536);
799     // Ensure the reference matches the inital output after conversion.
800     memcpy(pref, pary, 65536 * sizeof(pary[0]) * 3);
801     // Accumulate and check.
802     accumulate_p24(pary, padd, 65536);
803     checkAddedClampedp24(pary, pref, padd, 65536);
804     // Cleanup.
805     delete[] pref;
806     delete[] padd;
807     delete[] pary;
808 
809     // Test 24 bit unpacked.
810     int32_t *q8_23ary = new int32_t[65536];
811     int32_t *q8_23add = new int32_t[65536];
812     int32_t *q8_23ref = new int32_t[65536];
813     // Convert sample data to q8_23 to perform accumulate function.
814     memcpy_to_q8_23_from_i16(q8_23ary, i16ref, 65536);
815     memcpy_to_q8_23_from_i16(q8_23add, i16add, 65536);
816     // Ensure the reference matches the inital output after conversion.
817     memcpy(q8_23ref, q8_23ary, 65536 * sizeof(q8_23ary[0]));
818     // Accumulate and check.
819     accumulate_q8_23(q8_23ary, q8_23add, 65536);
820     checkAddedClamped(
821             q8_23ary, q8_23ref, q8_23add, 65536, lim24neg, lim24pos);
822     // Cleanup.
823     delete[] q8_23ref;
824     delete[] q8_23add;
825     delete[] q8_23ary;
826 
827     // Test float.
828     float *fary = new float[65536];
829     float *fadd = new float[65536];
830     float *fref = new float[65536];
831     // Convert sample data to float to perform accumulate function.
832     memcpy_to_float_from_i16(fary, i16ref, 65536);
833     memcpy_to_float_from_i16(fadd, i16add, 65536);
834     // Ensure the reference matches the inital output after conversion.
835     memcpy(fref, fary, 65536 * sizeof(fary[0]));
836     // Accumulate and check. Floats aren't clamped by accumulate,
837     // but given the input is in the [-1.0, 1.0) range output should be in
838     // [-2.0, 2.0) range.
839     accumulate_float(fary, fadd, 65536);
840     checkAddedClamped(fary, fref, fadd, 65536, -2.0f, 2.0f);
841     // Cleanup.
842     delete[] fref;
843     delete[] fadd;
844     delete[] fary;
845 
846     delete[] i16ary;
847     delete[] i16add;
848     delete[] i16ref;
849 }
850 
851 
TEST(audio_utils_primitives,MemcpyToFloatFromFloatWithClamping)852 TEST(audio_utils_primitives, MemcpyToFloatFromFloatWithClamping) {
853     std::vector<float> src = {-INFINITY, -2, -1, -0, 0, 0.009, 1.000001, 9999999, INFINITY, NAN};
854     std::vector<float> dst(src.size());
855     float absMax = 1;
856     std::vector<float> expected = {-1, -1, -1, -0, 0, 0.009, 1, 1, 1, 1};
857     ASSERT_EQ(expected.size(), src.size());
858 
859     memcpy_to_float_from_float_with_clamping(dst.data(), src.data(), src.size(), absMax);
860 
861     ASSERT_EQ(dst, expected) << "src=" << testing::PrintToString(src);
862 }
863