1 /* bnx2x_init.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2008 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 */
12
13 #ifndef BNX2X_INIT_H
14 #define BNX2X_INIT_H
15
16 #define COMMON 0x1
17 #define PORT0 0x2
18 #define PORT1 0x4
19
20 #define INIT_EMULATION 0x1
21 #define INIT_FPGA 0x2
22 #define INIT_ASIC 0x4
23 #define INIT_HARDWARE 0x7
24
25 #define STORM_INTMEM_SIZE_E1 (0x5800 / 4)
26 #define STORM_INTMEM_SIZE_E1H (0x10000 / 4)
27 #define TSTORM_INTMEM_ADDR 0x1a0000
28 #define CSTORM_INTMEM_ADDR 0x220000
29 #define XSTORM_INTMEM_ADDR 0x2a0000
30 #define USTORM_INTMEM_ADDR 0x320000
31
32
33 /* Init operation types and structures */
34 /* Common for both E1 and E1H */
35 #define OP_RD 0x1 /* read single register */
36 #define OP_WR 0x2 /* write single register */
37 #define OP_IW 0x3 /* write single register using mailbox */
38 #define OP_SW 0x4 /* copy a string to the device */
39 #define OP_SI 0x5 /* copy a string using mailbox */
40 #define OP_ZR 0x6 /* clear memory */
41 #define OP_ZP 0x7 /* unzip then copy with DMAE */
42 #define OP_WR_64 0x8 /* write 64 bit pattern */
43 #define OP_WB 0x9 /* copy a string using DMAE */
44
45 /* Operation specific for E1 */
46 #define OP_RD_E1 0xa /* read single register */
47 #define OP_WR_E1 0xb /* write single register */
48 #define OP_IW_E1 0xc /* write single register using mailbox */
49 #define OP_SW_E1 0xd /* copy a string to the device */
50 #define OP_SI_E1 0xe /* copy a string using mailbox */
51 #define OP_ZR_E1 0xf /* clear memory */
52 #define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
53 #define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
54 #define OP_WB_E1 0x12 /* copy a string using DMAE */
55
56 /* Operation specific for E1H */
57 #define OP_RD_E1H 0x13 /* read single register */
58 #define OP_WR_E1H 0x14 /* write single register */
59 #define OP_IW_E1H 0x15 /* write single register using mailbox */
60 #define OP_SW_E1H 0x16 /* copy a string to the device */
61 #define OP_SI_E1H 0x17 /* copy a string using mailbox */
62 #define OP_ZR_E1H 0x18 /* clear memory */
63 #define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
64 #define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
65 #define OP_WB_E1H 0x1b /* copy a string using DMAE */
66
67 /* FPGA and EMUL specific operations */
68 #define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
69 #define OP_WR_EMUL 0x1d /* write single register on Emulation */
70 #define OP_WR_FPGA 0x1e /* write single register on FPGA */
71 #define OP_WR_ASIC 0x1f /* write single register on ASIC */
72
73
74 struct raw_op {
75 u32 op:8;
76 u32 offset:24;
77 u32 raw_data;
78 };
79
80 struct op_read {
81 u32 op:8;
82 u32 offset:24;
83 u32 pad;
84 };
85
86 struct op_write {
87 u32 op:8;
88 u32 offset:24;
89 u32 val;
90 };
91
92 struct op_string_write {
93 u32 op:8;
94 u32 offset:24;
95 #ifdef __LITTLE_ENDIAN
96 u16 data_off;
97 u16 data_len;
98 #else /* __BIG_ENDIAN */
99 u16 data_len;
100 u16 data_off;
101 #endif
102 };
103
104 struct op_zero {
105 u32 op:8;
106 u32 offset:24;
107 u32 len;
108 };
109
110 union init_op {
111 struct op_read read;
112 struct op_write write;
113 struct op_string_write str_wr;
114 struct op_zero zero;
115 struct raw_op raw;
116 };
117
118 #include "bnx2x_init_values.h"
119
120 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
121 static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
122
bnx2x_init_str_wr(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)123 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
124 u32 len)
125 {
126 int i;
127
128 for (i = 0; i < len; i++) {
129 REG_WR(bp, addr + i*4, data[i]);
130 if (!(i % 10000)) {
131 touch_softlockup_watchdog();
132 cpu_relax();
133 }
134 }
135 }
136
bnx2x_init_ind_wr(struct bnx2x * bp,u32 addr,const u32 * data,u16 len)137 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
138 u16 len)
139 {
140 int i;
141
142 for (i = 0; i < len; i++) {
143 REG_WR_IND(bp, addr + i*4, data[i]);
144 if (!(i % 10000)) {
145 touch_softlockup_watchdog();
146 cpu_relax();
147 }
148 }
149 }
150
bnx2x_write_big_buf(struct bnx2x * bp,u32 addr,u32 len)151 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
152 {
153 int offset = 0;
154
155 if (bp->dmae_ready) {
156 while (len > DMAE_LEN32_WR_MAX) {
157 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
158 addr + offset, DMAE_LEN32_WR_MAX);
159 offset += DMAE_LEN32_WR_MAX * 4;
160 len -= DMAE_LEN32_WR_MAX;
161 }
162 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
163 addr + offset, len);
164 } else
165 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
166 }
167
bnx2x_init_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)168 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
169 {
170 if ((len * 4) > FW_BUF_SIZE) {
171 BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x len 0x%x\n",
172 addr, len*4);
173 return;
174 }
175 memset(bp->gunzip_buf, fill, len * 4);
176
177 bnx2x_write_big_buf(bp, addr, len);
178 }
179
bnx2x_init_wr_64(struct bnx2x * bp,u32 addr,const u32 * data,u32 len64)180 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
181 u32 len64)
182 {
183 u32 buf_len32 = FW_BUF_SIZE/4;
184 u32 len = len64*2;
185 u64 data64 = 0;
186 int i;
187
188 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
189 data64 = HILO_U64((*(data + 1)), (*data));
190 len64 = min((u32)(FW_BUF_SIZE/8), len64);
191 for (i = 0; i < len64; i++) {
192 u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
193
194 *pdata = data64;
195 }
196
197 for (i = 0; i < len; i += buf_len32) {
198 u32 cur_len = min(buf_len32, len - i);
199
200 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
201 }
202 }
203
204 /*********************************************************
205 There are different blobs for each PRAM section.
206 In addition, each blob write operation is divided into a few operations
207 in order to decrease the amount of phys. contiguous buffer needed.
208 Thus, when we select a blob the address may be with some offset
209 from the beginning of PRAM section.
210 The same holds for the INT_TABLE sections.
211 **********************************************************/
212 #define IF_IS_INT_TABLE_ADDR(base, addr) \
213 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
214
215 #define IF_IS_PRAM_ADDR(base, addr) \
216 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
217
bnx2x_sel_blob(u32 addr,const u32 * data,int is_e1)218 static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
219 {
220 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
221 data = is_e1 ? tsem_int_table_data_e1 :
222 tsem_int_table_data_e1h;
223 else
224 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
225 data = is_e1 ? csem_int_table_data_e1 :
226 csem_int_table_data_e1h;
227 else
228 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
229 data = is_e1 ? usem_int_table_data_e1 :
230 usem_int_table_data_e1h;
231 else
232 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
233 data = is_e1 ? xsem_int_table_data_e1 :
234 xsem_int_table_data_e1h;
235 else
236 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
237 data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
238 else
239 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
240 data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
241 else
242 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
243 data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
244 else
245 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
246 data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
247
248 return data;
249 }
250
bnx2x_init_wr_wb(struct bnx2x * bp,u32 addr,const u32 * data,u32 len,int gunzip,int is_e1,u32 blob_off)251 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
252 u32 len, int gunzip, int is_e1, u32 blob_off)
253 {
254 int offset = 0;
255
256 data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
257
258 if (gunzip) {
259 int rc;
260 #ifdef __BIG_ENDIAN
261 int i, size;
262 u32 *temp;
263
264 temp = kmalloc(len, GFP_KERNEL);
265 size = (len / 4) + ((len % 4) ? 1 : 0);
266 for (i = 0; i < size; i++)
267 temp[i] = swab32(data[i]);
268 data = temp;
269 #endif
270 rc = bnx2x_gunzip(bp, (u8 *)data, len);
271 if (rc) {
272 BNX2X_ERR("gunzip failed ! rc %d\n", rc);
273 return;
274 }
275 len = bp->gunzip_outlen;
276 #ifdef __BIG_ENDIAN
277 kfree(temp);
278 for (i = 0; i < len; i++)
279 ((u32 *)bp->gunzip_buf)[i] =
280 swab32(((u32 *)bp->gunzip_buf)[i]);
281 #endif
282 } else {
283 if ((len * 4) > FW_BUF_SIZE) {
284 BNX2X_ERR("LARGE DMAE OPERATION ! "
285 "addr 0x%x len 0x%x\n", addr, len*4);
286 return;
287 }
288 memcpy(bp->gunzip_buf, data, len * 4);
289 }
290
291 if (bp->dmae_ready) {
292 while (len > DMAE_LEN32_WR_MAX) {
293 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
294 addr + offset, DMAE_LEN32_WR_MAX);
295 offset += DMAE_LEN32_WR_MAX * 4;
296 len -= DMAE_LEN32_WR_MAX;
297 }
298 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
299 addr + offset, len);
300 } else
301 bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
302 }
303
bnx2x_init_block(struct bnx2x * bp,u32 op_start,u32 op_end)304 static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
305 {
306 int is_e1 = CHIP_IS_E1(bp);
307 int is_e1h = CHIP_IS_E1H(bp);
308 int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
309 int hw_wr, i;
310 union init_op *op;
311 u32 op_type, addr, len;
312 const u32 *data, *data_base;
313
314 if (CHIP_REV_IS_FPGA(bp))
315 hw_wr = OP_WR_FPGA;
316 else if (CHIP_REV_IS_EMUL(bp))
317 hw_wr = OP_WR_EMUL;
318 else
319 hw_wr = OP_WR_ASIC;
320
321 if (is_e1)
322 data_base = init_data_e1;
323 else /* CHIP_IS_E1H(bp) */
324 data_base = init_data_e1h;
325
326 for (i = op_start; i < op_end; i++) {
327
328 op = (union init_op *)&(init_ops[i]);
329
330 op_type = op->str_wr.op;
331 addr = op->str_wr.offset;
332 len = op->str_wr.data_len;
333 data = data_base + op->str_wr.data_off;
334
335 /* careful! it must be in order */
336 if (unlikely(op_type > OP_WB)) {
337
338 /* If E1 only */
339 if (op_type <= OP_WB_E1) {
340 if (is_e1)
341 op_type -= (OP_RD_E1 - OP_RD);
342
343 /* If E1H only */
344 } else if (op_type <= OP_WB_E1H) {
345 if (is_e1h)
346 op_type -= (OP_RD_E1H - OP_RD);
347 }
348
349 /* HW/EMUL specific */
350 if (op_type == hw_wr)
351 op_type = OP_WR;
352
353 /* EMUL on E1H is special */
354 if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
355 op_type = OP_WR;
356 }
357
358 switch (op_type) {
359 case OP_RD:
360 REG_RD(bp, addr);
361 break;
362 case OP_WR:
363 REG_WR(bp, addr, op->write.val);
364 break;
365 case OP_SW:
366 bnx2x_init_str_wr(bp, addr, data, len);
367 break;
368 case OP_WB:
369 bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
370 break;
371 case OP_SI:
372 bnx2x_init_ind_wr(bp, addr, data, len);
373 break;
374 case OP_ZR:
375 bnx2x_init_fill(bp, addr, 0, op->zero.len);
376 break;
377 case OP_ZP:
378 bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
379 op->str_wr.data_off);
380 break;
381 case OP_WR_64:
382 bnx2x_init_wr_64(bp, addr, data, len);
383 break;
384 default:
385 /* happens whenever an op is of a diff HW */
386 #if 0
387 DP(NETIF_MSG_HW, "skipping init operation "
388 "index %d[%d:%d]: type %d addr 0x%x "
389 "len %d(0x%x)\n",
390 i, op_start, op_end, op_type, addr, len, len);
391 #endif
392 break;
393 }
394 }
395 }
396
397
398 /****************************************************************************
399 * PXP
400 ****************************************************************************/
401 /*
402 * This code configures the PCI read/write arbiter
403 * which implements a weighted round robin
404 * between the virtual queues in the chip.
405 *
406 * The values were derived for each PCI max payload and max request size.
407 * since max payload and max request size are only known at run time,
408 * this is done as a separate init stage.
409 */
410
411 #define NUM_WR_Q 13
412 #define NUM_RD_Q 29
413 #define MAX_RD_ORD 3
414 #define MAX_WR_ORD 2
415
416 /* configuration for one arbiter queue */
417 struct arb_line {
418 int l;
419 int add;
420 int ubound;
421 };
422
423 /* derived configuration for each read queue for each max request size */
424 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
425 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
426 {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
427 {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
428 {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
429 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
430 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
431 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
432 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
433 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
434 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
435 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
436 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
437 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
438 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
439 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
440 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
441 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
442 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
443 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
444 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
445 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
446 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
447 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
448 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
449 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
450 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
451 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
452 {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
453 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
454 };
455
456 /* derived configuration for each write queue for each max request size */
457 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
458 {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
459 {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
460 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
461 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
462 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
463 {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
464 {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
465 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
466 {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
467 {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
468 {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
469 {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
470 {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
471 };
472
473 /* register addresses for read queues */
474 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
475 {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
476 PXP2_REG_RQ_BW_RD_UBOUND0},
477 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
478 PXP2_REG_PSWRQ_BW_UB1},
479 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
480 PXP2_REG_PSWRQ_BW_UB2},
481 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
482 PXP2_REG_PSWRQ_BW_UB3},
483 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
484 PXP2_REG_RQ_BW_RD_UBOUND4},
485 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
486 PXP2_REG_RQ_BW_RD_UBOUND5},
487 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
488 PXP2_REG_PSWRQ_BW_UB6},
489 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
490 PXP2_REG_PSWRQ_BW_UB7},
491 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
492 PXP2_REG_PSWRQ_BW_UB8},
493 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
494 PXP2_REG_PSWRQ_BW_UB9},
495 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
496 PXP2_REG_PSWRQ_BW_UB10},
497 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
498 PXP2_REG_PSWRQ_BW_UB11},
499 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
500 PXP2_REG_RQ_BW_RD_UBOUND12},
501 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
502 PXP2_REG_RQ_BW_RD_UBOUND13},
503 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
504 PXP2_REG_RQ_BW_RD_UBOUND14},
505 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
506 PXP2_REG_RQ_BW_RD_UBOUND15},
507 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
508 PXP2_REG_RQ_BW_RD_UBOUND16},
509 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
510 PXP2_REG_RQ_BW_RD_UBOUND17},
511 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
512 PXP2_REG_RQ_BW_RD_UBOUND18},
513 {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
514 PXP2_REG_RQ_BW_RD_UBOUND19},
515 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
516 PXP2_REG_RQ_BW_RD_UBOUND20},
517 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
518 PXP2_REG_RQ_BW_RD_UBOUND22},
519 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
520 PXP2_REG_RQ_BW_RD_UBOUND23},
521 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
522 PXP2_REG_RQ_BW_RD_UBOUND24},
523 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
524 PXP2_REG_RQ_BW_RD_UBOUND25},
525 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
526 PXP2_REG_RQ_BW_RD_UBOUND26},
527 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
528 PXP2_REG_RQ_BW_RD_UBOUND27},
529 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
530 PXP2_REG_PSWRQ_BW_UB28}
531 };
532
533 /* register addresses for write queues */
534 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
535 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
536 PXP2_REG_PSWRQ_BW_UB1},
537 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
538 PXP2_REG_PSWRQ_BW_UB2},
539 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
540 PXP2_REG_PSWRQ_BW_UB3},
541 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
542 PXP2_REG_PSWRQ_BW_UB6},
543 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
544 PXP2_REG_PSWRQ_BW_UB7},
545 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
546 PXP2_REG_PSWRQ_BW_UB8},
547 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
548 PXP2_REG_PSWRQ_BW_UB9},
549 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
550 PXP2_REG_PSWRQ_BW_UB10},
551 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
552 PXP2_REG_PSWRQ_BW_UB11},
553 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
554 PXP2_REG_PSWRQ_BW_UB28},
555 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
556 PXP2_REG_RQ_BW_WR_UBOUND29},
557 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
558 PXP2_REG_RQ_BW_WR_UBOUND30}
559 };
560
bnx2x_init_pxp(struct bnx2x * bp)561 static void bnx2x_init_pxp(struct bnx2x *bp)
562 {
563 u16 devctl;
564 int r_order, w_order;
565 u32 val, i;
566
567 pci_read_config_word(bp->pdev,
568 bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
569 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
570 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
571 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
572
573 if (r_order > MAX_RD_ORD) {
574 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
575 r_order, MAX_RD_ORD);
576 r_order = MAX_RD_ORD;
577 }
578 if (w_order > MAX_WR_ORD) {
579 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
580 w_order, MAX_WR_ORD);
581 w_order = MAX_WR_ORD;
582 }
583 if (CHIP_REV_IS_FPGA(bp)) {
584 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
585 w_order = 0;
586 }
587 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
588
589 for (i = 0; i < NUM_RD_Q-1; i++) {
590 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
591 REG_WR(bp, read_arb_addr[i].add,
592 read_arb_data[i][r_order].add);
593 REG_WR(bp, read_arb_addr[i].ubound,
594 read_arb_data[i][r_order].ubound);
595 }
596
597 for (i = 0; i < NUM_WR_Q-1; i++) {
598 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
599 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
600
601 REG_WR(bp, write_arb_addr[i].l,
602 write_arb_data[i][w_order].l);
603
604 REG_WR(bp, write_arb_addr[i].add,
605 write_arb_data[i][w_order].add);
606
607 REG_WR(bp, write_arb_addr[i].ubound,
608 write_arb_data[i][w_order].ubound);
609 } else {
610
611 val = REG_RD(bp, write_arb_addr[i].l);
612 REG_WR(bp, write_arb_addr[i].l,
613 val | (write_arb_data[i][w_order].l << 10));
614
615 val = REG_RD(bp, write_arb_addr[i].add);
616 REG_WR(bp, write_arb_addr[i].add,
617 val | (write_arb_data[i][w_order].add << 10));
618
619 val = REG_RD(bp, write_arb_addr[i].ubound);
620 REG_WR(bp, write_arb_addr[i].ubound,
621 val | (write_arb_data[i][w_order].ubound << 7));
622 }
623 }
624
625 val = write_arb_data[NUM_WR_Q-1][w_order].add;
626 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
627 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
628 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
629
630 val = read_arb_data[NUM_RD_Q-1][r_order].add;
631 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
632 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
633 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
634
635 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
636 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
637 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
638 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
639
640 if (r_order == MAX_RD_ORD)
641 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
642
643 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
644
645 if (CHIP_IS_E1H(bp)) {
646 REG_WR(bp, PXP2_REG_WR_HC_MPS, w_order+1);
647 REG_WR(bp, PXP2_REG_WR_USDM_MPS, w_order+1);
648 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, w_order+1);
649 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, w_order+1);
650 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, w_order+1);
651 REG_WR(bp, PXP2_REG_WR_QM_MPS, w_order+1);
652 REG_WR(bp, PXP2_REG_WR_TM_MPS, w_order+1);
653 REG_WR(bp, PXP2_REG_WR_SRC_MPS, w_order+1);
654 REG_WR(bp, PXP2_REG_WR_DBG_MPS, w_order+1);
655 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
656 REG_WR(bp, PXP2_REG_WR_CDU_MPS, w_order+1);
657 }
658 }
659
660
661 /****************************************************************************
662 * CDU
663 ****************************************************************************/
664
665 #define CDU_REGION_NUMBER_XCM_AG 2
666 #define CDU_REGION_NUMBER_UCM_AG 4
667
668 /**
669 * String-to-compress [31:8] = CID (all 24 bits)
670 * String-to-compress [7:4] = Region
671 * String-to-compress [3:0] = Type
672 */
673 #define CDU_VALID_DATA(_cid, _region, _type) \
674 (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
675 #define CDU_CRC8(_cid, _region, _type) \
676 calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
677 #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
678 (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
679 #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
680 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
681 #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
682
683 /*****************************************************************************
684 * Description:
685 * Calculates crc 8 on a word value: polynomial 0-1-2-8
686 * Code was translated from Verilog.
687 ****************************************************************************/
calc_crc8(u32 data,u8 crc)688 static u8 calc_crc8(u32 data, u8 crc)
689 {
690 u8 D[32];
691 u8 NewCRC[8];
692 u8 C[8];
693 u8 crc_res;
694 u8 i;
695
696 /* split the data into 31 bits */
697 for (i = 0; i < 32; i++) {
698 D[i] = data & 1;
699 data = data >> 1;
700 }
701
702 /* split the crc into 8 bits */
703 for (i = 0; i < 8; i++) {
704 C[i] = crc & 1;
705 crc = crc >> 1;
706 }
707
708 NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
709 D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
710 C[6] ^ C[7];
711 NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
712 D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
713 D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
714 NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
715 D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
716 C[0] ^ C[1] ^ C[4] ^ C[5];
717 NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
718 D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
719 C[1] ^ C[2] ^ C[5] ^ C[6];
720 NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
721 D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
722 C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
723 NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
724 D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
725 C[3] ^ C[4] ^ C[7];
726 NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
727 D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
728 C[5];
729 NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
730 D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
731 C[6];
732
733 crc_res = 0;
734 for (i = 0; i < 8; i++)
735 crc_res |= (NewCRC[i] << i);
736
737 return crc_res;
738 }
739
740 /* registers addresses are not in order
741 so these arrays help simplify the code */
742 static const int cm_start[E1H_FUNC_MAX][9] = {
743 {MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
744 XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
745 XSEM_FUNC0_START},
746 {MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
747 XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
748 XSEM_FUNC1_START},
749 {MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
750 XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
751 XSEM_FUNC2_START},
752 {MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
753 XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
754 XSEM_FUNC3_START},
755 {MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
756 XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
757 XSEM_FUNC4_START},
758 {MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
759 XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
760 XSEM_FUNC5_START},
761 {MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
762 XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
763 XSEM_FUNC6_START},
764 {MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
765 XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
766 XSEM_FUNC7_START}
767 };
768
769 static const int cm_end[E1H_FUNC_MAX][9] = {
770 {MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
771 XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
772 XSEM_FUNC0_END},
773 {MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
774 XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
775 XSEM_FUNC1_END},
776 {MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
777 XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
778 XSEM_FUNC2_END},
779 {MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
780 XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
781 XSEM_FUNC3_END},
782 {MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
783 XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
784 XSEM_FUNC4_END},
785 {MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
786 XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
787 XSEM_FUNC5_END},
788 {MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
789 XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
790 XSEM_FUNC6_END},
791 {MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
792 XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
793 XSEM_FUNC7_END},
794 };
795
796 static const int hc_limits[E1H_FUNC_MAX][2] = {
797 {HC_FUNC0_START, HC_FUNC0_END},
798 {HC_FUNC1_START, HC_FUNC1_END},
799 {HC_FUNC2_START, HC_FUNC2_END},
800 {HC_FUNC3_START, HC_FUNC3_END},
801 {HC_FUNC4_START, HC_FUNC4_END},
802 {HC_FUNC5_START, HC_FUNC5_END},
803 {HC_FUNC6_START, HC_FUNC6_END},
804 {HC_FUNC7_START, HC_FUNC7_END}
805 };
806
807 #endif /* BNX2X_INIT_H */
808
809