1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "audio_utils_primitives_tests"
19
20 #include <math.h>
21 #include <vector>
22
23 #include <gtest/gtest.h>
24 #include <log/log.h>
25
26 #include <audio_utils/primitives.h>
27 #include <audio_utils/format.h>
28 #include <audio_utils/channels.h>
29
30 #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
31
32 static const int32_t lim8pos = 255;
33 static const int32_t lim8neg = 0;
34 static const int32_t lim16pos = (1 << 15) - 1;
35 static const int32_t lim16neg = -(1 << 15);
36 static const int32_t lim24pos = (1 << 23) - 1;
37 static const int32_t lim24neg = -(1 << 23);
38 static const int64_t lim32pos = 0x000000007fffffff;
39 static const int64_t lim32neg = 0xffffffff80000000;
40
41 // Use memset here since it is generally the fastest method of clearing data,
42 // but could be changed to std::fill or assignment should those prove faster.
43 template <typename T>
zeroFill(T & container)44 static void zeroFill(T &container) {
45 memset(container.data(), 0, container.size() * sizeof(container[0]));
46 }
47
testClamp8(float f)48 inline void testClamp8(float f)
49 {
50 // f is in native u8 scaling to test rounding
51 uint8_t uval = clamp8_from_float((f - 128) / (1 << 7));
52
53 // test clamping
54 ALOGV("clamp8_from_float(%f) = %u\n", f, uval);
55 if (f > lim8pos) {
56 EXPECT_EQ(lim8pos, uval);
57 } else if (f < lim8neg) {
58 EXPECT_EQ(lim8neg, uval);
59 }
60
61 // if in range, make sure round trip clamp and conversion is correct.
62 if (f < lim8pos - 1. && f > lim8neg + 1.) {
63 uint8_t uval2 = clamp8_from_float(float_from_u8(uval));
64 int diff = abs(uval - uval2);
65 EXPECT_LE(diff, 1);
66 }
67 }
68
testClamp16(float f)69 inline void testClamp16(float f)
70 {
71 int16_t ival = clamp16_from_float(f / (1 << 15));
72
73 // test clamping
74 ALOGV("clamp16_from_float(%f) = %d\n", f, ival);
75 if (f > lim16pos) {
76 EXPECT_EQ(lim16pos, ival);
77 } else if (f < lim16neg) {
78 EXPECT_EQ(lim16neg, ival);
79 }
80
81 // if in range, make sure round trip clamp and conversion is correct.
82 if (f < lim16pos - 1. && f > lim16neg + 1.) {
83 int ival2 = clamp16_from_float(float_from_i16(ival));
84 int diff = abs(ival - ival2);
85 EXPECT_LE(diff, 1);
86 }
87 }
88
testClamp24(float f)89 inline void testClamp24(float f)
90 {
91 int32_t ival = clamp24_from_float(f / (1 << 23));
92
93 // test clamping
94 ALOGV("clamp24_from_float(%f) = %d\n", f, ival);
95 if (f > lim24pos) {
96 EXPECT_EQ(lim24pos, ival);
97 } else if (f < lim24neg) {
98 EXPECT_EQ(lim24neg, ival);
99 }
100
101 // if in range, make sure round trip clamp and conversion is correct.
102 if (f < lim24pos - 1. && f > lim24neg + 1.) {
103 int ival2 = clamp24_from_float(float_from_q8_23(ival));
104 int diff = abs(ival - ival2);
105 EXPECT_LE(diff, 1);
106 }
107 }
108
109 template<typename T>
checkMonotone(const T * ary,size_t size)110 void checkMonotone(const T *ary, size_t size)
111 {
112 for (size_t i = 1; i < size; ++i) {
113 EXPECT_LT(ary[i-1], ary[i]);
114 }
115 }
116
checkMonotonep24(uint8_t * pary,size_t size)117 void checkMonotonep24(uint8_t * pary, size_t size)
118 {
119 size_t frames = size/3;
120 for (size_t i = 1; i < frames; ++i) {
121 EXPECT_LT(i32_from_p24(pary + 3*(i-1)), i32_from_p24(pary + 3*i));
122 }
123 }
124
TEST(audio_utils_primitives,clamp_to_int)125 TEST(audio_utils_primitives, clamp_to_int) {
126 static const float testArray[] = {
127 -NAN, -INFINITY,
128 -1.e20, -32768., 63.9,
129 -3.5, -3.4, -2.5, 2.4, -1.5, -1.4, -0.5, -0.2, 0., 0.2, 0.5, 0.8,
130 1.4, 1.5, 1.8, 2.4, 2.5, 2.6, 3.4, 3.5,
131 32767., 32768., 1.e20,
132 INFINITY, NAN };
133
134 for (size_t i = 0; i < ARRAY_SIZE(testArray); ++i) {
135 testClamp8(testArray[i]);
136 }
137 for (size_t i = 0; i < ARRAY_SIZE(testArray); ++i) {
138 testClamp16(testArray[i]);
139 }
140 for (size_t i = 0; i < ARRAY_SIZE(testArray); ++i) {
141 testClamp24(testArray[i]);
142 }
143
144 // used for ULP testing (tweaking the lsb of the float)
145 union {
146 int32_t i;
147 float f;
148 } val;
149 int32_t res;
150
151 // check clampq4_27_from_float()
152 val.f = 16.;
153 res = clampq4_27_from_float(val.f);
154 EXPECT_EQ(0x7fffffff, res);
155 val.i--;
156 res = clampq4_27_from_float(val.f);
157 EXPECT_LE(res, 0x7fffffff);
158 EXPECT_GE(res, 0x7fff0000);
159 val.f = -16.;
160 res = clampq4_27_from_float(val.f);
161 EXPECT_EQ((int32_t)0x80000000, res); // negative
162 val.i++;
163 res = clampq4_27_from_float(val.f);
164 EXPECT_GE(res, (int32_t)0x80000000); // negative
165 EXPECT_LE(res, (int32_t)0x80008000); // negative
166
167 // check u4_28_from_float and u4_12_from_float
168 uint32_t ures;
169 uint16_t ures16;
170 val.f = 16.;
171 ures = u4_28_from_float(val.f);
172 EXPECT_EQ(0xffffffff, ures);
173 ures16 = u4_12_from_float(val.f);
174 EXPECT_EQ(0xffff, ures16);
175
176 val.f = -1.;
177 ures = u4_28_from_float(val.f);
178 EXPECT_EQ((uint32_t)0, ures);
179 ures16 = u4_12_from_float(val.f);
180 EXPECT_EQ(0, ures16);
181
182 // check float_from_u4_28 and float_from_u4_12 (roundtrip)
183 for (uint32_t v = 0x100000; v <= 0xff000000; v += 0x100000) {
184 ures = u4_28_from_float(float_from_u4_28(v));
185 EXPECT_EQ(ures, v);
186 }
187 for (uint32_t v = 0; v <= 0xffff; ++v) { // uint32_t prevents overflow
188 ures16 = u4_12_from_float(float_from_u4_12(v));
189 EXPECT_EQ(ures16, v);
190 }
191
192 // check infinity
193 EXPECT_EQ(0, clamp8_from_float(-INFINITY));
194 EXPECT_EQ(255, clamp8_from_float(INFINITY));
195 }
196
TEST(audio_utils_primitives,memcpy)197 TEST(audio_utils_primitives, memcpy) {
198 // test round-trip.
199 constexpr size_t size = 65536;
200 std::vector<int16_t> i16ref(size);
201 std::vector<int16_t> i16ary(size);
202 std::vector<int32_t> i32ary(size);
203 std::vector<float> fary(size);
204 std::vector<uint8_t> pary(size * 3);
205
206
207 // set signed reference monotonic array from -32768 to 32767
208 for (size_t i = 0; i < i16ref.size(); ++i) {
209 i16ref[i] = i16ary[i] = i - 32768;
210 }
211
212 // do round-trip testing i16 and float
213 memcpy_to_float_from_i16(fary.data(), i16ary.data(), fary.size());
214 zeroFill(i16ary);
215 checkMonotone(fary.data(), fary.size());
216
217 memcpy_to_i16_from_float(i16ary.data(), fary.data(), i16ary.size());
218 zeroFill(fary);
219 checkMonotone(i16ary.data(), i16ary.size());
220
221 // TODO make a template case for the following?
222
223 // do round-trip testing p24 to i16 and float
224 memcpy_to_p24_from_i16(pary.data(), i16ary.data(), size /* note pary elem is 3 bytes */);
225 zeroFill(i16ary);
226
227 // check an intermediate format at a position(???)
228 #if 0
229 printf("pary[%d].0 = %u pary[%d].1 = %u pary[%d].2 = %u\n",
230 1025, (unsigned) pary[1025*3],
231 1025, (unsigned) pary[1025*3+1],
232 1025, (unsigned) pary[1025*3+2]
233 );
234 #endif
235
236 memcpy_to_float_from_p24(fary.data(), pary.data(), fary.size());
237 zeroFill(pary);
238 checkMonotone(fary.data(), fary.size());
239
240 memcpy_to_p24_from_float(pary.data(), fary.data(), size /* note pary elem is 3 bytes */);
241 zeroFill(fary);
242 checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
243
244 memcpy_to_i16_from_p24(i16ary.data(), pary.data(), i16ary.size());
245 zeroFill(pary);
246 checkMonotone(i16ary.data(), i16ary.size());
247
248 // do round-trip testing q8_23 to i16 and float
249 memcpy_to_q8_23_from_i16(i32ary.data(), i16ary.data(), i32ary.size());
250 zeroFill(i16ary);
251 checkMonotone(i32ary.data(), i32ary.size());
252
253 memcpy_to_float_from_q8_23(fary.data(), i32ary.data(), fary.size());
254 zeroFill(i32ary);
255 checkMonotone(fary.data(), fary.size());
256
257 memcpy_to_q8_23_from_float_with_clamp(i32ary.data(), fary.data(), i32ary.size());
258 zeroFill(fary);
259 checkMonotone(i32ary.data(), i32ary.size());
260
261 memcpy_to_i16_from_q8_23(i16ary.data(), i32ary.data(), i16ary.size());
262 zeroFill(i32ary);
263 checkMonotone(i16ary.data(), i16ary.size());
264
265 // do round-trip testing i32 to i16 and float
266 memcpy_to_i32_from_i16(i32ary.data(), i16ary.data(), i32ary.size());
267 zeroFill(i16ary);
268 checkMonotone(i32ary.data(), i32ary.size());
269
270 memcpy_to_float_from_i32(fary.data(), i32ary.data(), fary.size());
271 zeroFill(i32ary);
272 checkMonotone(fary.data(), fary.size());
273
274 memcpy_to_i32_from_float(i32ary.data(), fary.data(), i32ary.size());
275 zeroFill(fary);
276 checkMonotone(i32ary.data(), i32ary.size());
277
278 memcpy_to_i16_from_i32(i16ary.data(), i32ary.data(), i16ary.size());
279 zeroFill(i32ary);
280 checkMonotone(i16ary.data(), i16ary.size());
281
282 // do round-trip test i16 -> p24 -> i32 -> p24 -> q8_23 -> p24 -> i16
283 memcpy_to_p24_from_i16(pary.data(), i16ary.data(), size /* note pary elem is 3 bytes */);
284 zeroFill(i16ary);
285 checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
286
287 memcpy_to_i32_from_p24(i32ary.data(), pary.data(), i32ary.size());
288 zeroFill(pary);
289 checkMonotone(i32ary.data(), i32ary.size());
290
291 memcpy_to_p24_from_i32(pary.data(), i32ary.data(), size /* note pary elem is 3 bytes */);
292 zeroFill(i32ary);
293 checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
294
295 memcpy_to_q8_23_from_p24(i32ary.data(), pary.data(), i32ary.size());
296 zeroFill(pary);
297 checkMonotone(i32ary.data(), i32ary.size());
298
299 memcpy_to_p24_from_q8_23(pary.data(), i32ary.data(), size /* note pary elem is 3 bytes */);
300 zeroFill(i32ary);
301 checkMonotonep24(pary.data(), pary.size() /* this is * 3*/);
302
303 memcpy_to_i16_from_p24(i16ary.data(), pary.data(), i16ary.size());
304 zeroFill(pary);
305 checkMonotone(i16ary.data(), i16ary.size());
306
307 // do partial round-trip testing q4_27 to i16 and float
308 memcpy_to_float_from_i16(fary.data(), i16ary.data(), fary.size());
309 zeroFill(i16ary);
310
311 memcpy_to_q4_27_from_float(i32ary.data(), fary.data(), i32ary.size());
312 zeroFill(fary);
313 checkMonotone(i32ary.data(), i32ary.size());
314
315 memcpy_to_i16_from_q4_27(i16ary.data(), i32ary.data(), i16ary.size());
316 checkMonotone(i16ary.data(), i16ary.size());
317 EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), i16ary.size() * sizeof(i16ary[0])));
318
319 zeroFill(i16ary);
320
321 // ditherAndClamp() has non-standard parameters - memcpy_to_float_from_q4_27() is preferred
322 ditherAndClamp(reinterpret_cast<int32_t *>(i16ary.data()),
323 i32ary.data(), i16ary.size() / 2);
324 checkMonotone(i16ary.data(), i16ary.size());
325 EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), i16ary.size() * sizeof(i16ary[0])));
326
327 memcpy_to_float_from_q4_27(fary.data(), i32ary.data(), fary.size());
328 zeroFill(i32ary);
329 checkMonotone(fary.data(), fary.size());
330
331 // at the end, our i16ary must be the same. (Monotone should be equivalent to this)
332 EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), i16ary.size() * sizeof(i16ary[0])));
333
334 // test round-trip for u8 and float.
335 constexpr size_t u8size = 256;
336 std::vector<uint8_t> u8ref(u8size);
337 std::vector<uint8_t> u8ary(u8size);
338
339 for (size_t i = 0; i < u8ref.size(); ++i) {
340 u8ref[i] = i;
341 }
342
343 constexpr size_t testsize = std::min(u8size, size);
344 memcpy_to_float_from_u8(fary.data(), u8ref.data(), testsize);
345 memcpy_to_u8_from_float(u8ary.data(), fary.data(), testsize);
346
347 EXPECT_EQ(0, memcmp(u8ary.data(), u8ref.data(), u8ary.size() * sizeof(u8ary[0])));
348 }
349
350 template<typename T>
checkMonotoneOrZero(const T * ary,size_t size)351 void checkMonotoneOrZero(const T *ary, size_t size)
352 {
353 T least = 0;
354
355 for (size_t i = 1; i < size; ++i) {
356 if (ary[i]) {
357 EXPECT_LT(least, ary[i]);
358 least = ary[i];
359 }
360 }
361 }
362
TEST(audio_utils_primitives,memcpy_by_channel_mask)363 TEST(audio_utils_primitives, memcpy_by_channel_mask) {
364 uint32_t dst_mask;
365 uint32_t src_mask;
366 uint16_t *u16ref = new uint16_t[65536];
367 uint16_t *u16ary = new uint16_t[65536];
368
369 for (size_t i = 0; i < 65536; ++i) {
370 u16ref[i] = i;
371 }
372
373 // Test when src mask is 0. Everything copied is zero.
374 src_mask = 0;
375 dst_mask = 0x8d;
376 memset(u16ary, 0x99, 65536 * sizeof(u16ref[0]));
377 memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
378 65536 / popcount(dst_mask));
379 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
380
381 // Test when dst_mask is 0. Nothing should be copied.
382 src_mask = 0;
383 dst_mask = 0;
384 memset(u16ary, 0, 65536 * sizeof(u16ref[0]));
385 memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
386 65536);
387 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
388
389 // Test when masks are the same. One to one copy.
390 src_mask = dst_mask = 0x8d;
391 memset(u16ary, 0x99, 65536 * sizeof(u16ref[0]));
392 memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]), 555);
393 EXPECT_EQ(0, memcmp(u16ary, u16ref, 555 * sizeof(u16ref[0]) * popcount(dst_mask)));
394
395 // Test with a gap in source:
396 // Input 3 samples, output 4 samples, one zero inserted.
397 src_mask = 0x8c;
398 dst_mask = 0x8d;
399 memset(u16ary, 0x9, 65536 * sizeof(u16ary[0]));
400 memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
401 65536 / popcount(dst_mask));
402 checkMonotoneOrZero(u16ary, 65536);
403 EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
404
405 // Test with a gap in destination:
406 // Input 4 samples, output 3 samples, one deleted
407 src_mask = 0x8d;
408 dst_mask = 0x8c;
409 memset(u16ary, 0x9, 65536 * sizeof(u16ary[0]));
410 memcpy_by_channel_mask(u16ary, dst_mask, u16ref, src_mask, sizeof(u16ref[0]),
411 65536 / popcount(src_mask));
412 checkMonotone(u16ary, 65536 * 3 / 4);
413
414 delete[] u16ref;
415 delete[] u16ary;
416 }
417
memcpy_by_channel_mask2(void * dst,uint32_t dst_mask,const void * src,uint32_t src_mask,size_t sample_size,size_t count)418 void memcpy_by_channel_mask2(void *dst, uint32_t dst_mask,
419 const void *src, uint32_t src_mask, size_t sample_size, size_t count)
420 {
421 int8_t idxary[32];
422 uint32_t src_channels = popcount(src_mask);
423 uint32_t dst_channels =
424 memcpy_by_index_array_initialization(idxary, 32, dst_mask, src_mask);
425
426 memcpy_by_index_array(dst, dst_channels, src, src_channels, idxary, sample_size, count);
427 }
428
429 // a modified version of the memcpy_by_channel_mask test
430 // but using 24 bit type and memcpy_by_index_array()
TEST(audio_utils_primitives,memcpy_by_index_array)431 TEST(audio_utils_primitives, memcpy_by_index_array) {
432 uint32_t dst_mask;
433 uint32_t src_mask;
434 typedef struct {uint8_t c[3];} __attribute__((__packed__)) uint8x3_t;
435 uint8x3_t *u24ref = new uint8x3_t[65536];
436 uint8x3_t *u24ary = new uint8x3_t[65536];
437 uint16_t *u16ref = new uint16_t[65536];
438 uint16_t *u16ary = new uint16_t[65536];
439
440 EXPECT_EQ((size_t)3, sizeof(uint8x3_t)); // 3 bytes per struct
441
442 // tests prepare_index_array_from_masks()
443 EXPECT_EQ((size_t)4, memcpy_by_index_array_initialization(NULL, 0, 0x8d, 0x8c));
444 EXPECT_EQ((size_t)3, memcpy_by_index_array_initialization(NULL, 0, 0x8c, 0x8d));
445
446 for (size_t i = 0; i < 65536; ++i) {
447 u16ref[i] = i;
448 }
449 memcpy_to_p24_from_i16((uint8_t*)u24ref, (int16_t*)u16ref, 65536);
450
451 // Test when src mask is 0. Everything copied is zero.
452 src_mask = 0;
453 dst_mask = 0x8d;
454 memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
455 memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
456 65536 / popcount(dst_mask));
457 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
458 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
459
460 // Test when dst_mask is 0. Nothing should be copied.
461 src_mask = 0;
462 dst_mask = 0;
463 memset(u24ary, 0, 65536 * sizeof(u24ary[0]));
464 memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
465 65536);
466 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
467 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
468
469 // Test when masks are the same. One to one copy.
470 src_mask = dst_mask = 0x8d;
471 memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
472 memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
473 EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
474
475 // Test with a gap in source:
476 // Input 3 samples, output 4 samples, one zero inserted.
477 src_mask = 0x8c;
478 dst_mask = 0x8d;
479 memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
480 memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
481 65536 / popcount(dst_mask));
482 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
483 checkMonotoneOrZero(u16ary, 65536);
484 EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
485
486 // Test with a gap in destination:
487 // Input 4 samples, output 3 samples, one deleted
488 src_mask = 0x8d;
489 dst_mask = 0x8c;
490 memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
491 memcpy_by_channel_mask2(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
492 65536 / popcount(src_mask));
493 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
494 checkMonotone(u16ary, 65536 * 3 / 4);
495
496 delete[] u16ref;
497 delete[] u16ary;
498 delete[] u24ref;
499 delete[] u24ary;
500 }
501
memcpy_by_channel_mask_dst_index(void * dst,uint32_t dst_mask,const void * src,uint32_t src_mask,size_t sample_size,size_t count)502 void memcpy_by_channel_mask_dst_index(void *dst, uint32_t dst_mask,
503 const void *src, uint32_t src_mask, size_t sample_size, size_t count)
504 {
505 int8_t idxary[32];
506 uint32_t src_channels = popcount(src_mask);
507 uint32_t dst_channels =
508 memcpy_by_index_array_initialization_dst_index(idxary, 32, dst_mask, src_mask);
509
510 memcpy_by_index_array(dst, dst_channels, src, src_channels, idxary, sample_size, count);
511 }
512
513 // a modified version of the memcpy_by_channel_mask test
514 // but using 24 bit type and memcpy_by_index_array()
TEST(audio_utils_primitives,memcpy_by_index_array_dst_index)515 TEST(audio_utils_primitives, memcpy_by_index_array_dst_index) {
516 uint32_t dst_mask;
517 uint32_t src_mask;
518 typedef struct {uint8_t c[3];} __attribute__((__packed__)) uint8x3_t;
519 uint8x3_t *u24ref = new uint8x3_t[65536];
520 uint8x3_t *u24ary = new uint8x3_t[65536];
521 uint16_t *u16ref = new uint16_t[65536];
522 uint16_t *u16ary = new uint16_t[65536];
523
524 EXPECT_EQ((size_t)3, sizeof(uint8x3_t)); // 3 bytes per struct
525
526 // tests prepare_index_array_from_masks()
527 EXPECT_EQ((size_t)4, memcpy_by_index_array_initialization_dst_index(NULL, 0, 0x8d, 0x8c));
528 EXPECT_EQ((size_t)3, memcpy_by_index_array_initialization_dst_index(NULL, 0, 0x8c, 0x8d));
529
530 for (size_t i = 0; i < 65536; ++i) {
531 u16ref[i] = i;
532 }
533 memcpy_to_p24_from_i16((uint8_t*)u24ref, (int16_t*)u16ref, 65536);
534
535 // Test when src mask is 0. Everything copied is zero.
536 src_mask = 0;
537 dst_mask = 0x8d;
538 memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
539 memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
540 65536 / popcount(dst_mask));
541 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
542 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
543
544 // Test when dst_mask is 0. Nothing should be copied.
545 src_mask = 0;
546 dst_mask = 0;
547 memset(u24ary, 0, 65536 * sizeof(u24ary[0]));
548 memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
549 65536);
550 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
551 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
552
553 // Test when dst mask equals source count size. One to one copy.
554 src_mask = 0x8d;
555 dst_mask = 0x0f;
556 memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
557 memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
558 EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
559
560 // Test with a gap in source:
561 // Input 3 samples, output 4 samples, one zero inserted.
562 src_mask = 0x8c;
563 dst_mask = 0x0f;
564 memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
565 memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
566 65536 / popcount(dst_mask));
567 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
568 checkMonotoneOrZero(u16ary, 65536);
569 EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
570
571 // Test with a gap in destination:
572 // Input 4 samples, output 3 samples, one deleted
573 src_mask = 0x8d;
574 dst_mask = 0x07;
575 memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
576 memcpy_by_channel_mask_dst_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
577 65536 / popcount(src_mask));
578 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
579 checkMonotone(u16ary, 65536 * 3 / 4);
580
581 delete[] u16ref;
582 delete[] u16ary;
583 delete[] u24ref;
584 delete[] u24ary;
585 }
586
memcpy_by_channel_mask_src_index(void * dst,uint32_t dst_mask,const void * src,uint32_t src_mask,size_t sample_size,size_t count)587 void memcpy_by_channel_mask_src_index(void *dst, uint32_t dst_mask,
588 const void *src, uint32_t src_mask, size_t sample_size, size_t count)
589 {
590 int8_t idxary[32];
591 uint32_t src_channels = popcount(src_mask);
592 uint32_t dst_channels =
593 memcpy_by_index_array_initialization_src_index(idxary, 32, dst_mask, src_mask);
594
595 memcpy_by_index_array(dst, dst_channels, src, src_channels, idxary, sample_size, count);
596 }
597
598 // a modified version of the memcpy_by_channel_mask test
599 // but using 24 bit type and memcpy_by_index_array()
TEST(audio_utils_primitives,memcpy_by_index_array_src_index)600 TEST(audio_utils_primitives, memcpy_by_index_array_src_index) {
601 uint32_t dst_mask;
602 uint32_t src_mask;
603 typedef struct {uint8_t c[3];} __attribute__((__packed__)) uint8x3_t;
604 uint8x3_t *u24ref = new uint8x3_t[65536];
605 uint8x3_t *u24ary = new uint8x3_t[65536];
606 uint16_t *u16ref = new uint16_t[65536];
607 uint16_t *u16ary = new uint16_t[65536];
608
609 EXPECT_EQ((size_t)3, sizeof(uint8x3_t)); // 3 bytes per struct
610
611 // tests prepare_index_array_from_masks()
612 EXPECT_EQ((size_t)4, memcpy_by_index_array_initialization_src_index(NULL, 0, 0x8d, 0x8c));
613 EXPECT_EQ((size_t)3, memcpy_by_index_array_initialization_src_index(NULL, 0, 0x8c, 0x8d));
614
615 for (size_t i = 0; i < 65536; ++i) {
616 u16ref[i] = i;
617 }
618 memcpy_to_p24_from_i16((uint8_t*)u24ref, (int16_t*)u16ref, 65536);
619
620 // Test when src mask is 0. Everything copied is zero.
621 src_mask = 0;
622 dst_mask = 0x8d;
623 memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
624 memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
625 65536 / popcount(dst_mask));
626 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
627 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
628
629 // Test when dst_mask is 0. Nothing should be copied.
630 src_mask = 0;
631 dst_mask = 0;
632 memset(u24ary, 0, 65536 * sizeof(u24ary[0]));
633 memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
634 65536);
635 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
636 EXPECT_EQ((size_t)0, nonZeroMono16((int16_t*)u16ary, 65530));
637
638 // Test when source mask must copy to dst mask. One to one copy.
639 src_mask = 0xf;
640 dst_mask = 0xf;
641 memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
642 memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
643 EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
644
645 // Test when source mask must copy to dst mask. One to one copy.
646 src_mask = 0xf;
647 dst_mask = 0x8d;
648 memset(u24ary, 0x99, 65536 * sizeof(u24ary[0]));
649 memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]), 555);
650 EXPECT_EQ(0, memcmp(u24ary, u24ref, 555 * sizeof(u24ref[0]) * popcount(dst_mask)));
651
652 // Test with a gap in source:
653 // Input 3 samples, output 4 samples, one zero inserted.
654 src_mask = 0x07;
655 dst_mask = 0x8d;
656 memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
657 memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
658 65536 / popcount(dst_mask));
659 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
660 checkMonotoneOrZero(u16ary, 65536);
661 EXPECT_EQ((size_t)(65536 * 3 / 4 - 1), nonZeroMono16((int16_t*)u16ary, 65536));
662
663 // Test with a gap in destination:
664 // Input 4 samples, output 3 samples, one deleted
665 src_mask = 0x0f;
666 dst_mask = 0x8c;
667 memset(u24ary, 0x9, 65536 * sizeof(u24ary[0]));
668 memcpy_by_channel_mask_src_index(u24ary, dst_mask, u24ref, src_mask, sizeof(u24ref[0]),
669 65536 / popcount(src_mask));
670 memcpy_to_i16_from_p24((int16_t*)u16ary, (uint8_t*)u24ary, 65536);
671 checkMonotone(u16ary, 65536 * 3 / 4);
672
673 delete[] u16ref;
674 delete[] u16ary;
675 delete[] u24ref;
676 delete[] u24ary;
677 }
678
TEST(audio_utils_primitives,updown_mix)679 TEST(audio_utils_primitives, updown_mix) {
680 const size_t size = 32767;
681 std::vector<int16_t> i16ref(size * 2);
682 std::vector<int16_t> i16ary(size * 2);
683
684 for (size_t i = 0; i < size; ++i) {
685 i16ref[i] = i;
686 }
687 upmix_to_stereo_i16_from_mono_i16(i16ary.data(), i16ref.data(), size);
688 downmix_to_mono_i16_from_stereo_i16(i16ary.data(), i16ary.data(), size);
689
690 EXPECT_EQ(0, memcmp(i16ary.data(), i16ref.data(), sizeof(i16ref[0]) * size));
691 }
692
693 template<typename T, typename TComparison>
checkAddedClamped(T * out,const T * in1,const T * in2,size_t size,TComparison limNeg,TComparison limPos)694 void checkAddedClamped(T *out, const T *in1, const T *in2, size_t size,
695 TComparison limNeg, TComparison limPos)
696 {
697 for (size_t i = 0; i < size; ++i) {
698 TComparison added = (TComparison)in1[i] + in2[i];
699 if (added <= limNeg) {
700 EXPECT_EQ(limNeg, out[i]);
701 } else if (added >= limPos) {
702 EXPECT_EQ(limPos, out[i]);
703 } else {
704 EXPECT_EQ(added, out[i]);
705 }
706 }
707 }
708
checkAddedClampedp24(uint8_t * pary,const uint8_t * in1,const uint8_t * in2,size_t size)709 void checkAddedClampedp24(uint8_t *pary, const uint8_t *in1,
710 const uint8_t *in2, size_t size) {
711 // Convert to q8_23 for comparison.
712 int32_t *outi32ary = new int32_t[size];
713 int32_t *in1i32ary = new int32_t[size];
714 int32_t *in2i32ary = new int32_t[size];
715 memcpy_to_q8_23_from_p24(outi32ary, pary, size);
716 memcpy_to_q8_23_from_p24(in1i32ary, in1, size);
717 memcpy_to_q8_23_from_p24(in2i32ary, in2, size);
718 checkAddedClamped(
719 outi32ary, in1i32ary, in2i32ary, size, lim24neg, lim24pos);
720 delete[] in2i32ary;
721 delete[] in1i32ary;
722 delete[] outi32ary;
723 }
724
checkAddedClampedu8(uint8_t * out,const uint8_t * in1,const uint8_t * in2,size_t size)725 void checkAddedClampedu8(uint8_t *out, const uint8_t *in1,
726 const uint8_t *in2, size_t size) {
727 // uint8_t data is centered around 0x80, not 0, so checkAddedClamped
728 // won't work. Convert to i16 first.
729 int16_t *outi16ary = new int16_t[size];
730 int16_t *in1i16ary = new int16_t[size];
731 int16_t *in2i16ary = new int16_t[size];
732 memcpy_to_i16_from_u8(outi16ary, out, size);
733 memcpy_to_i16_from_u8(in1i16ary, in1, size);
734 memcpy_to_i16_from_u8(in2i16ary, in2, size);
735 // Only the higher order bits are used.
736 checkAddedClamped(outi16ary, in1i16ary, in2i16ary, size,
737 -0x8000, 0x7f00);
738 delete[] in2i16ary;
739 delete[] in1i16ary;
740 delete[] outi16ary;
741 }
742
TEST(audio_utils_primitives,accumulate)743 TEST(audio_utils_primitives, accumulate) {
744 int16_t *i16ref = new int16_t[65536];
745 int16_t *i16add = new int16_t[65536];
746 int16_t *i16ary = new int16_t[65536];
747
748 for (size_t i = 0; i < 65536; ++i) {
749 i16ref[i] = i16ary[i] = i16add[(i+1) % 65536] = i - 32768;
750 }
751
752 // Test i16.
753 accumulate_i16(i16ary, i16add, 65536);
754 checkAddedClamped(i16ary, i16ref, i16add, 65536, lim16neg,
755 lim16pos);
756
757 // Test i32.
758 int32_t *i32ary = new int32_t[65536];
759 int32_t *i32add = new int32_t[65536];
760 int32_t *i32ref = new int32_t[65536];
761 // Convert sample data to i32 to perform accumulate function.
762 memcpy_to_i32_from_i16(i32ary, i16ref, 65536);
763 memcpy_to_i32_from_i16(i32add, i16add, 65536);
764 // Ensure the reference matches the inital output after conversion.
765 memcpy(i32ref, i32ary, 65536 * sizeof(i32ary[0]));
766 // Accumulate and check.
767 accumulate_i32(i32ary, i32add, 65536);
768 checkAddedClamped(
769 i32ary, i32ref, i32add, 65536, lim32neg, lim32pos);
770 // Cleanup
771 delete[] i32ref;
772 delete[] i32add;
773 delete[] i32ary;
774
775 // Test u8.
776 uint8_t *u8ary = new uint8_t[65536];
777 uint8_t *u8add = new uint8_t[65536];
778 uint8_t *u8ref = new uint8_t[65536];
779 // Convert sample data to u8 to perform accumulate function.
780 memcpy_to_u8_from_i16(u8ary, i16ref, 65536);
781 memcpy_to_u8_from_i16(u8add, i16add, 65536);
782 // Ensure the reference matches the inital output after conversion.
783 memcpy(u8ref, u8ary, 65536 * sizeof(u8ary[0]));
784 // Accumulate and check.
785 accumulate_u8(u8ary, u8add, 65536);
786 checkAddedClampedu8(u8ary, u8ref, u8add, 65536);
787 // Cleanup.
788 delete[] u8ref;
789 delete[] u8add;
790 delete[] u8ary;
791
792 // Test 24 bit packed.
793 uint8_t *pary = new uint8_t[65536 * 3];
794 uint8_t *padd = new uint8_t[65536 * 3];
795 uint8_t *pref = new uint8_t[65536 * 3];
796 // Convert sample data to p24 to perform accumulate function.
797 memcpy_to_p24_from_i16(pary, i16ref, 65536);
798 memcpy_to_p24_from_i16(padd, i16add, 65536);
799 // Ensure the reference matches the inital output after conversion.
800 memcpy(pref, pary, 65536 * sizeof(pary[0]) * 3);
801 // Accumulate and check.
802 accumulate_p24(pary, padd, 65536);
803 checkAddedClampedp24(pary, pref, padd, 65536);
804 // Cleanup.
805 delete[] pref;
806 delete[] padd;
807 delete[] pary;
808
809 // Test 24 bit unpacked.
810 int32_t *q8_23ary = new int32_t[65536];
811 int32_t *q8_23add = new int32_t[65536];
812 int32_t *q8_23ref = new int32_t[65536];
813 // Convert sample data to q8_23 to perform accumulate function.
814 memcpy_to_q8_23_from_i16(q8_23ary, i16ref, 65536);
815 memcpy_to_q8_23_from_i16(q8_23add, i16add, 65536);
816 // Ensure the reference matches the inital output after conversion.
817 memcpy(q8_23ref, q8_23ary, 65536 * sizeof(q8_23ary[0]));
818 // Accumulate and check.
819 accumulate_q8_23(q8_23ary, q8_23add, 65536);
820 checkAddedClamped(
821 q8_23ary, q8_23ref, q8_23add, 65536, lim24neg, lim24pos);
822 // Cleanup.
823 delete[] q8_23ref;
824 delete[] q8_23add;
825 delete[] q8_23ary;
826
827 // Test float.
828 float *fary = new float[65536];
829 float *fadd = new float[65536];
830 float *fref = new float[65536];
831 // Convert sample data to float to perform accumulate function.
832 memcpy_to_float_from_i16(fary, i16ref, 65536);
833 memcpy_to_float_from_i16(fadd, i16add, 65536);
834 // Ensure the reference matches the inital output after conversion.
835 memcpy(fref, fary, 65536 * sizeof(fary[0]));
836 // Accumulate and check. Floats aren't clamped by accumulate,
837 // but given the input is in the [-1.0, 1.0) range output should be in
838 // [-2.0, 2.0) range.
839 accumulate_float(fary, fadd, 65536);
840 checkAddedClamped(fary, fref, fadd, 65536, -2.0f, 2.0f);
841 // Cleanup.
842 delete[] fref;
843 delete[] fadd;
844 delete[] fary;
845
846 delete[] i16ary;
847 delete[] i16add;
848 delete[] i16ref;
849 }
850
851
TEST(audio_utils_primitives,MemcpyToFloatFromFloatWithClamping)852 TEST(audio_utils_primitives, MemcpyToFloatFromFloatWithClamping) {
853 std::vector<float> src = {-INFINITY, -2, -1, -0, 0, 0.009, 1.000001, 9999999, INFINITY, NAN};
854 std::vector<float> dst(src.size());
855 float absMax = 1;
856 std::vector<float> expected = {-1, -1, -1, -0, 0, 0.009, 1, 1, 1, 1};
857 ASSERT_EQ(expected.size(), src.size());
858
859 memcpy_to_float_from_float_with_clamping(dst.data(), src.data(), src.size(), absMax);
860
861 ASSERT_EQ(dst, expected) << "src=" << testing::PrintToString(src);
862 }
863