• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "connect_benchmark"
18 
19 /*
20  * See README.md for general notes.
21  *
22  * This set of benchmarks measures the throughput of connect() calls on a single thread for IPv4 and
23  * IPv6 under the following scenarios:
24  *
25  *  - FWmark disabled (::ANDROID_NO_USE_FWMARK_CLIENT).
26  *
27  *      The control case for other high load benchmarks. Essentially just testing performance of
28  *      the kernel connect call. In real world use fwmark should stay on in order for traffic to
29  *      be routed properly.
30  *
31  *  - FWmark enabled only for metrics (::ANDROID_FWMARK_METRICS_ONLY).
32  *
33  *      The default mode up to and including 7.1. Every time connect() is called on an AF_INET or
34  *      AF_INET6 socket, netdclient sends a synchronous message to fwmarkserver to get the socket
35  *      marked. Only the fields that are useful for marking or for metrics are sent in this mode;
36  *      other fields are set to null for the RPC and ignored.
37  *
38  *  - FWmark enabled for all events.
39  *
40  *      The default mode starting from 7.1.2. As well as the normal connect() reporting, extra
41  *      fields are filled in to log the IP and port of the connection.
42  *
43  *      A second synchronous message is sent to fwmarkserver after the connection completes, to
44  *      record latency. This message is forwarded to the system server over a oneway binder call.
45  *
46  * Realtime timed tests
47  * ====================
48  *
49  * The tests named *_high_load record the following useful information:
50  *
51  *   - real_time: the mean roundtrip time for one connect() call under load
52  *
53  *   - iterations: the number of times the test was run within the timelimit --- approximately
54  *                 MinTime / real_time
55  *
56  * Manually timed tests
57  * ====================
58  *
59  * All other sets of tests apart from *_high_load run with manual timing. The purpose of these is to
60  * measure 90th-percentile latency for connect() calls compared to mean latency.
61  *
62  * (TODO: ideally this should be against median latency, but google-benchmark only supports one
63  *        custom 'label' output for graphing. Stddev isn't appropriate because the latency
64  *        distribution is usually spiky, not in a nice neat normal-like distribution.)
65  *
66  * The manually timed tests record the following useful information:
67  *
68  *  - real_time: the average time taken to complete a test run. Unlike the real_time used in high
69  *               load tests, this is calculated from before-and-after values of the realtime clock
70  *               over many iterations so may be less accurate than the under-load times.
71  *
72  *  - iterations: the number of times the test was run within the timelimit --- approximately
73  *                MinTime / real_time, although as explained, may not be as meaningful because of
74  *                overhead from timing.
75  *
76  *  - label: a manually-recorded time giving the 90th-percentile value of real_time over all
77  *           individual runs. Should be compared to real_time.
78  *
79  */
80 
81 #include <arpa/inet.h>
82 #include <cutils/sockets.h>
83 #include <errno.h>
84 #include <netinet/in.h>
85 #include <time.h>
86 
87 #include <map>
88 #include <functional>
89 #include <thread>
90 
91 #include <android-base/stringprintf.h>
92 #include <benchmark/benchmark.h>
93 #include <log/log.h>
94 #include <utils/StrongPointer.h>
95 
96 #include "FwmarkClient.h"
97 #include "SockDiag.h"
98 #include "Stopwatch.h"
99 #include "android/net/metrics/INetdEventListener.h"
100 
101 using android::base::StringPrintf;
102 using android::net::metrics::INetdEventListener;
103 
bindAndListen(int s)104 static int bindAndListen(int s) {
105     sockaddr_in6 sin6 = { .sin6_family = AF_INET6 };
106     if (bind(s, (sockaddr*) &sin6, sizeof(sin6)) == 0) {
107         if (listen(s, 1)) {
108             return -1;
109         }
110         sockaddr_in sin = {};
111         socklen_t len = sizeof(sin);
112         if (getsockname(s, (sockaddr*) &sin, &len)) {
113             return -1;
114         }
115         return ntohs(sin.sin_port);
116     } else {
117         return -1;
118     }
119 }
120 
ipv4_loopback(benchmark::State & state,const bool waitBetweenRuns)121 static void ipv4_loopback(benchmark::State& state, const bool waitBetweenRuns) {
122     const int listensocket = socket(AF_INET6, SOCK_STREAM, 0);
123     const int port = bindAndListen(listensocket);
124     if (port == -1) {
125         state.SkipWithError("Unable to bind server socket");
126         return;
127     }
128 
129     // ALOGW("Listening on port = %d", port);
130     std::vector<uint64_t> latencies(state.max_iterations);
131     uint64_t iterations = 0;
132 
133     while (state.KeepRunning()) {
134         int sock = socket(AF_INET, SOCK_STREAM, 0);
135         if (sock < 0) {
136             state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
137             break;
138         }
139 
140         const Stopwatch stopwatch;
141 
142         sockaddr_in server = { .sin_family = AF_INET, .sin_port = htons(port) };
143         if (connect(sock, (sockaddr*) &server, sizeof(server))) {
144             state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
145             close(sock);
146             break;
147         }
148 
149         if (waitBetweenRuns) {
150             latencies[iterations] = stopwatch.timeTaken() * 1e6L;
151             state.SetIterationTime(latencies[iterations] / 1e9L);
152             std::this_thread::sleep_for(std::chrono::milliseconds(10));
153             ++iterations;
154         }
155 
156         sockaddr_in6 client;
157         socklen_t clientlen = sizeof(client);
158         int accepted = accept(listensocket, (sockaddr *) &client, &clientlen);
159         if (accepted < 0) {
160             state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
161             close(sock);
162             break;
163         }
164 
165         close(accepted);
166         close(sock);
167     }
168     close(listensocket);
169     // ALOGI("Finished test on port = %d", port);
170 
171     if (iterations > 0) {
172         latencies.resize(iterations);
173         sort(latencies.begin(), latencies.end());
174         state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
175     }
176 }
177 
ipv6_loopback(benchmark::State & state,const bool waitBetweenRuns)178 static void ipv6_loopback(benchmark::State& state, const bool waitBetweenRuns) {
179     const int listensocket = socket(AF_INET6, SOCK_STREAM, 0);
180     const int port = bindAndListen(listensocket);
181     if (port == -1) {
182         state.SkipWithError("Unable to bind server socket");
183         return;
184     }
185 
186     // ALOGW("Listening on port = %d", port);
187     std::vector<uint64_t> latencies(state.max_iterations);
188     uint64_t iterations = 0;
189 
190     while (state.KeepRunning()) {
191         int sock = socket(AF_INET6, SOCK_STREAM, 0);
192         if (sock < 0) {
193             state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
194             break;
195         }
196 
197         const Stopwatch stopwatch;
198 
199         sockaddr_in6 server = { .sin6_family = AF_INET6, .sin6_port = htons(port) };
200         if (connect(sock, (sockaddr*) &server, sizeof(server))) {
201             state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
202             close(sock);
203             break;
204         }
205 
206         if (waitBetweenRuns) {
207             latencies[iterations] = stopwatch.timeTaken() * 1e6L;
208             state.SetIterationTime(latencies[iterations] / 1e9L);
209             std::this_thread::sleep_for(std::chrono::milliseconds(10));
210             ++iterations;
211         }
212 
213         sockaddr_in6 client;
214         socklen_t clientlen = sizeof(client);
215         int accepted = accept(listensocket, (sockaddr *) &client, &clientlen);
216         if (accepted < 0) {
217             state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
218             close(sock);
219             break;
220         }
221 
222         close(accepted);
223         close(sock);
224     }
225     close(listensocket);
226     // ALOGI("Finished test on port = %d", port);
227 
228     if (iterations > 0) {
229         latencies.resize(iterations);
230         sort(latencies.begin(), latencies.end());
231         state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
232     }
233 }
234 
run_at_reporting_level(decltype(ipv4_loopback) benchmarkFunction,::benchmark::State & state,const int reportingLevel,const bool waitBetweenRuns)235 static void run_at_reporting_level(decltype(ipv4_loopback) benchmarkFunction,
236                                    ::benchmark::State& state, const int reportingLevel,
237                                    const bool waitBetweenRuns) {
238     // Our master thread (thread_index == 0) will control setup and teardown for other threads.
239     const bool isMaster = (state.thread_index == 0);
240 
241     // Previous values of env variables used by fwmarkclient (only read/written by master thread)
242     const std::string savedSettings[] = {
243         FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT,
244         FwmarkClient::ANDROID_FWMARK_METRICS_ONLY
245     };
246     std::map<std::string, std::string> prevSettings;
247 
248     // SETUP
249     if (isMaster) {
250         for (const auto setting : savedSettings) {
251             const char* prevEnvStr = getenv(setting.c_str());
252             if (prevEnvStr != nullptr) {
253                 prevSettings[setting.c_str()] = prevEnvStr;
254             }
255         }
256         switch (reportingLevel) {
257             case INetdEventListener::REPORTING_LEVEL_NONE:
258                 setenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT, "", 1);
259                 break;
260             case INetdEventListener::REPORTING_LEVEL_METRICS:
261                 unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT);
262                 setenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY, "", 1);
263                 break;
264             case INetdEventListener::REPORTING_LEVEL_FULL:
265                 unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT);
266                 unsetenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY);
267                 break;
268         }
269     }
270 
271     // TEST
272     benchmarkFunction(state, waitBetweenRuns);
273 
274     // TEARDOWN
275     if (isMaster) {
276         for (const auto setting : savedSettings) {
277             if (prevSettings.count(setting)) {
278                 setenv(setting.c_str(), prevSettings[setting].c_str(), 1);
279             } else {
280                 unsetenv(setting.c_str());
281             }
282         }
283     }
284 }
285 
286 constexpr int MIN_THREADS = 1;
287 constexpr int MAX_THREADS = 1;
288 constexpr double MIN_TIME = 0.5 /* seconds */;
289 
ipv4_metrics_reporting_no_fwmark(::benchmark::State & state)290 static void ipv4_metrics_reporting_no_fwmark(::benchmark::State& state) {
291     run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true);
292 }
293 BENCHMARK(ipv4_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime();
294 
295 // IPv4 metrics under low load
ipv4_metrics_reporting_no_load(::benchmark::State & state)296 static void ipv4_metrics_reporting_no_load(::benchmark::State& state) {
297     run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true);
298 }
299 BENCHMARK(ipv4_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
300 
ipv4_full_reporting_no_load(::benchmark::State & state)301 static void ipv4_full_reporting_no_load(::benchmark::State& state) {
302     run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true);
303 }
304 BENCHMARK(ipv4_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
305 
306 // IPv4 benchmarks under high load
ipv4_metrics_reporting_high_load(::benchmark::State & state)307 static void ipv4_metrics_reporting_high_load(::benchmark::State& state) {
308     run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS,
309             false);
310 }
311 BENCHMARK(ipv4_metrics_reporting_high_load)
312     ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
313 
ipv4_full_reporting_high_load(::benchmark::State & state)314 static void ipv4_full_reporting_high_load(::benchmark::State& state) {
315     run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false);
316 }
317 BENCHMARK(ipv4_full_reporting_high_load)
318     ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
319 
320 // IPv6 raw connect() without using fwmark
ipv6_metrics_reporting_no_fwmark(::benchmark::State & state)321 static void ipv6_metrics_reporting_no_fwmark(::benchmark::State& state) {
322     run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true);
323 }
324 BENCHMARK(ipv6_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime();
325 
326 // IPv6 metrics under low load
ipv6_metrics_reporting_no_load(::benchmark::State & state)327 static void ipv6_metrics_reporting_no_load(::benchmark::State& state) {
328     run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true);
329 }
330 BENCHMARK(ipv6_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
331 
ipv6_full_reporting_no_load(::benchmark::State & state)332 static void ipv6_full_reporting_no_load(::benchmark::State& state) {
333     run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true);
334 }
335 BENCHMARK(ipv6_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
336 
337 // IPv6 benchmarks under high load
ipv6_metrics_reporting_high_load(::benchmark::State & state)338 static void ipv6_metrics_reporting_high_load(::benchmark::State& state) {
339     run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS,
340             false);
341 }
342 BENCHMARK(ipv6_metrics_reporting_high_load)
343     ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
344 
ipv6_full_reporting_high_load(::benchmark::State & state)345 static void ipv6_full_reporting_high_load(::benchmark::State& state) {
346     run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false);
347 }
348 BENCHMARK(ipv6_full_reporting_high_load)
349     ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
350