• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* bnx2x_init.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2008 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  */
12 
13 #ifndef BNX2X_INIT_H
14 #define BNX2X_INIT_H
15 
16 #define COMMON				0x1
17 #define PORT0				0x2
18 #define PORT1				0x4
19 
20 #define INIT_EMULATION			0x1
21 #define INIT_FPGA			0x2
22 #define INIT_ASIC			0x4
23 #define INIT_HARDWARE			0x7
24 
25 #define STORM_INTMEM_SIZE_E1		(0x5800 / 4)
26 #define STORM_INTMEM_SIZE_E1H		(0x10000 / 4)
27 #define TSTORM_INTMEM_ADDR		0x1a0000
28 #define CSTORM_INTMEM_ADDR		0x220000
29 #define XSTORM_INTMEM_ADDR		0x2a0000
30 #define USTORM_INTMEM_ADDR		0x320000
31 
32 
33 /* Init operation types and structures */
34 /* Common for both E1 and E1H */
35 #define OP_RD			0x1 /* read single register */
36 #define OP_WR			0x2 /* write single register */
37 #define OP_IW			0x3 /* write single register using mailbox */
38 #define OP_SW			0x4 /* copy a string to the device */
39 #define OP_SI			0x5 /* copy a string using mailbox */
40 #define OP_ZR			0x6 /* clear memory */
41 #define OP_ZP			0x7 /* unzip then copy with DMAE */
42 #define OP_WR_64		0x8 /* write 64 bit pattern */
43 #define OP_WB			0x9 /* copy a string using DMAE */
44 
45 /* Operation specific for E1 */
46 #define OP_RD_E1		0xa /* read single register */
47 #define OP_WR_E1		0xb /* write single register */
48 #define OP_IW_E1		0xc /* write single register using mailbox */
49 #define OP_SW_E1		0xd /* copy a string to the device */
50 #define OP_SI_E1		0xe /* copy a string using mailbox */
51 #define OP_ZR_E1		0xf /* clear memory */
52 #define OP_ZP_E1		0x10 /* unzip then copy with DMAE */
53 #define OP_WR_64_E1		0x11 /* write 64 bit pattern on E1 */
54 #define OP_WB_E1		0x12 /* copy a string using DMAE */
55 
56 /* Operation specific for E1H */
57 #define OP_RD_E1H		0x13 /* read single register */
58 #define OP_WR_E1H		0x14 /* write single register */
59 #define OP_IW_E1H		0x15 /* write single register using mailbox */
60 #define OP_SW_E1H		0x16 /* copy a string to the device */
61 #define OP_SI_E1H		0x17 /* copy a string using mailbox */
62 #define OP_ZR_E1H		0x18 /* clear memory */
63 #define OP_ZP_E1H		0x19 /* unzip then copy with DMAE */
64 #define OP_WR_64_E1H		0x1a /* write 64 bit pattern on E1H */
65 #define OP_WB_E1H		0x1b /* copy a string using DMAE */
66 
67 /* FPGA and EMUL specific operations */
68 #define OP_WR_EMUL_E1H		0x1c /* write single register on E1H Emul */
69 #define OP_WR_EMUL		0x1d /* write single register on Emulation */
70 #define OP_WR_FPGA		0x1e /* write single register on FPGA */
71 #define OP_WR_ASIC		0x1f /* write single register on ASIC */
72 
73 
74 struct raw_op {
75 	u32 op:8;
76 	u32 offset:24;
77 	u32 raw_data;
78 };
79 
80 struct op_read {
81 	u32 op:8;
82 	u32 offset:24;
83 	u32 pad;
84 };
85 
86 struct op_write {
87 	u32 op:8;
88 	u32 offset:24;
89 	u32 val;
90 };
91 
92 struct op_string_write {
93 	u32 op:8;
94 	u32 offset:24;
95 #ifdef __LITTLE_ENDIAN
96 	u16 data_off;
97 	u16 data_len;
98 #else /* __BIG_ENDIAN */
99 	u16 data_len;
100 	u16 data_off;
101 #endif
102 };
103 
104 struct op_zero {
105 	u32 op:8;
106 	u32 offset:24;
107 	u32 len;
108 };
109 
110 union init_op {
111 	struct op_read		read;
112 	struct op_write		write;
113 	struct op_string_write	str_wr;
114 	struct op_zero		zero;
115 	struct raw_op		raw;
116 };
117 
118 #include "bnx2x_init_values.h"
119 
120 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
121 static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
122 
bnx2x_init_str_wr(struct bnx2x * bp,u32 addr,const u32 * data,u32 len)123 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
124 			      u32 len)
125 {
126 	int i;
127 
128 	for (i = 0; i < len; i++) {
129 		REG_WR(bp, addr + i*4, data[i]);
130 		if (!(i % 10000)) {
131 			touch_softlockup_watchdog();
132 			cpu_relax();
133 		}
134 	}
135 }
136 
bnx2x_init_ind_wr(struct bnx2x * bp,u32 addr,const u32 * data,u16 len)137 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
138 			      u16 len)
139 {
140 	int i;
141 
142 	for (i = 0; i < len; i++) {
143 		REG_WR_IND(bp, addr + i*4, data[i]);
144 		if (!(i % 10000)) {
145 			touch_softlockup_watchdog();
146 			cpu_relax();
147 		}
148 	}
149 }
150 
bnx2x_write_big_buf(struct bnx2x * bp,u32 addr,u32 len)151 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
152 {
153 	int offset = 0;
154 
155 	if (bp->dmae_ready) {
156 		while (len > DMAE_LEN32_WR_MAX) {
157 			bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
158 					 addr + offset, DMAE_LEN32_WR_MAX);
159 			offset += DMAE_LEN32_WR_MAX * 4;
160 			len -= DMAE_LEN32_WR_MAX;
161 		}
162 		bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
163 				 addr + offset, len);
164 	} else
165 		bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
166 }
167 
bnx2x_init_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)168 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
169 {
170 	if ((len * 4) > FW_BUF_SIZE) {
171 		BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x  len 0x%x\n",
172 			  addr, len*4);
173 		return;
174 	}
175 	memset(bp->gunzip_buf, fill, len * 4);
176 
177 	bnx2x_write_big_buf(bp, addr, len);
178 }
179 
bnx2x_init_wr_64(struct bnx2x * bp,u32 addr,const u32 * data,u32 len64)180 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
181 			     u32 len64)
182 {
183 	u32 buf_len32 = FW_BUF_SIZE/4;
184 	u32 len = len64*2;
185 	u64 data64 = 0;
186 	int i;
187 
188 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
189 	data64 = HILO_U64((*(data + 1)), (*data));
190 	len64 = min((u32)(FW_BUF_SIZE/8), len64);
191 	for (i = 0; i < len64; i++) {
192 		u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
193 
194 		*pdata = data64;
195 	}
196 
197 	for (i = 0; i < len; i += buf_len32) {
198 		u32 cur_len = min(buf_len32, len - i);
199 
200 		bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
201 	}
202 }
203 
204 /*********************************************************
205    There are different blobs for each PRAM section.
206    In addition, each blob write operation is divided into a few operations
207    in order to decrease the amount of phys. contiguous buffer needed.
208    Thus, when we select a blob the address may be with some offset
209    from the beginning of PRAM section.
210    The same holds for the INT_TABLE sections.
211 **********************************************************/
212 #define IF_IS_INT_TABLE_ADDR(base, addr) \
213 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
214 
215 #define IF_IS_PRAM_ADDR(base, addr) \
216 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
217 
bnx2x_sel_blob(u32 addr,const u32 * data,int is_e1)218 static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
219 {
220 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
221 		data = is_e1 ? tsem_int_table_data_e1 :
222 			       tsem_int_table_data_e1h;
223 	else
224 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
225 			data = is_e1 ? csem_int_table_data_e1 :
226 				       csem_int_table_data_e1h;
227 	else
228 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
229 			data = is_e1 ? usem_int_table_data_e1 :
230 				       usem_int_table_data_e1h;
231 	else
232 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
233 			data = is_e1 ? xsem_int_table_data_e1 :
234 				       xsem_int_table_data_e1h;
235 	else
236 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
237 			data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
238 	else
239 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
240 			data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
241 	else
242 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
243 			data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
244 	else
245 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
246 			data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
247 
248 	return data;
249 }
250 
bnx2x_init_wr_wb(struct bnx2x * bp,u32 addr,const u32 * data,u32 len,int gunzip,int is_e1,u32 blob_off)251 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
252 			     u32 len, int gunzip, int is_e1, u32 blob_off)
253 {
254 	int offset = 0;
255 
256 	data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
257 
258 	if (gunzip) {
259 		int rc;
260 #ifdef __BIG_ENDIAN
261 		int i, size;
262 		u32 *temp;
263 
264 		temp = kmalloc(len, GFP_KERNEL);
265 		size = (len / 4) + ((len % 4) ? 1 : 0);
266 		for (i = 0; i < size; i++)
267 			temp[i] = swab32(data[i]);
268 		data = temp;
269 #endif
270 		rc = bnx2x_gunzip(bp, (u8 *)data, len);
271 		if (rc) {
272 			BNX2X_ERR("gunzip failed ! rc %d\n", rc);
273 			return;
274 		}
275 		len = bp->gunzip_outlen;
276 #ifdef __BIG_ENDIAN
277 		kfree(temp);
278 		for (i = 0; i < len; i++)
279 			((u32 *)bp->gunzip_buf)[i] =
280 					swab32(((u32 *)bp->gunzip_buf)[i]);
281 #endif
282 	} else {
283 		if ((len * 4) > FW_BUF_SIZE) {
284 			BNX2X_ERR("LARGE DMAE OPERATION ! "
285 				  "addr 0x%x  len 0x%x\n", addr, len*4);
286 			return;
287 		}
288 		memcpy(bp->gunzip_buf, data, len * 4);
289 	}
290 
291 	if (bp->dmae_ready) {
292 		while (len > DMAE_LEN32_WR_MAX) {
293 			bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
294 					 addr + offset, DMAE_LEN32_WR_MAX);
295 			offset += DMAE_LEN32_WR_MAX * 4;
296 			len -= DMAE_LEN32_WR_MAX;
297 		}
298 		bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
299 				 addr + offset, len);
300 	} else
301 		bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
302 }
303 
bnx2x_init_block(struct bnx2x * bp,u32 op_start,u32 op_end)304 static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
305 {
306 	int is_e1       = CHIP_IS_E1(bp);
307 	int is_e1h      = CHIP_IS_E1H(bp);
308 	int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
309 	int hw_wr, i;
310 	union init_op *op;
311 	u32 op_type, addr, len;
312 	const u32 *data, *data_base;
313 
314 	if (CHIP_REV_IS_FPGA(bp))
315 		hw_wr = OP_WR_FPGA;
316 	else if (CHIP_REV_IS_EMUL(bp))
317 		hw_wr = OP_WR_EMUL;
318 	else
319 		hw_wr = OP_WR_ASIC;
320 
321 	if (is_e1)
322 		data_base = init_data_e1;
323 	else /* CHIP_IS_E1H(bp) */
324 		data_base = init_data_e1h;
325 
326 	for (i = op_start; i < op_end; i++) {
327 
328 		op = (union init_op *)&(init_ops[i]);
329 
330 		op_type = op->str_wr.op;
331 		addr = op->str_wr.offset;
332 		len = op->str_wr.data_len;
333 		data = data_base + op->str_wr.data_off;
334 
335 		/* careful! it must be in order */
336 		if (unlikely(op_type > OP_WB)) {
337 
338 			/* If E1 only */
339 			if (op_type <= OP_WB_E1) {
340 				if (is_e1)
341 					op_type -= (OP_RD_E1 - OP_RD);
342 
343 			/* If E1H only */
344 			} else if (op_type <= OP_WB_E1H) {
345 				if (is_e1h)
346 					op_type -= (OP_RD_E1H - OP_RD);
347 			}
348 
349 			/* HW/EMUL specific */
350 			if (op_type == hw_wr)
351 				op_type = OP_WR;
352 
353 			/* EMUL on E1H is special */
354 			if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
355 				op_type = OP_WR;
356 		}
357 
358 		switch (op_type) {
359 		case OP_RD:
360 			REG_RD(bp, addr);
361 			break;
362 		case OP_WR:
363 			REG_WR(bp, addr, op->write.val);
364 			break;
365 		case OP_SW:
366 			bnx2x_init_str_wr(bp, addr, data, len);
367 			break;
368 		case OP_WB:
369 			bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
370 			break;
371 		case OP_SI:
372 			bnx2x_init_ind_wr(bp, addr, data, len);
373 			break;
374 		case OP_ZR:
375 			bnx2x_init_fill(bp, addr, 0, op->zero.len);
376 			break;
377 		case OP_ZP:
378 			bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
379 					 op->str_wr.data_off);
380 			break;
381 		case OP_WR_64:
382 			bnx2x_init_wr_64(bp, addr, data, len);
383 			break;
384 		default:
385 			/* happens whenever an op is of a diff HW */
386 #if 0
387 			DP(NETIF_MSG_HW, "skipping init operation  "
388 			   "index %d[%d:%d]: type %d  addr 0x%x  "
389 			   "len %d(0x%x)\n",
390 			   i, op_start, op_end, op_type, addr, len, len);
391 #endif
392 			break;
393 		}
394 	}
395 }
396 
397 
398 /****************************************************************************
399 * PXP
400 ****************************************************************************/
401 /*
402  * This code configures the PCI read/write arbiter
403  * which implements a weighted round robin
404  * between the virtual queues in the chip.
405  *
406  * The values were derived for each PCI max payload and max request size.
407  * since max payload and max request size are only known at run time,
408  * this is done as a separate init stage.
409  */
410 
411 #define NUM_WR_Q			13
412 #define NUM_RD_Q			29
413 #define MAX_RD_ORD			3
414 #define MAX_WR_ORD			2
415 
416 /* configuration for one arbiter queue */
417 struct arb_line {
418 	int l;
419 	int add;
420 	int ubound;
421 };
422 
423 /* derived configuration for each read queue for each max request size */
424 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
425 	{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
426 	{{4 , 8 , 4},   {4 , 8 , 4},    {4 , 8 , 4},    {4 , 8 , 4} },
427 	{{4 , 3 , 3},   {4 , 3 , 3},    {4 , 3 , 3},    {4 , 3 , 3} },
428 	{{8 , 3 , 6},   {16 , 3 , 11},  {16 , 3 , 11},  {16 , 3 , 11} },
429 	{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
430 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
431 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
432 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
433 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} },
434 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
435 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
436 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
437 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
438 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
439 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
440 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
441 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
442 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
443 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
444 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
445 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
446 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
447 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
448 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
449 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
450 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
451 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
452 	{{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} },
453 	{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
454 };
455 
456 /* derived configuration for each write queue for each max request size */
457 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
458 	{{4 , 6 , 3},   {4 , 6 , 3},    {4 , 6 , 3} },
459 	{{4 , 2 , 3},   {4 , 2 , 3},    {4 , 2 , 3} },
460 	{{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} },
461 	{{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} },
462 	{{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} },
463 	{{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} },
464 	{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
465 	{{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} },
466 	{{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} },
467 	{{8 , 9 , 6},   {16 , 9 , 11},  {32 , 9 , 21} },
468 	{{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
469 	{{8 , 9 , 6},   {16 , 9 , 11},  {16 , 9 , 11} },
470 	{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
471 };
472 
473 /* register addresses for read queues */
474 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
475 	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
476 		PXP2_REG_RQ_BW_RD_UBOUND0},
477 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
478 		PXP2_REG_PSWRQ_BW_UB1},
479 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
480 		PXP2_REG_PSWRQ_BW_UB2},
481 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
482 		PXP2_REG_PSWRQ_BW_UB3},
483 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
484 		PXP2_REG_RQ_BW_RD_UBOUND4},
485 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
486 		PXP2_REG_RQ_BW_RD_UBOUND5},
487 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
488 		PXP2_REG_PSWRQ_BW_UB6},
489 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
490 		PXP2_REG_PSWRQ_BW_UB7},
491 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
492 		PXP2_REG_PSWRQ_BW_UB8},
493 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
494 		PXP2_REG_PSWRQ_BW_UB9},
495 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
496 		PXP2_REG_PSWRQ_BW_UB10},
497 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
498 		PXP2_REG_PSWRQ_BW_UB11},
499 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
500 		PXP2_REG_RQ_BW_RD_UBOUND12},
501 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
502 		PXP2_REG_RQ_BW_RD_UBOUND13},
503 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
504 		PXP2_REG_RQ_BW_RD_UBOUND14},
505 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
506 		PXP2_REG_RQ_BW_RD_UBOUND15},
507 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
508 		PXP2_REG_RQ_BW_RD_UBOUND16},
509 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
510 		PXP2_REG_RQ_BW_RD_UBOUND17},
511 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
512 		PXP2_REG_RQ_BW_RD_UBOUND18},
513 	{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
514 		PXP2_REG_RQ_BW_RD_UBOUND19},
515 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
516 		PXP2_REG_RQ_BW_RD_UBOUND20},
517 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
518 		PXP2_REG_RQ_BW_RD_UBOUND22},
519 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
520 		PXP2_REG_RQ_BW_RD_UBOUND23},
521 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
522 		PXP2_REG_RQ_BW_RD_UBOUND24},
523 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
524 		PXP2_REG_RQ_BW_RD_UBOUND25},
525 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
526 		PXP2_REG_RQ_BW_RD_UBOUND26},
527 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
528 		PXP2_REG_RQ_BW_RD_UBOUND27},
529 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
530 		PXP2_REG_PSWRQ_BW_UB28}
531 };
532 
533 /* register addresses for write queues */
534 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
535 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
536 		PXP2_REG_PSWRQ_BW_UB1},
537 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
538 		PXP2_REG_PSWRQ_BW_UB2},
539 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
540 		PXP2_REG_PSWRQ_BW_UB3},
541 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
542 		PXP2_REG_PSWRQ_BW_UB6},
543 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
544 		PXP2_REG_PSWRQ_BW_UB7},
545 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
546 		PXP2_REG_PSWRQ_BW_UB8},
547 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
548 		PXP2_REG_PSWRQ_BW_UB9},
549 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
550 		PXP2_REG_PSWRQ_BW_UB10},
551 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
552 		PXP2_REG_PSWRQ_BW_UB11},
553 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
554 		PXP2_REG_PSWRQ_BW_UB28},
555 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
556 		PXP2_REG_RQ_BW_WR_UBOUND29},
557 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
558 		PXP2_REG_RQ_BW_WR_UBOUND30}
559 };
560 
bnx2x_init_pxp(struct bnx2x * bp)561 static void bnx2x_init_pxp(struct bnx2x *bp)
562 {
563 	u16 devctl;
564 	int r_order, w_order;
565 	u32 val, i;
566 
567 	pci_read_config_word(bp->pdev,
568 			     bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
569 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
570 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
571 	r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
572 
573 	if (r_order > MAX_RD_ORD) {
574 		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
575 		   r_order, MAX_RD_ORD);
576 		r_order = MAX_RD_ORD;
577 	}
578 	if (w_order > MAX_WR_ORD) {
579 		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
580 		   w_order, MAX_WR_ORD);
581 		w_order = MAX_WR_ORD;
582 	}
583 	if (CHIP_REV_IS_FPGA(bp)) {
584 		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
585 		w_order = 0;
586 	}
587 	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
588 
589 	for (i = 0; i < NUM_RD_Q-1; i++) {
590 		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
591 		REG_WR(bp, read_arb_addr[i].add,
592 		       read_arb_data[i][r_order].add);
593 		REG_WR(bp, read_arb_addr[i].ubound,
594 		       read_arb_data[i][r_order].ubound);
595 	}
596 
597 	for (i = 0; i < NUM_WR_Q-1; i++) {
598 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
599 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
600 
601 			REG_WR(bp, write_arb_addr[i].l,
602 			       write_arb_data[i][w_order].l);
603 
604 			REG_WR(bp, write_arb_addr[i].add,
605 			       write_arb_data[i][w_order].add);
606 
607 			REG_WR(bp, write_arb_addr[i].ubound,
608 			       write_arb_data[i][w_order].ubound);
609 		} else {
610 
611 			val = REG_RD(bp, write_arb_addr[i].l);
612 			REG_WR(bp, write_arb_addr[i].l,
613 			       val | (write_arb_data[i][w_order].l << 10));
614 
615 			val = REG_RD(bp, write_arb_addr[i].add);
616 			REG_WR(bp, write_arb_addr[i].add,
617 			       val | (write_arb_data[i][w_order].add << 10));
618 
619 			val = REG_RD(bp, write_arb_addr[i].ubound);
620 			REG_WR(bp, write_arb_addr[i].ubound,
621 			       val | (write_arb_data[i][w_order].ubound << 7));
622 		}
623 	}
624 
625 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
626 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
627 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
628 	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
629 
630 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
631 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
632 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
633 	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
634 
635 	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
636 	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
637 	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
638 	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
639 
640 	if (r_order == MAX_RD_ORD)
641 		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
642 
643 	REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
644 
645 	if (CHIP_IS_E1H(bp)) {
646 		REG_WR(bp, PXP2_REG_WR_HC_MPS, w_order+1);
647 		REG_WR(bp, PXP2_REG_WR_USDM_MPS, w_order+1);
648 		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, w_order+1);
649 		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, w_order+1);
650 		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, w_order+1);
651 		REG_WR(bp, PXP2_REG_WR_QM_MPS, w_order+1);
652 		REG_WR(bp, PXP2_REG_WR_TM_MPS, w_order+1);
653 		REG_WR(bp, PXP2_REG_WR_SRC_MPS, w_order+1);
654 		REG_WR(bp, PXP2_REG_WR_DBG_MPS, w_order+1);
655 		REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
656 		REG_WR(bp, PXP2_REG_WR_CDU_MPS, w_order+1);
657 	}
658 }
659 
660 
661 /****************************************************************************
662 * CDU
663 ****************************************************************************/
664 
665 #define CDU_REGION_NUMBER_XCM_AG	2
666 #define CDU_REGION_NUMBER_UCM_AG	4
667 
668 /**
669  * String-to-compress [31:8] = CID (all 24 bits)
670  * String-to-compress [7:4] = Region
671  * String-to-compress [3:0] = Type
672  */
673 #define CDU_VALID_DATA(_cid, _region, _type) \
674 		(((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
675 #define CDU_CRC8(_cid, _region, _type) \
676 			calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
677 #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
678 			(0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
679 #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
680 	(0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
681 #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val)	((_val) & ~0x80)
682 
683 /*****************************************************************************
684  * Description:
685  *         Calculates crc 8 on a word value: polynomial 0-1-2-8
686  *         Code was translated from Verilog.
687  ****************************************************************************/
calc_crc8(u32 data,u8 crc)688 static u8 calc_crc8(u32 data, u8 crc)
689 {
690 	u8 D[32];
691 	u8 NewCRC[8];
692 	u8 C[8];
693 	u8 crc_res;
694 	u8 i;
695 
696 	/* split the data into 31 bits */
697 	for (i = 0; i < 32; i++) {
698 		D[i] = data & 1;
699 		data = data >> 1;
700 	}
701 
702 	/* split the crc into 8 bits */
703 	for (i = 0; i < 8; i++) {
704 		C[i] = crc & 1;
705 		crc = crc >> 1;
706 	}
707 
708 	NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
709 		D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
710 		C[6] ^ C[7];
711 	NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
712 		D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
713 		D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
714 	NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
715 		D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
716 		C[0] ^ C[1] ^ C[4] ^ C[5];
717 	NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
718 		D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
719 		C[1] ^ C[2] ^ C[5] ^ C[6];
720 	NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
721 		D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
722 		C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
723 	NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
724 		D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
725 		C[3] ^ C[4] ^ C[7];
726 	NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
727 		D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
728 		C[5];
729 	NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
730 		D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
731 		C[6];
732 
733 	crc_res = 0;
734 	for (i = 0; i < 8; i++)
735 		crc_res |= (NewCRC[i] << i);
736 
737 	return crc_res;
738 }
739 
740 /* registers addresses are not in order
741    so these arrays help simplify the code */
742 static const int cm_start[E1H_FUNC_MAX][9] = {
743 	{MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
744 	 XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
745 	 XSEM_FUNC0_START},
746 	{MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
747 	 XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
748 	 XSEM_FUNC1_START},
749 	{MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
750 	 XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
751 	 XSEM_FUNC2_START},
752 	{MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
753 	 XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
754 	 XSEM_FUNC3_START},
755 	{MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
756 	 XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
757 	 XSEM_FUNC4_START},
758 	{MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
759 	 XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
760 	 XSEM_FUNC5_START},
761 	{MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
762 	 XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
763 	 XSEM_FUNC6_START},
764 	{MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
765 	 XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
766 	 XSEM_FUNC7_START}
767 };
768 
769 static const int cm_end[E1H_FUNC_MAX][9] = {
770 	{MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
771 	 XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
772 	 XSEM_FUNC0_END},
773 	{MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
774 	 XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
775 	 XSEM_FUNC1_END},
776 	{MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
777 	 XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
778 	 XSEM_FUNC2_END},
779 	{MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
780 	 XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
781 	 XSEM_FUNC3_END},
782 	{MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
783 	 XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
784 	 XSEM_FUNC4_END},
785 	{MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
786 	 XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
787 	 XSEM_FUNC5_END},
788 	{MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
789 	 XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
790 	 XSEM_FUNC6_END},
791 	{MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
792 	 XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
793 	 XSEM_FUNC7_END},
794 };
795 
796 static const int hc_limits[E1H_FUNC_MAX][2] = {
797 	{HC_FUNC0_START, HC_FUNC0_END},
798 	{HC_FUNC1_START, HC_FUNC1_END},
799 	{HC_FUNC2_START, HC_FUNC2_END},
800 	{HC_FUNC3_START, HC_FUNC3_END},
801 	{HC_FUNC4_START, HC_FUNC4_END},
802 	{HC_FUNC5_START, HC_FUNC5_END},
803 	{HC_FUNC6_START, HC_FUNC6_END},
804 	{HC_FUNC7_START, HC_FUNC7_END}
805 };
806 
807 #endif /* BNX2X_INIT_H */
808 
809