1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "connect_benchmark"
18
19 /*
20 * See README.md for general notes.
21 *
22 * This set of benchmarks measures the throughput of connect() calls on a single thread for IPv4 and
23 * IPv6 under the following scenarios:
24 *
25 * - FWmark disabled (::ANDROID_NO_USE_FWMARK_CLIENT).
26 *
27 * The control case for other high load benchmarks. Essentially just testing performance of
28 * the kernel connect call. In real world use fwmark should stay on in order for traffic to
29 * be routed properly.
30 *
31 * - FWmark enabled only for metrics (::ANDROID_FWMARK_METRICS_ONLY).
32 *
33 * The default mode up to and including 7.1. Every time connect() is called on an AF_INET or
34 * AF_INET6 socket, netdclient sends a synchronous message to fwmarkserver to get the socket
35 * marked. Only the fields that are useful for marking or for metrics are sent in this mode;
36 * other fields are set to null for the RPC and ignored.
37 *
38 * - FWmark enabled for all events.
39 *
40 * The default mode starting from 7.1.2. As well as the normal connect() reporting, extra
41 * fields are filled in to log the IP and port of the connection.
42 *
43 * A second synchronous message is sent to fwmarkserver after the connection completes, to
44 * record latency. This message is forwarded to the system server over a oneway binder call.
45 *
46 * Realtime timed tests
47 * ====================
48 *
49 * The tests named *_high_load record the following useful information:
50 *
51 * - real_time: the mean roundtrip time for one connect() call under load
52 *
53 * - iterations: the number of times the test was run within the timelimit --- approximately
54 * MinTime / real_time
55 *
56 * Manually timed tests
57 * ====================
58 *
59 * All other sets of tests apart from *_high_load run with manual timing. The purpose of these is to
60 * measure 90th-percentile latency for connect() calls compared to mean latency.
61 *
62 * (TODO: ideally this should be against median latency, but google-benchmark only supports one
63 * custom 'label' output for graphing. Stddev isn't appropriate because the latency
64 * distribution is usually spiky, not in a nice neat normal-like distribution.)
65 *
66 * The manually timed tests record the following useful information:
67 *
68 * - real_time: the average time taken to complete a test run. Unlike the real_time used in high
69 * load tests, this is calculated from before-and-after values of the realtime clock
70 * over many iterations so may be less accurate than the under-load times.
71 *
72 * - iterations: the number of times the test was run within the timelimit --- approximately
73 * MinTime / real_time, although as explained, may not be as meaningful because of
74 * overhead from timing.
75 *
76 * - label: a manually-recorded time giving the 90th-percentile value of real_time over all
77 * individual runs. Should be compared to real_time.
78 *
79 */
80
81 #include <arpa/inet.h>
82 #include <cutils/sockets.h>
83 #include <errno.h>
84 #include <netinet/in.h>
85 #include <time.h>
86
87 #include <map>
88 #include <functional>
89 #include <thread>
90
91 #include <android-base/stringprintf.h>
92 #include <benchmark/benchmark.h>
93 #include <log/log.h>
94 #include <utils/StrongPointer.h>
95
96 #include "FwmarkClient.h"
97 #include "SockDiag.h"
98 #include "Stopwatch.h"
99 #include "android/net/metrics/INetdEventListener.h"
100
101 using android::base::StringPrintf;
102 using android::net::metrics::INetdEventListener;
103
bindAndListen(int s)104 static int bindAndListen(int s) {
105 sockaddr_in6 sin6 = { .sin6_family = AF_INET6 };
106 if (bind(s, (sockaddr*) &sin6, sizeof(sin6)) == 0) {
107 if (listen(s, 1)) {
108 return -1;
109 }
110 sockaddr_in sin = {};
111 socklen_t len = sizeof(sin);
112 if (getsockname(s, (sockaddr*) &sin, &len)) {
113 return -1;
114 }
115 return ntohs(sin.sin_port);
116 } else {
117 return -1;
118 }
119 }
120
ipv4_loopback(benchmark::State & state,const bool waitBetweenRuns)121 static void ipv4_loopback(benchmark::State& state, const bool waitBetweenRuns) {
122 const int listensocket = socket(AF_INET6, SOCK_STREAM, 0);
123 const int port = bindAndListen(listensocket);
124 if (port == -1) {
125 state.SkipWithError("Unable to bind server socket");
126 return;
127 }
128
129 // ALOGW("Listening on port = %d", port);
130 std::vector<uint64_t> latencies(state.max_iterations);
131 uint64_t iterations = 0;
132
133 while (state.KeepRunning()) {
134 int sock = socket(AF_INET, SOCK_STREAM, 0);
135 if (sock < 0) {
136 state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
137 break;
138 }
139
140 const Stopwatch stopwatch;
141
142 sockaddr_in server = { .sin_family = AF_INET, .sin_port = htons(port) };
143 if (connect(sock, (sockaddr*) &server, sizeof(server))) {
144 state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
145 close(sock);
146 break;
147 }
148
149 if (waitBetweenRuns) {
150 latencies[iterations] = stopwatch.timeTaken() * 1e6L;
151 state.SetIterationTime(latencies[iterations] / 1e9L);
152 std::this_thread::sleep_for(std::chrono::milliseconds(10));
153 ++iterations;
154 }
155
156 sockaddr_in6 client;
157 socklen_t clientlen = sizeof(client);
158 int accepted = accept(listensocket, (sockaddr *) &client, &clientlen);
159 if (accepted < 0) {
160 state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
161 close(sock);
162 break;
163 }
164
165 close(accepted);
166 close(sock);
167 }
168 close(listensocket);
169 // ALOGI("Finished test on port = %d", port);
170
171 if (iterations > 0) {
172 latencies.resize(iterations);
173 sort(latencies.begin(), latencies.end());
174 state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
175 }
176 }
177
ipv6_loopback(benchmark::State & state,const bool waitBetweenRuns)178 static void ipv6_loopback(benchmark::State& state, const bool waitBetweenRuns) {
179 const int listensocket = socket(AF_INET6, SOCK_STREAM, 0);
180 const int port = bindAndListen(listensocket);
181 if (port == -1) {
182 state.SkipWithError("Unable to bind server socket");
183 return;
184 }
185
186 // ALOGW("Listening on port = %d", port);
187 std::vector<uint64_t> latencies(state.max_iterations);
188 uint64_t iterations = 0;
189
190 while (state.KeepRunning()) {
191 int sock = socket(AF_INET6, SOCK_STREAM, 0);
192 if (sock < 0) {
193 state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
194 break;
195 }
196
197 const Stopwatch stopwatch;
198
199 sockaddr_in6 server = { .sin6_family = AF_INET6, .sin6_port = htons(port) };
200 if (connect(sock, (sockaddr*) &server, sizeof(server))) {
201 state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
202 close(sock);
203 break;
204 }
205
206 if (waitBetweenRuns) {
207 latencies[iterations] = stopwatch.timeTaken() * 1e6L;
208 state.SetIterationTime(latencies[iterations] / 1e9L);
209 std::this_thread::sleep_for(std::chrono::milliseconds(10));
210 ++iterations;
211 }
212
213 sockaddr_in6 client;
214 socklen_t clientlen = sizeof(client);
215 int accepted = accept(listensocket, (sockaddr *) &client, &clientlen);
216 if (accepted < 0) {
217 state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
218 close(sock);
219 break;
220 }
221
222 close(accepted);
223 close(sock);
224 }
225 close(listensocket);
226 // ALOGI("Finished test on port = %d", port);
227
228 if (iterations > 0) {
229 latencies.resize(iterations);
230 sort(latencies.begin(), latencies.end());
231 state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
232 }
233 }
234
run_at_reporting_level(decltype(ipv4_loopback) benchmarkFunction,::benchmark::State & state,const int reportingLevel,const bool waitBetweenRuns)235 static void run_at_reporting_level(decltype(ipv4_loopback) benchmarkFunction,
236 ::benchmark::State& state, const int reportingLevel,
237 const bool waitBetweenRuns) {
238 // Our master thread (thread_index == 0) will control setup and teardown for other threads.
239 const bool isMaster = (state.thread_index == 0);
240
241 // Previous values of env variables used by fwmarkclient (only read/written by master thread)
242 const std::string savedSettings[] = {
243 FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT,
244 FwmarkClient::ANDROID_FWMARK_METRICS_ONLY
245 };
246 std::map<std::string, std::string> prevSettings;
247
248 // SETUP
249 if (isMaster) {
250 for (const auto setting : savedSettings) {
251 const char* prevEnvStr = getenv(setting.c_str());
252 if (prevEnvStr != nullptr) {
253 prevSettings[setting.c_str()] = prevEnvStr;
254 }
255 }
256 switch (reportingLevel) {
257 case INetdEventListener::REPORTING_LEVEL_NONE:
258 setenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT, "", 1);
259 break;
260 case INetdEventListener::REPORTING_LEVEL_METRICS:
261 unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT);
262 setenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY, "", 1);
263 break;
264 case INetdEventListener::REPORTING_LEVEL_FULL:
265 unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT);
266 unsetenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY);
267 break;
268 }
269 }
270
271 // TEST
272 benchmarkFunction(state, waitBetweenRuns);
273
274 // TEARDOWN
275 if (isMaster) {
276 for (const auto setting : savedSettings) {
277 if (prevSettings.count(setting)) {
278 setenv(setting.c_str(), prevSettings[setting].c_str(), 1);
279 } else {
280 unsetenv(setting.c_str());
281 }
282 }
283 }
284 }
285
286 constexpr int MIN_THREADS = 1;
287 constexpr int MAX_THREADS = 1;
288 constexpr double MIN_TIME = 0.5 /* seconds */;
289
ipv4_metrics_reporting_no_fwmark(::benchmark::State & state)290 static void ipv4_metrics_reporting_no_fwmark(::benchmark::State& state) {
291 run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true);
292 }
293 BENCHMARK(ipv4_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime();
294
295 // IPv4 metrics under low load
ipv4_metrics_reporting_no_load(::benchmark::State & state)296 static void ipv4_metrics_reporting_no_load(::benchmark::State& state) {
297 run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true);
298 }
299 BENCHMARK(ipv4_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
300
ipv4_full_reporting_no_load(::benchmark::State & state)301 static void ipv4_full_reporting_no_load(::benchmark::State& state) {
302 run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true);
303 }
304 BENCHMARK(ipv4_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
305
306 // IPv4 benchmarks under high load
ipv4_metrics_reporting_high_load(::benchmark::State & state)307 static void ipv4_metrics_reporting_high_load(::benchmark::State& state) {
308 run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS,
309 false);
310 }
311 BENCHMARK(ipv4_metrics_reporting_high_load)
312 ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
313
ipv4_full_reporting_high_load(::benchmark::State & state)314 static void ipv4_full_reporting_high_load(::benchmark::State& state) {
315 run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false);
316 }
317 BENCHMARK(ipv4_full_reporting_high_load)
318 ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
319
320 // IPv6 raw connect() without using fwmark
ipv6_metrics_reporting_no_fwmark(::benchmark::State & state)321 static void ipv6_metrics_reporting_no_fwmark(::benchmark::State& state) {
322 run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true);
323 }
324 BENCHMARK(ipv6_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime();
325
326 // IPv6 metrics under low load
ipv6_metrics_reporting_no_load(::benchmark::State & state)327 static void ipv6_metrics_reporting_no_load(::benchmark::State& state) {
328 run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true);
329 }
330 BENCHMARK(ipv6_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
331
ipv6_full_reporting_no_load(::benchmark::State & state)332 static void ipv6_full_reporting_no_load(::benchmark::State& state) {
333 run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true);
334 }
335 BENCHMARK(ipv6_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
336
337 // IPv6 benchmarks under high load
ipv6_metrics_reporting_high_load(::benchmark::State & state)338 static void ipv6_metrics_reporting_high_load(::benchmark::State& state) {
339 run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS,
340 false);
341 }
342 BENCHMARK(ipv6_metrics_reporting_high_load)
343 ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
344
ipv6_full_reporting_high_load(::benchmark::State & state)345 static void ipv6_full_reporting_high_load(::benchmark::State& state) {
346 run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false);
347 }
348 BENCHMARK(ipv6_full_reporting_high_load)
349 ->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
350