1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 */
12
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18
19 static char version[] __devinitdata =
20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
21 #define MAX_UNITS 8
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10; /* Rx frame count each interrupt */
30 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
32
33
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
47
48
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
52 #define EnableInt() \
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
54
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
57
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
84 u16 data);
85
86 static const struct ethtool_ops ethtool_ops;
87
88 static const struct net_device_ops netdev_ops = {
89 .ndo_open = rio_open,
90 .ndo_start_xmit = start_xmit,
91 .ndo_stop = rio_close,
92 .ndo_get_stats = get_stats,
93 .ndo_validate_addr = eth_validate_addr,
94 .ndo_set_mac_address = eth_mac_addr,
95 .ndo_set_multicast_list = set_multicast,
96 .ndo_do_ioctl = rio_ioctl,
97 .ndo_tx_timeout = rio_tx_timeout,
98 .ndo_change_mtu = change_mtu,
99 };
100
101 static int __devinit
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)102 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
103 {
104 struct net_device *dev;
105 struct netdev_private *np;
106 static int card_idx;
107 int chip_idx = ent->driver_data;
108 int err, irq;
109 long ioaddr;
110 static int version_printed;
111 void *ring_space;
112 dma_addr_t ring_dma;
113
114 if (!version_printed++)
115 printk ("%s", version);
116
117 err = pci_enable_device (pdev);
118 if (err)
119 return err;
120
121 irq = pdev->irq;
122 err = pci_request_regions (pdev, "dl2k");
123 if (err)
124 goto err_out_disable;
125
126 pci_set_master (pdev);
127 dev = alloc_etherdev (sizeof (*np));
128 if (!dev) {
129 err = -ENOMEM;
130 goto err_out_res;
131 }
132 SET_NETDEV_DEV(dev, &pdev->dev);
133
134 #ifdef MEM_MAPPING
135 ioaddr = pci_resource_start (pdev, 1);
136 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
137 if (!ioaddr) {
138 err = -ENOMEM;
139 goto err_out_dev;
140 }
141 #else
142 ioaddr = pci_resource_start (pdev, 0);
143 #endif
144 dev->base_addr = ioaddr;
145 dev->irq = irq;
146 np = netdev_priv(dev);
147 np->chip_id = chip_idx;
148 np->pdev = pdev;
149 spin_lock_init (&np->tx_lock);
150 spin_lock_init (&np->rx_lock);
151
152 /* Parse manual configuration */
153 np->an_enable = 1;
154 np->tx_coalesce = 1;
155 if (card_idx < MAX_UNITS) {
156 if (media[card_idx] != NULL) {
157 np->an_enable = 0;
158 if (strcmp (media[card_idx], "auto") == 0 ||
159 strcmp (media[card_idx], "autosense") == 0 ||
160 strcmp (media[card_idx], "0") == 0 ) {
161 np->an_enable = 2;
162 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 strcmp (media[card_idx], "4") == 0) {
164 np->speed = 100;
165 np->full_duplex = 1;
166 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
167 || strcmp (media[card_idx], "3") == 0) {
168 np->speed = 100;
169 np->full_duplex = 0;
170 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 strcmp (media[card_idx], "2") == 0) {
172 np->speed = 10;
173 np->full_duplex = 1;
174 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 strcmp (media[card_idx], "1") == 0) {
176 np->speed = 10;
177 np->full_duplex = 0;
178 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 strcmp (media[card_idx], "6") == 0) {
180 np->speed=1000;
181 np->full_duplex=1;
182 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 strcmp (media[card_idx], "5") == 0) {
184 np->speed = 1000;
185 np->full_duplex = 0;
186 } else {
187 np->an_enable = 1;
188 }
189 }
190 if (jumbo[card_idx] != 0) {
191 np->jumbo = 1;
192 dev->mtu = MAX_JUMBO;
193 } else {
194 np->jumbo = 0;
195 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 dev->mtu = mtu[card_idx];
197 }
198 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 vlan[card_idx] : 0;
200 if (rx_coalesce > 0 && rx_timeout > 0) {
201 np->rx_coalesce = rx_coalesce;
202 np->rx_timeout = rx_timeout;
203 np->coalesce = 1;
204 }
205 np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 np->rx_flow = (rx_flow == 0) ? 0 : 1;
207
208 if (tx_coalesce < 1)
209 tx_coalesce = 1;
210 else if (tx_coalesce > TX_RING_SIZE-1)
211 tx_coalesce = TX_RING_SIZE - 1;
212 }
213 dev->netdev_ops = &netdev_ops;
214 dev->watchdog_timeo = TX_TIMEOUT;
215 SET_ETHTOOL_OPS(dev, ðtool_ops);
216 #if 0
217 dev->features = NETIF_F_IP_CSUM;
218 #endif
219 pci_set_drvdata (pdev, dev);
220
221 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
222 if (!ring_space)
223 goto err_out_iounmap;
224 np->tx_ring = (struct netdev_desc *) ring_space;
225 np->tx_ring_dma = ring_dma;
226
227 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
228 if (!ring_space)
229 goto err_out_unmap_tx;
230 np->rx_ring = (struct netdev_desc *) ring_space;
231 np->rx_ring_dma = ring_dma;
232
233 /* Parse eeprom data */
234 parse_eeprom (dev);
235
236 /* Find PHY address */
237 err = find_miiphy (dev);
238 if (err)
239 goto err_out_unmap_rx;
240
241 /* Fiber device? */
242 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
243 np->link_status = 0;
244 /* Set media and reset PHY */
245 if (np->phy_media) {
246 /* default Auto-Negotiation for fiber deivices */
247 if (np->an_enable == 2) {
248 np->an_enable = 1;
249 }
250 mii_set_media_pcs (dev);
251 } else {
252 /* Auto-Negotiation is mandatory for 1000BASE-T,
253 IEEE 802.3ab Annex 28D page 14 */
254 if (np->speed == 1000)
255 np->an_enable = 1;
256 mii_set_media (dev);
257 }
258
259 err = register_netdev (dev);
260 if (err)
261 goto err_out_unmap_rx;
262
263 card_idx++;
264
265 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
266 dev->name, np->name, dev->dev_addr, irq);
267 if (tx_coalesce > 1)
268 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
269 tx_coalesce);
270 if (np->coalesce)
271 printk(KERN_INFO "rx_coalesce:\t%d packets\n"
272 KERN_INFO "rx_timeout: \t%d ns\n",
273 np->rx_coalesce, np->rx_timeout*640);
274 if (np->vlan)
275 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
276 return 0;
277
278 err_out_unmap_rx:
279 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
280 err_out_unmap_tx:
281 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
282 err_out_iounmap:
283 #ifdef MEM_MAPPING
284 iounmap ((void *) ioaddr);
285
286 err_out_dev:
287 #endif
288 free_netdev (dev);
289
290 err_out_res:
291 pci_release_regions (pdev);
292
293 err_out_disable:
294 pci_disable_device (pdev);
295 return err;
296 }
297
298 static int
find_miiphy(struct net_device * dev)299 find_miiphy (struct net_device *dev)
300 {
301 int i, phy_found = 0;
302 struct netdev_private *np;
303 long ioaddr;
304 np = netdev_priv(dev);
305 ioaddr = dev->base_addr;
306 np->phy_addr = 1;
307
308 for (i = 31; i >= 0; i--) {
309 int mii_status = mii_read (dev, i, 1);
310 if (mii_status != 0xffff && mii_status != 0x0000) {
311 np->phy_addr = i;
312 phy_found++;
313 }
314 }
315 if (!phy_found) {
316 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
317 return -ENODEV;
318 }
319 return 0;
320 }
321
322 static int
parse_eeprom(struct net_device * dev)323 parse_eeprom (struct net_device *dev)
324 {
325 int i, j;
326 long ioaddr = dev->base_addr;
327 u8 sromdata[256];
328 u8 *psib;
329 u32 crc;
330 PSROM_t psrom = (PSROM_t) sromdata;
331 struct netdev_private *np = netdev_priv(dev);
332
333 int cid, next;
334
335 #ifdef MEM_MAPPING
336 ioaddr = pci_resource_start (np->pdev, 0);
337 #endif
338 /* Read eeprom */
339 for (i = 0; i < 128; i++) {
340 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
341 }
342 #ifdef MEM_MAPPING
343 ioaddr = dev->base_addr;
344 #endif
345 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
346 /* Check CRC */
347 crc = ~ether_crc_le (256 - 4, sromdata);
348 if (psrom->crc != crc) {
349 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
350 dev->name);
351 return -1;
352 }
353 }
354
355 /* Set MAC address */
356 for (i = 0; i < 6; i++)
357 dev->dev_addr[i] = psrom->mac_addr[i];
358
359 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
360 return 0;
361 }
362
363 /* Parse Software Information Block */
364 i = 0x30;
365 psib = (u8 *) sromdata;
366 do {
367 cid = psib[i++];
368 next = psib[i++];
369 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370 printk (KERN_ERR "Cell data error\n");
371 return -1;
372 }
373 switch (cid) {
374 case 0: /* Format version */
375 break;
376 case 1: /* End of cell */
377 return 0;
378 case 2: /* Duplex Polarity */
379 np->duplex_polarity = psib[i];
380 writeb (readb (ioaddr + PhyCtrl) | psib[i],
381 ioaddr + PhyCtrl);
382 break;
383 case 3: /* Wake Polarity */
384 np->wake_polarity = psib[i];
385 break;
386 case 9: /* Adapter description */
387 j = (next - i > 255) ? 255 : next - i;
388 memcpy (np->name, &(psib[i]), j);
389 break;
390 case 4:
391 case 5:
392 case 6:
393 case 7:
394 case 8: /* Reversed */
395 break;
396 default: /* Unknown cell */
397 return -1;
398 }
399 i = next;
400 } while (1);
401
402 return 0;
403 }
404
405 static int
rio_open(struct net_device * dev)406 rio_open (struct net_device *dev)
407 {
408 struct netdev_private *np = netdev_priv(dev);
409 long ioaddr = dev->base_addr;
410 int i;
411 u16 macctrl;
412
413 i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
414 if (i)
415 return i;
416
417 /* Reset all logic functions */
418 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
419 ioaddr + ASICCtrl + 2);
420 mdelay(10);
421
422 /* DebugCtrl bit 4, 5, 9 must set */
423 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
424
425 /* Jumbo frame */
426 if (np->jumbo != 0)
427 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
428
429 alloc_list (dev);
430
431 /* Get station address */
432 for (i = 0; i < 6; i++)
433 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
434
435 set_multicast (dev);
436 if (np->coalesce) {
437 writel (np->rx_coalesce | np->rx_timeout << 16,
438 ioaddr + RxDMAIntCtrl);
439 }
440 /* Set RIO to poll every N*320nsec. */
441 writeb (0x20, ioaddr + RxDMAPollPeriod);
442 writeb (0xff, ioaddr + TxDMAPollPeriod);
443 writeb (0x30, ioaddr + RxDMABurstThresh);
444 writeb (0x30, ioaddr + RxDMAUrgentThresh);
445 writel (0x0007ffff, ioaddr + RmonStatMask);
446 /* clear statistics */
447 clear_stats (dev);
448
449 /* VLAN supported */
450 if (np->vlan) {
451 /* priority field in RxDMAIntCtrl */
452 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
453 ioaddr + RxDMAIntCtrl);
454 /* VLANId */
455 writew (np->vlan, ioaddr + VLANId);
456 /* Length/Type should be 0x8100 */
457 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
458 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
459 VLAN information tagged by TFC' VID, CFI fields. */
460 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
461 ioaddr + MACCtrl);
462 }
463
464 init_timer (&np->timer);
465 np->timer.expires = jiffies + 1*HZ;
466 np->timer.data = (unsigned long) dev;
467 np->timer.function = &rio_timer;
468 add_timer (&np->timer);
469
470 /* Start Tx/Rx */
471 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
472 ioaddr + MACCtrl);
473
474 macctrl = 0;
475 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
476 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
477 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
478 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
479 writew(macctrl, ioaddr + MACCtrl);
480
481 netif_start_queue (dev);
482
483 /* Enable default interrupts */
484 EnableInt ();
485 return 0;
486 }
487
488 static void
rio_timer(unsigned long data)489 rio_timer (unsigned long data)
490 {
491 struct net_device *dev = (struct net_device *)data;
492 struct netdev_private *np = netdev_priv(dev);
493 unsigned int entry;
494 int next_tick = 1*HZ;
495 unsigned long flags;
496
497 spin_lock_irqsave(&np->rx_lock, flags);
498 /* Recover rx ring exhausted error */
499 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
500 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
501 /* Re-allocate skbuffs to fill the descriptor ring */
502 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
503 struct sk_buff *skb;
504 entry = np->old_rx % RX_RING_SIZE;
505 /* Dropped packets don't need to re-allocate */
506 if (np->rx_skbuff[entry] == NULL) {
507 skb = netdev_alloc_skb (dev, np->rx_buf_sz);
508 if (skb == NULL) {
509 np->rx_ring[entry].fraginfo = 0;
510 printk (KERN_INFO
511 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
512 dev->name, entry);
513 break;
514 }
515 np->rx_skbuff[entry] = skb;
516 /* 16 byte align the IP header */
517 skb_reserve (skb, 2);
518 np->rx_ring[entry].fraginfo =
519 cpu_to_le64 (pci_map_single
520 (np->pdev, skb->data, np->rx_buf_sz,
521 PCI_DMA_FROMDEVICE));
522 }
523 np->rx_ring[entry].fraginfo |=
524 cpu_to_le64((u64)np->rx_buf_sz << 48);
525 np->rx_ring[entry].status = 0;
526 } /* end for */
527 } /* end if */
528 spin_unlock_irqrestore (&np->rx_lock, flags);
529 np->timer.expires = jiffies + next_tick;
530 add_timer(&np->timer);
531 }
532
533 static void
rio_tx_timeout(struct net_device * dev)534 rio_tx_timeout (struct net_device *dev)
535 {
536 long ioaddr = dev->base_addr;
537
538 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
539 dev->name, readl (ioaddr + TxStatus));
540 rio_free_tx(dev, 0);
541 dev->if_port = 0;
542 dev->trans_start = jiffies;
543 }
544
545 /* allocate and initialize Tx and Rx descriptors */
546 static void
alloc_list(struct net_device * dev)547 alloc_list (struct net_device *dev)
548 {
549 struct netdev_private *np = netdev_priv(dev);
550 int i;
551
552 np->cur_rx = np->cur_tx = 0;
553 np->old_rx = np->old_tx = 0;
554 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
555
556 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
557 for (i = 0; i < TX_RING_SIZE; i++) {
558 np->tx_skbuff[i] = NULL;
559 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
560 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
561 ((i+1)%TX_RING_SIZE) *
562 sizeof (struct netdev_desc));
563 }
564
565 /* Initialize Rx descriptors */
566 for (i = 0; i < RX_RING_SIZE; i++) {
567 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
568 ((i + 1) % RX_RING_SIZE) *
569 sizeof (struct netdev_desc));
570 np->rx_ring[i].status = 0;
571 np->rx_ring[i].fraginfo = 0;
572 np->rx_skbuff[i] = NULL;
573 }
574
575 /* Allocate the rx buffers */
576 for (i = 0; i < RX_RING_SIZE; i++) {
577 /* Allocated fixed size of skbuff */
578 struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
579 np->rx_skbuff[i] = skb;
580 if (skb == NULL) {
581 printk (KERN_ERR
582 "%s: alloc_list: allocate Rx buffer error! ",
583 dev->name);
584 break;
585 }
586 skb_reserve (skb, 2); /* 16 byte align the IP header. */
587 /* Rubicon now supports 40 bits of addressing space. */
588 np->rx_ring[i].fraginfo =
589 cpu_to_le64 ( pci_map_single (
590 np->pdev, skb->data, np->rx_buf_sz,
591 PCI_DMA_FROMDEVICE));
592 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
593 }
594
595 /* Set RFDListPtr */
596 writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
597 writel (0, dev->base_addr + RFDListPtr1);
598
599 return;
600 }
601
602 static int
start_xmit(struct sk_buff * skb,struct net_device * dev)603 start_xmit (struct sk_buff *skb, struct net_device *dev)
604 {
605 struct netdev_private *np = netdev_priv(dev);
606 struct netdev_desc *txdesc;
607 unsigned entry;
608 u32 ioaddr;
609 u64 tfc_vlan_tag = 0;
610
611 if (np->link_status == 0) { /* Link Down */
612 dev_kfree_skb(skb);
613 return 0;
614 }
615 ioaddr = dev->base_addr;
616 entry = np->cur_tx % TX_RING_SIZE;
617 np->tx_skbuff[entry] = skb;
618 txdesc = &np->tx_ring[entry];
619
620 #if 0
621 if (skb->ip_summed == CHECKSUM_PARTIAL) {
622 txdesc->status |=
623 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
624 IPChecksumEnable);
625 }
626 #endif
627 if (np->vlan) {
628 tfc_vlan_tag = VLANTagInsert |
629 ((u64)np->vlan << 32) |
630 ((u64)skb->priority << 45);
631 }
632 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
633 skb->len,
634 PCI_DMA_TODEVICE));
635 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
636
637 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
638 * Work around: Always use 1 descriptor in 10Mbps mode */
639 if (entry % np->tx_coalesce == 0 || np->speed == 10)
640 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
641 WordAlignDisable |
642 TxDMAIndicate |
643 (1 << FragCountShift));
644 else
645 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
646 WordAlignDisable |
647 (1 << FragCountShift));
648
649 /* TxDMAPollNow */
650 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
651 /* Schedule ISR */
652 writel(10000, ioaddr + CountDown);
653 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
654 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
655 < TX_QUEUE_LEN - 1 && np->speed != 10) {
656 /* do nothing */
657 } else if (!netif_queue_stopped(dev)) {
658 netif_stop_queue (dev);
659 }
660
661 /* The first TFDListPtr */
662 if (readl (dev->base_addr + TFDListPtr0) == 0) {
663 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
664 dev->base_addr + TFDListPtr0);
665 writel (0, dev->base_addr + TFDListPtr1);
666 }
667
668 /* NETDEV WATCHDOG timer */
669 dev->trans_start = jiffies;
670 return 0;
671 }
672
673 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)674 rio_interrupt (int irq, void *dev_instance)
675 {
676 struct net_device *dev = dev_instance;
677 struct netdev_private *np;
678 unsigned int_status;
679 long ioaddr;
680 int cnt = max_intrloop;
681 int handled = 0;
682
683 ioaddr = dev->base_addr;
684 np = netdev_priv(dev);
685 while (1) {
686 int_status = readw (ioaddr + IntStatus);
687 writew (int_status, ioaddr + IntStatus);
688 int_status &= DEFAULT_INTR;
689 if (int_status == 0 || --cnt < 0)
690 break;
691 handled = 1;
692 /* Processing received packets */
693 if (int_status & RxDMAComplete)
694 receive_packet (dev);
695 /* TxDMAComplete interrupt */
696 if ((int_status & (TxDMAComplete|IntRequested))) {
697 int tx_status;
698 tx_status = readl (ioaddr + TxStatus);
699 if (tx_status & 0x01)
700 tx_error (dev, tx_status);
701 /* Free used tx skbuffs */
702 rio_free_tx (dev, 1);
703 }
704
705 /* Handle uncommon events */
706 if (int_status &
707 (HostError | LinkEvent | UpdateStats))
708 rio_error (dev, int_status);
709 }
710 if (np->cur_tx != np->old_tx)
711 writel (100, ioaddr + CountDown);
712 return IRQ_RETVAL(handled);
713 }
714
desc_to_dma(struct netdev_desc * desc)715 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
716 {
717 return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
718 }
719
720 static void
rio_free_tx(struct net_device * dev,int irq)721 rio_free_tx (struct net_device *dev, int irq)
722 {
723 struct netdev_private *np = netdev_priv(dev);
724 int entry = np->old_tx % TX_RING_SIZE;
725 int tx_use = 0;
726 unsigned long flag = 0;
727
728 if (irq)
729 spin_lock(&np->tx_lock);
730 else
731 spin_lock_irqsave(&np->tx_lock, flag);
732
733 /* Free used tx skbuffs */
734 while (entry != np->cur_tx) {
735 struct sk_buff *skb;
736
737 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
738 break;
739 skb = np->tx_skbuff[entry];
740 pci_unmap_single (np->pdev,
741 desc_to_dma(&np->tx_ring[entry]),
742 skb->len, PCI_DMA_TODEVICE);
743 if (irq)
744 dev_kfree_skb_irq (skb);
745 else
746 dev_kfree_skb (skb);
747
748 np->tx_skbuff[entry] = NULL;
749 entry = (entry + 1) % TX_RING_SIZE;
750 tx_use++;
751 }
752 if (irq)
753 spin_unlock(&np->tx_lock);
754 else
755 spin_unlock_irqrestore(&np->tx_lock, flag);
756 np->old_tx = entry;
757
758 /* If the ring is no longer full, clear tx_full and
759 call netif_wake_queue() */
760
761 if (netif_queue_stopped(dev) &&
762 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
763 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
764 netif_wake_queue (dev);
765 }
766 }
767
768 static void
tx_error(struct net_device * dev,int tx_status)769 tx_error (struct net_device *dev, int tx_status)
770 {
771 struct netdev_private *np;
772 long ioaddr = dev->base_addr;
773 int frame_id;
774 int i;
775
776 np = netdev_priv(dev);
777
778 frame_id = (tx_status & 0xffff0000);
779 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
780 dev->name, tx_status, frame_id);
781 np->stats.tx_errors++;
782 /* Ttransmit Underrun */
783 if (tx_status & 0x10) {
784 np->stats.tx_fifo_errors++;
785 writew (readw (ioaddr + TxStartThresh) + 0x10,
786 ioaddr + TxStartThresh);
787 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
788 writew (TxReset | DMAReset | FIFOReset | NetworkReset,
789 ioaddr + ASICCtrl + 2);
790 /* Wait for ResetBusy bit clear */
791 for (i = 50; i > 0; i--) {
792 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
793 break;
794 mdelay (1);
795 }
796 rio_free_tx (dev, 1);
797 /* Reset TFDListPtr */
798 writel (np->tx_ring_dma +
799 np->old_tx * sizeof (struct netdev_desc),
800 dev->base_addr + TFDListPtr0);
801 writel (0, dev->base_addr + TFDListPtr1);
802
803 /* Let TxStartThresh stay default value */
804 }
805 /* Late Collision */
806 if (tx_status & 0x04) {
807 np->stats.tx_fifo_errors++;
808 /* TxReset and clear FIFO */
809 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
810 /* Wait reset done */
811 for (i = 50; i > 0; i--) {
812 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
813 break;
814 mdelay (1);
815 }
816 /* Let TxStartThresh stay default value */
817 }
818 /* Maximum Collisions */
819 #ifdef ETHER_STATS
820 if (tx_status & 0x08)
821 np->stats.collisions16++;
822 #else
823 if (tx_status & 0x08)
824 np->stats.collisions++;
825 #endif
826 /* Restart the Tx */
827 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
828 }
829
830 static int
receive_packet(struct net_device * dev)831 receive_packet (struct net_device *dev)
832 {
833 struct netdev_private *np = netdev_priv(dev);
834 int entry = np->cur_rx % RX_RING_SIZE;
835 int cnt = 30;
836
837 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
838 while (1) {
839 struct netdev_desc *desc = &np->rx_ring[entry];
840 int pkt_len;
841 u64 frame_status;
842
843 if (!(desc->status & cpu_to_le64(RFDDone)) ||
844 !(desc->status & cpu_to_le64(FrameStart)) ||
845 !(desc->status & cpu_to_le64(FrameEnd)))
846 break;
847
848 /* Chip omits the CRC. */
849 frame_status = le64_to_cpu(desc->status);
850 pkt_len = frame_status & 0xffff;
851 if (--cnt < 0)
852 break;
853 /* Update rx error statistics, drop packet. */
854 if (frame_status & RFS_Errors) {
855 np->stats.rx_errors++;
856 if (frame_status & (RxRuntFrame | RxLengthError))
857 np->stats.rx_length_errors++;
858 if (frame_status & RxFCSError)
859 np->stats.rx_crc_errors++;
860 if (frame_status & RxAlignmentError && np->speed != 1000)
861 np->stats.rx_frame_errors++;
862 if (frame_status & RxFIFOOverrun)
863 np->stats.rx_fifo_errors++;
864 } else {
865 struct sk_buff *skb;
866
867 /* Small skbuffs for short packets */
868 if (pkt_len > copy_thresh) {
869 pci_unmap_single (np->pdev,
870 desc_to_dma(desc),
871 np->rx_buf_sz,
872 PCI_DMA_FROMDEVICE);
873 skb_put (skb = np->rx_skbuff[entry], pkt_len);
874 np->rx_skbuff[entry] = NULL;
875 } else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
876 pci_dma_sync_single_for_cpu(np->pdev,
877 desc_to_dma(desc),
878 np->rx_buf_sz,
879 PCI_DMA_FROMDEVICE);
880 /* 16 byte align the IP header */
881 skb_reserve (skb, 2);
882 skb_copy_to_linear_data (skb,
883 np->rx_skbuff[entry]->data,
884 pkt_len);
885 skb_put (skb, pkt_len);
886 pci_dma_sync_single_for_device(np->pdev,
887 desc_to_dma(desc),
888 np->rx_buf_sz,
889 PCI_DMA_FROMDEVICE);
890 }
891 skb->protocol = eth_type_trans (skb, dev);
892 #if 0
893 /* Checksum done by hw, but csum value unavailable. */
894 if (np->pdev->pci_rev_id >= 0x0c &&
895 !(frame_status & (TCPError | UDPError | IPError))) {
896 skb->ip_summed = CHECKSUM_UNNECESSARY;
897 }
898 #endif
899 netif_rx (skb);
900 }
901 entry = (entry + 1) % RX_RING_SIZE;
902 }
903 spin_lock(&np->rx_lock);
904 np->cur_rx = entry;
905 /* Re-allocate skbuffs to fill the descriptor ring */
906 entry = np->old_rx;
907 while (entry != np->cur_rx) {
908 struct sk_buff *skb;
909 /* Dropped packets don't need to re-allocate */
910 if (np->rx_skbuff[entry] == NULL) {
911 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
912 if (skb == NULL) {
913 np->rx_ring[entry].fraginfo = 0;
914 printk (KERN_INFO
915 "%s: receive_packet: "
916 "Unable to re-allocate Rx skbuff.#%d\n",
917 dev->name, entry);
918 break;
919 }
920 np->rx_skbuff[entry] = skb;
921 /* 16 byte align the IP header */
922 skb_reserve (skb, 2);
923 np->rx_ring[entry].fraginfo =
924 cpu_to_le64 (pci_map_single
925 (np->pdev, skb->data, np->rx_buf_sz,
926 PCI_DMA_FROMDEVICE));
927 }
928 np->rx_ring[entry].fraginfo |=
929 cpu_to_le64((u64)np->rx_buf_sz << 48);
930 np->rx_ring[entry].status = 0;
931 entry = (entry + 1) % RX_RING_SIZE;
932 }
933 np->old_rx = entry;
934 spin_unlock(&np->rx_lock);
935 return 0;
936 }
937
938 static void
rio_error(struct net_device * dev,int int_status)939 rio_error (struct net_device *dev, int int_status)
940 {
941 long ioaddr = dev->base_addr;
942 struct netdev_private *np = netdev_priv(dev);
943 u16 macctrl;
944
945 /* Link change event */
946 if (int_status & LinkEvent) {
947 if (mii_wait_link (dev, 10) == 0) {
948 printk (KERN_INFO "%s: Link up\n", dev->name);
949 if (np->phy_media)
950 mii_get_media_pcs (dev);
951 else
952 mii_get_media (dev);
953 if (np->speed == 1000)
954 np->tx_coalesce = tx_coalesce;
955 else
956 np->tx_coalesce = 1;
957 macctrl = 0;
958 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
959 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
960 macctrl |= (np->tx_flow) ?
961 TxFlowControlEnable : 0;
962 macctrl |= (np->rx_flow) ?
963 RxFlowControlEnable : 0;
964 writew(macctrl, ioaddr + MACCtrl);
965 np->link_status = 1;
966 netif_carrier_on(dev);
967 } else {
968 printk (KERN_INFO "%s: Link off\n", dev->name);
969 np->link_status = 0;
970 netif_carrier_off(dev);
971 }
972 }
973
974 /* UpdateStats statistics registers */
975 if (int_status & UpdateStats) {
976 get_stats (dev);
977 }
978
979 /* PCI Error, a catastronphic error related to the bus interface
980 occurs, set GlobalReset and HostReset to reset. */
981 if (int_status & HostError) {
982 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
983 dev->name, int_status);
984 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
985 mdelay (500);
986 }
987 }
988
989 static struct net_device_stats *
get_stats(struct net_device * dev)990 get_stats (struct net_device *dev)
991 {
992 long ioaddr = dev->base_addr;
993 struct netdev_private *np = netdev_priv(dev);
994 #ifdef MEM_MAPPING
995 int i;
996 #endif
997 unsigned int stat_reg;
998
999 /* All statistics registers need to be acknowledged,
1000 else statistic overflow could cause problems */
1001
1002 np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
1003 np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
1004 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
1005 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1006
1007 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1008 np->stats.collisions += readl (ioaddr + SingleColFrames)
1009 + readl (ioaddr + MultiColFrames);
1010
1011 /* detailed tx errors */
1012 stat_reg = readw (ioaddr + FramesAbortXSColls);
1013 np->stats.tx_aborted_errors += stat_reg;
1014 np->stats.tx_errors += stat_reg;
1015
1016 stat_reg = readw (ioaddr + CarrierSenseErrors);
1017 np->stats.tx_carrier_errors += stat_reg;
1018 np->stats.tx_errors += stat_reg;
1019
1020 /* Clear all other statistic register. */
1021 readl (ioaddr + McstOctetXmtOk);
1022 readw (ioaddr + BcstFramesXmtdOk);
1023 readl (ioaddr + McstFramesXmtdOk);
1024 readw (ioaddr + BcstFramesRcvdOk);
1025 readw (ioaddr + MacControlFramesRcvd);
1026 readw (ioaddr + FrameTooLongErrors);
1027 readw (ioaddr + InRangeLengthErrors);
1028 readw (ioaddr + FramesCheckSeqErrors);
1029 readw (ioaddr + FramesLostRxErrors);
1030 readl (ioaddr + McstOctetXmtOk);
1031 readl (ioaddr + BcstOctetXmtOk);
1032 readl (ioaddr + McstFramesXmtdOk);
1033 readl (ioaddr + FramesWDeferredXmt);
1034 readl (ioaddr + LateCollisions);
1035 readw (ioaddr + BcstFramesXmtdOk);
1036 readw (ioaddr + MacControlFramesXmtd);
1037 readw (ioaddr + FramesWEXDeferal);
1038
1039 #ifdef MEM_MAPPING
1040 for (i = 0x100; i <= 0x150; i += 4)
1041 readl (ioaddr + i);
1042 #endif
1043 readw (ioaddr + TxJumboFrames);
1044 readw (ioaddr + RxJumboFrames);
1045 readw (ioaddr + TCPCheckSumErrors);
1046 readw (ioaddr + UDPCheckSumErrors);
1047 readw (ioaddr + IPCheckSumErrors);
1048 return &np->stats;
1049 }
1050
1051 static int
clear_stats(struct net_device * dev)1052 clear_stats (struct net_device *dev)
1053 {
1054 long ioaddr = dev->base_addr;
1055 #ifdef MEM_MAPPING
1056 int i;
1057 #endif
1058
1059 /* All statistics registers need to be acknowledged,
1060 else statistic overflow could cause problems */
1061 readl (ioaddr + FramesRcvOk);
1062 readl (ioaddr + FramesXmtOk);
1063 readl (ioaddr + OctetRcvOk);
1064 readl (ioaddr + OctetXmtOk);
1065
1066 readl (ioaddr + McstFramesRcvdOk);
1067 readl (ioaddr + SingleColFrames);
1068 readl (ioaddr + MultiColFrames);
1069 readl (ioaddr + LateCollisions);
1070 /* detailed rx errors */
1071 readw (ioaddr + FrameTooLongErrors);
1072 readw (ioaddr + InRangeLengthErrors);
1073 readw (ioaddr + FramesCheckSeqErrors);
1074 readw (ioaddr + FramesLostRxErrors);
1075
1076 /* detailed tx errors */
1077 readw (ioaddr + FramesAbortXSColls);
1078 readw (ioaddr + CarrierSenseErrors);
1079
1080 /* Clear all other statistic register. */
1081 readl (ioaddr + McstOctetXmtOk);
1082 readw (ioaddr + BcstFramesXmtdOk);
1083 readl (ioaddr + McstFramesXmtdOk);
1084 readw (ioaddr + BcstFramesRcvdOk);
1085 readw (ioaddr + MacControlFramesRcvd);
1086 readl (ioaddr + McstOctetXmtOk);
1087 readl (ioaddr + BcstOctetXmtOk);
1088 readl (ioaddr + McstFramesXmtdOk);
1089 readl (ioaddr + FramesWDeferredXmt);
1090 readw (ioaddr + BcstFramesXmtdOk);
1091 readw (ioaddr + MacControlFramesXmtd);
1092 readw (ioaddr + FramesWEXDeferal);
1093 #ifdef MEM_MAPPING
1094 for (i = 0x100; i <= 0x150; i += 4)
1095 readl (ioaddr + i);
1096 #endif
1097 readw (ioaddr + TxJumboFrames);
1098 readw (ioaddr + RxJumboFrames);
1099 readw (ioaddr + TCPCheckSumErrors);
1100 readw (ioaddr + UDPCheckSumErrors);
1101 readw (ioaddr + IPCheckSumErrors);
1102 return 0;
1103 }
1104
1105
1106 static int
change_mtu(struct net_device * dev,int new_mtu)1107 change_mtu (struct net_device *dev, int new_mtu)
1108 {
1109 struct netdev_private *np = netdev_priv(dev);
1110 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1111
1112 if ((new_mtu < 68) || (new_mtu > max)) {
1113 return -EINVAL;
1114 }
1115
1116 dev->mtu = new_mtu;
1117
1118 return 0;
1119 }
1120
1121 static void
set_multicast(struct net_device * dev)1122 set_multicast (struct net_device *dev)
1123 {
1124 long ioaddr = dev->base_addr;
1125 u32 hash_table[2];
1126 u16 rx_mode = 0;
1127 struct netdev_private *np = netdev_priv(dev);
1128
1129 hash_table[0] = hash_table[1] = 0;
1130 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1131 hash_table[1] |= 0x02000000;
1132 if (dev->flags & IFF_PROMISC) {
1133 /* Receive all frames promiscuously. */
1134 rx_mode = ReceiveAllFrames;
1135 } else if ((dev->flags & IFF_ALLMULTI) ||
1136 (dev->mc_count > multicast_filter_limit)) {
1137 /* Receive broadcast and multicast frames */
1138 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1139 } else if (dev->mc_count > 0) {
1140 int i;
1141 struct dev_mc_list *mclist;
1142 /* Receive broadcast frames and multicast frames filtering
1143 by Hashtable */
1144 rx_mode =
1145 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1146 for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1147 i++, mclist=mclist->next)
1148 {
1149 int bit, index = 0;
1150 int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1151 /* The inverted high significant 6 bits of CRC are
1152 used as an index to hashtable */
1153 for (bit = 0; bit < 6; bit++)
1154 if (crc & (1 << (31 - bit)))
1155 index |= (1 << bit);
1156 hash_table[index / 32] |= (1 << (index % 32));
1157 }
1158 } else {
1159 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1160 }
1161 if (np->vlan) {
1162 /* ReceiveVLANMatch field in ReceiveMode */
1163 rx_mode |= ReceiveVLANMatch;
1164 }
1165
1166 writel (hash_table[0], ioaddr + HashTable0);
1167 writel (hash_table[1], ioaddr + HashTable1);
1168 writew (rx_mode, ioaddr + ReceiveMode);
1169 }
1170
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1171 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1172 {
1173 struct netdev_private *np = netdev_priv(dev);
1174 strcpy(info->driver, "dl2k");
1175 strcpy(info->version, DRV_VERSION);
1176 strcpy(info->bus_info, pci_name(np->pdev));
1177 }
1178
rio_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1179 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1180 {
1181 struct netdev_private *np = netdev_priv(dev);
1182 if (np->phy_media) {
1183 /* fiber device */
1184 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1185 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1186 cmd->port = PORT_FIBRE;
1187 cmd->transceiver = XCVR_INTERNAL;
1188 } else {
1189 /* copper device */
1190 cmd->supported = SUPPORTED_10baseT_Half |
1191 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1192 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1193 SUPPORTED_Autoneg | SUPPORTED_MII;
1194 cmd->advertising = ADVERTISED_10baseT_Half |
1195 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1196 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1197 ADVERTISED_Autoneg | ADVERTISED_MII;
1198 cmd->port = PORT_MII;
1199 cmd->transceiver = XCVR_INTERNAL;
1200 }
1201 if ( np->link_status ) {
1202 cmd->speed = np->speed;
1203 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1204 } else {
1205 cmd->speed = -1;
1206 cmd->duplex = -1;
1207 }
1208 if ( np->an_enable)
1209 cmd->autoneg = AUTONEG_ENABLE;
1210 else
1211 cmd->autoneg = AUTONEG_DISABLE;
1212
1213 cmd->phy_address = np->phy_addr;
1214 return 0;
1215 }
1216
rio_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1217 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1218 {
1219 struct netdev_private *np = netdev_priv(dev);
1220 netif_carrier_off(dev);
1221 if (cmd->autoneg == AUTONEG_ENABLE) {
1222 if (np->an_enable)
1223 return 0;
1224 else {
1225 np->an_enable = 1;
1226 mii_set_media(dev);
1227 return 0;
1228 }
1229 } else {
1230 np->an_enable = 0;
1231 if (np->speed == 1000) {
1232 cmd->speed = SPEED_100;
1233 cmd->duplex = DUPLEX_FULL;
1234 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1235 }
1236 switch(cmd->speed + cmd->duplex) {
1237
1238 case SPEED_10 + DUPLEX_HALF:
1239 np->speed = 10;
1240 np->full_duplex = 0;
1241 break;
1242
1243 case SPEED_10 + DUPLEX_FULL:
1244 np->speed = 10;
1245 np->full_duplex = 1;
1246 break;
1247 case SPEED_100 + DUPLEX_HALF:
1248 np->speed = 100;
1249 np->full_duplex = 0;
1250 break;
1251 case SPEED_100 + DUPLEX_FULL:
1252 np->speed = 100;
1253 np->full_duplex = 1;
1254 break;
1255 case SPEED_1000 + DUPLEX_HALF:/* not supported */
1256 case SPEED_1000 + DUPLEX_FULL:/* not supported */
1257 default:
1258 return -EINVAL;
1259 }
1260 mii_set_media(dev);
1261 }
1262 return 0;
1263 }
1264
rio_get_link(struct net_device * dev)1265 static u32 rio_get_link(struct net_device *dev)
1266 {
1267 struct netdev_private *np = netdev_priv(dev);
1268 return np->link_status;
1269 }
1270
1271 static const struct ethtool_ops ethtool_ops = {
1272 .get_drvinfo = rio_get_drvinfo,
1273 .get_settings = rio_get_settings,
1274 .set_settings = rio_set_settings,
1275 .get_link = rio_get_link,
1276 };
1277
1278 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1279 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1280 {
1281 int phy_addr;
1282 struct netdev_private *np = netdev_priv(dev);
1283 struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1284
1285 struct netdev_desc *desc;
1286 int i;
1287
1288 phy_addr = np->phy_addr;
1289 switch (cmd) {
1290 case SIOCDEVPRIVATE:
1291 break;
1292
1293 case SIOCDEVPRIVATE + 1:
1294 miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1295 break;
1296 case SIOCDEVPRIVATE + 2:
1297 mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1298 break;
1299 case SIOCDEVPRIVATE + 3:
1300 break;
1301 case SIOCDEVPRIVATE + 4:
1302 break;
1303 case SIOCDEVPRIVATE + 5:
1304 netif_stop_queue (dev);
1305 break;
1306 case SIOCDEVPRIVATE + 6:
1307 netif_wake_queue (dev);
1308 break;
1309 case SIOCDEVPRIVATE + 7:
1310 printk
1311 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1312 netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1313 np->old_rx);
1314 break;
1315 case SIOCDEVPRIVATE + 8:
1316 printk("TX ring:\n");
1317 for (i = 0; i < TX_RING_SIZE; i++) {
1318 desc = &np->tx_ring[i];
1319 printk
1320 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1321 i,
1322 (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1323 (u32)le64_to_cpu(desc->next_desc),
1324 (u32)le64_to_cpu(desc->status),
1325 (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1326 (u32)le64_to_cpu(desc->fraginfo));
1327 printk ("\n");
1328 }
1329 printk ("\n");
1330 break;
1331
1332 default:
1333 return -EOPNOTSUPP;
1334 }
1335 return 0;
1336 }
1337
1338 #define EEP_READ 0x0200
1339 #define EEP_BUSY 0x8000
1340 /* Read the EEPROM word */
1341 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1342 static int
read_eeprom(long ioaddr,int eep_addr)1343 read_eeprom (long ioaddr, int eep_addr)
1344 {
1345 int i = 1000;
1346 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1347 while (i-- > 0) {
1348 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1349 return inw (ioaddr + EepromData);
1350 }
1351 }
1352 return 0;
1353 }
1354
1355 enum phy_ctrl_bits {
1356 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1357 MII_DUPLEX = 0x08,
1358 };
1359
1360 #define mii_delay() readb(ioaddr)
1361 static void
mii_sendbit(struct net_device * dev,u32 data)1362 mii_sendbit (struct net_device *dev, u32 data)
1363 {
1364 long ioaddr = dev->base_addr + PhyCtrl;
1365 data = (data) ? MII_DATA1 : 0;
1366 data |= MII_WRITE;
1367 data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1368 writeb (data, ioaddr);
1369 mii_delay ();
1370 writeb (data | MII_CLK, ioaddr);
1371 mii_delay ();
1372 }
1373
1374 static int
mii_getbit(struct net_device * dev)1375 mii_getbit (struct net_device *dev)
1376 {
1377 long ioaddr = dev->base_addr + PhyCtrl;
1378 u8 data;
1379
1380 data = (readb (ioaddr) & 0xf8) | MII_READ;
1381 writeb (data, ioaddr);
1382 mii_delay ();
1383 writeb (data | MII_CLK, ioaddr);
1384 mii_delay ();
1385 return ((readb (ioaddr) >> 1) & 1);
1386 }
1387
1388 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1389 mii_send_bits (struct net_device *dev, u32 data, int len)
1390 {
1391 int i;
1392 for (i = len - 1; i >= 0; i--) {
1393 mii_sendbit (dev, data & (1 << i));
1394 }
1395 }
1396
1397 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1398 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1399 {
1400 u32 cmd;
1401 int i;
1402 u32 retval = 0;
1403
1404 /* Preamble */
1405 mii_send_bits (dev, 0xffffffff, 32);
1406 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1407 /* ST,OP = 0110'b for read operation */
1408 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1409 mii_send_bits (dev, cmd, 14);
1410 /* Turnaround */
1411 if (mii_getbit (dev))
1412 goto err_out;
1413 /* Read data */
1414 for (i = 0; i < 16; i++) {
1415 retval |= mii_getbit (dev);
1416 retval <<= 1;
1417 }
1418 /* End cycle */
1419 mii_getbit (dev);
1420 return (retval >> 1) & 0xffff;
1421
1422 err_out:
1423 return 0;
1424 }
1425 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1426 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1427 {
1428 u32 cmd;
1429
1430 /* Preamble */
1431 mii_send_bits (dev, 0xffffffff, 32);
1432 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1433 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1434 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1435 mii_send_bits (dev, cmd, 32);
1436 /* End cycle */
1437 mii_getbit (dev);
1438 return 0;
1439 }
1440 static int
mii_wait_link(struct net_device * dev,int wait)1441 mii_wait_link (struct net_device *dev, int wait)
1442 {
1443 __u16 bmsr;
1444 int phy_addr;
1445 struct netdev_private *np;
1446
1447 np = netdev_priv(dev);
1448 phy_addr = np->phy_addr;
1449
1450 do {
1451 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1452 if (bmsr & MII_BMSR_LINK_STATUS)
1453 return 0;
1454 mdelay (1);
1455 } while (--wait > 0);
1456 return -1;
1457 }
1458 static int
mii_get_media(struct net_device * dev)1459 mii_get_media (struct net_device *dev)
1460 {
1461 __u16 negotiate;
1462 __u16 bmsr;
1463 __u16 mscr;
1464 __u16 mssr;
1465 int phy_addr;
1466 struct netdev_private *np;
1467
1468 np = netdev_priv(dev);
1469 phy_addr = np->phy_addr;
1470
1471 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1472 if (np->an_enable) {
1473 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1474 /* Auto-Negotiation not completed */
1475 return -1;
1476 }
1477 negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1478 mii_read (dev, phy_addr, MII_ANLPAR);
1479 mscr = mii_read (dev, phy_addr, MII_MSCR);
1480 mssr = mii_read (dev, phy_addr, MII_MSSR);
1481 if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1482 np->speed = 1000;
1483 np->full_duplex = 1;
1484 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1485 } else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1486 np->speed = 1000;
1487 np->full_duplex = 0;
1488 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1489 } else if (negotiate & MII_ANAR_100BX_FD) {
1490 np->speed = 100;
1491 np->full_duplex = 1;
1492 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1493 } else if (negotiate & MII_ANAR_100BX_HD) {
1494 np->speed = 100;
1495 np->full_duplex = 0;
1496 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1497 } else if (negotiate & MII_ANAR_10BT_FD) {
1498 np->speed = 10;
1499 np->full_duplex = 1;
1500 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1501 } else if (negotiate & MII_ANAR_10BT_HD) {
1502 np->speed = 10;
1503 np->full_duplex = 0;
1504 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1505 }
1506 if (negotiate & MII_ANAR_PAUSE) {
1507 np->tx_flow &= 1;
1508 np->rx_flow &= 1;
1509 } else if (negotiate & MII_ANAR_ASYMMETRIC) {
1510 np->tx_flow = 0;
1511 np->rx_flow &= 1;
1512 }
1513 /* else tx_flow, rx_flow = user select */
1514 } else {
1515 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1516 switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1517 case MII_BMCR_SPEED_1000:
1518 printk (KERN_INFO "Operating at 1000 Mbps, ");
1519 break;
1520 case MII_BMCR_SPEED_100:
1521 printk (KERN_INFO "Operating at 100 Mbps, ");
1522 break;
1523 case 0:
1524 printk (KERN_INFO "Operating at 10 Mbps, ");
1525 }
1526 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1527 printk ("Full duplex\n");
1528 } else {
1529 printk ("Half duplex\n");
1530 }
1531 }
1532 if (np->tx_flow)
1533 printk(KERN_INFO "Enable Tx Flow Control\n");
1534 else
1535 printk(KERN_INFO "Disable Tx Flow Control\n");
1536 if (np->rx_flow)
1537 printk(KERN_INFO "Enable Rx Flow Control\n");
1538 else
1539 printk(KERN_INFO "Disable Rx Flow Control\n");
1540
1541 return 0;
1542 }
1543
1544 static int
mii_set_media(struct net_device * dev)1545 mii_set_media (struct net_device *dev)
1546 {
1547 __u16 pscr;
1548 __u16 bmcr;
1549 __u16 bmsr;
1550 __u16 anar;
1551 int phy_addr;
1552 struct netdev_private *np;
1553 np = netdev_priv(dev);
1554 phy_addr = np->phy_addr;
1555
1556 /* Does user set speed? */
1557 if (np->an_enable) {
1558 /* Advertise capabilities */
1559 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1560 anar = mii_read (dev, phy_addr, MII_ANAR) &
1561 ~MII_ANAR_100BX_FD &
1562 ~MII_ANAR_100BX_HD &
1563 ~MII_ANAR_100BT4 &
1564 ~MII_ANAR_10BT_FD &
1565 ~MII_ANAR_10BT_HD;
1566 if (bmsr & MII_BMSR_100BX_FD)
1567 anar |= MII_ANAR_100BX_FD;
1568 if (bmsr & MII_BMSR_100BX_HD)
1569 anar |= MII_ANAR_100BX_HD;
1570 if (bmsr & MII_BMSR_100BT4)
1571 anar |= MII_ANAR_100BT4;
1572 if (bmsr & MII_BMSR_10BT_FD)
1573 anar |= MII_ANAR_10BT_FD;
1574 if (bmsr & MII_BMSR_10BT_HD)
1575 anar |= MII_ANAR_10BT_HD;
1576 anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1577 mii_write (dev, phy_addr, MII_ANAR, anar);
1578
1579 /* Enable Auto crossover */
1580 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1581 pscr |= 3 << 5; /* 11'b */
1582 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1583
1584 /* Soft reset PHY */
1585 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1586 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1587 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1588 mdelay(1);
1589 } else {
1590 /* Force speed setting */
1591 /* 1) Disable Auto crossover */
1592 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1593 pscr &= ~(3 << 5);
1594 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1595
1596 /* 2) PHY Reset */
1597 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1598 bmcr |= MII_BMCR_RESET;
1599 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1600
1601 /* 3) Power Down */
1602 bmcr = 0x1940; /* must be 0x1940 */
1603 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1604 mdelay (100); /* wait a certain time */
1605
1606 /* 4) Advertise nothing */
1607 mii_write (dev, phy_addr, MII_ANAR, 0);
1608
1609 /* 5) Set media and Power Up */
1610 bmcr = MII_BMCR_POWER_DOWN;
1611 if (np->speed == 100) {
1612 bmcr |= MII_BMCR_SPEED_100;
1613 printk (KERN_INFO "Manual 100 Mbps, ");
1614 } else if (np->speed == 10) {
1615 printk (KERN_INFO "Manual 10 Mbps, ");
1616 }
1617 if (np->full_duplex) {
1618 bmcr |= MII_BMCR_DUPLEX_MODE;
1619 printk ("Full duplex\n");
1620 } else {
1621 printk ("Half duplex\n");
1622 }
1623 #if 0
1624 /* Set 1000BaseT Master/Slave setting */
1625 mscr = mii_read (dev, phy_addr, MII_MSCR);
1626 mscr |= MII_MSCR_CFG_ENABLE;
1627 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1628 #endif
1629 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630 mdelay(10);
1631 }
1632 return 0;
1633 }
1634
1635 static int
mii_get_media_pcs(struct net_device * dev)1636 mii_get_media_pcs (struct net_device *dev)
1637 {
1638 __u16 negotiate;
1639 __u16 bmsr;
1640 int phy_addr;
1641 struct netdev_private *np;
1642
1643 np = netdev_priv(dev);
1644 phy_addr = np->phy_addr;
1645
1646 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1647 if (np->an_enable) {
1648 if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1649 /* Auto-Negotiation not completed */
1650 return -1;
1651 }
1652 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1653 mii_read (dev, phy_addr, PCS_ANLPAR);
1654 np->speed = 1000;
1655 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1656 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1657 np->full_duplex = 1;
1658 } else {
1659 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1660 np->full_duplex = 0;
1661 }
1662 if (negotiate & PCS_ANAR_PAUSE) {
1663 np->tx_flow &= 1;
1664 np->rx_flow &= 1;
1665 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1666 np->tx_flow = 0;
1667 np->rx_flow &= 1;
1668 }
1669 /* else tx_flow, rx_flow = user select */
1670 } else {
1671 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1672 printk (KERN_INFO "Operating at 1000 Mbps, ");
1673 if (bmcr & MII_BMCR_DUPLEX_MODE) {
1674 printk ("Full duplex\n");
1675 } else {
1676 printk ("Half duplex\n");
1677 }
1678 }
1679 if (np->tx_flow)
1680 printk(KERN_INFO "Enable Tx Flow Control\n");
1681 else
1682 printk(KERN_INFO "Disable Tx Flow Control\n");
1683 if (np->rx_flow)
1684 printk(KERN_INFO "Enable Rx Flow Control\n");
1685 else
1686 printk(KERN_INFO "Disable Rx Flow Control\n");
1687
1688 return 0;
1689 }
1690
1691 static int
mii_set_media_pcs(struct net_device * dev)1692 mii_set_media_pcs (struct net_device *dev)
1693 {
1694 __u16 bmcr;
1695 __u16 esr;
1696 __u16 anar;
1697 int phy_addr;
1698 struct netdev_private *np;
1699 np = netdev_priv(dev);
1700 phy_addr = np->phy_addr;
1701
1702 /* Auto-Negotiation? */
1703 if (np->an_enable) {
1704 /* Advertise capabilities */
1705 esr = mii_read (dev, phy_addr, PCS_ESR);
1706 anar = mii_read (dev, phy_addr, MII_ANAR) &
1707 ~PCS_ANAR_HALF_DUPLEX &
1708 ~PCS_ANAR_FULL_DUPLEX;
1709 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1710 anar |= PCS_ANAR_HALF_DUPLEX;
1711 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1712 anar |= PCS_ANAR_FULL_DUPLEX;
1713 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1714 mii_write (dev, phy_addr, MII_ANAR, anar);
1715
1716 /* Soft reset PHY */
1717 mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1718 bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1719 MII_BMCR_RESET;
1720 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1721 mdelay(1);
1722 } else {
1723 /* Force speed setting */
1724 /* PHY Reset */
1725 bmcr = MII_BMCR_RESET;
1726 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1727 mdelay(10);
1728 if (np->full_duplex) {
1729 bmcr = MII_BMCR_DUPLEX_MODE;
1730 printk (KERN_INFO "Manual full duplex\n");
1731 } else {
1732 bmcr = 0;
1733 printk (KERN_INFO "Manual half duplex\n");
1734 }
1735 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1736 mdelay(10);
1737
1738 /* Advertise nothing */
1739 mii_write (dev, phy_addr, MII_ANAR, 0);
1740 }
1741 return 0;
1742 }
1743
1744
1745 static int
rio_close(struct net_device * dev)1746 rio_close (struct net_device *dev)
1747 {
1748 long ioaddr = dev->base_addr;
1749 struct netdev_private *np = netdev_priv(dev);
1750 struct sk_buff *skb;
1751 int i;
1752
1753 netif_stop_queue (dev);
1754
1755 /* Disable interrupts */
1756 writew (0, ioaddr + IntEnable);
1757
1758 /* Stop Tx and Rx logics */
1759 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1760
1761 free_irq (dev->irq, dev);
1762 del_timer_sync (&np->timer);
1763
1764 /* Free all the skbuffs in the queue. */
1765 for (i = 0; i < RX_RING_SIZE; i++) {
1766 np->rx_ring[i].status = 0;
1767 np->rx_ring[i].fraginfo = 0;
1768 skb = np->rx_skbuff[i];
1769 if (skb) {
1770 pci_unmap_single(np->pdev,
1771 desc_to_dma(&np->rx_ring[i]),
1772 skb->len, PCI_DMA_FROMDEVICE);
1773 dev_kfree_skb (skb);
1774 np->rx_skbuff[i] = NULL;
1775 }
1776 }
1777 for (i = 0; i < TX_RING_SIZE; i++) {
1778 skb = np->tx_skbuff[i];
1779 if (skb) {
1780 pci_unmap_single(np->pdev,
1781 desc_to_dma(&np->tx_ring[i]),
1782 skb->len, PCI_DMA_TODEVICE);
1783 dev_kfree_skb (skb);
1784 np->tx_skbuff[i] = NULL;
1785 }
1786 }
1787
1788 return 0;
1789 }
1790
1791 static void __devexit
rio_remove1(struct pci_dev * pdev)1792 rio_remove1 (struct pci_dev *pdev)
1793 {
1794 struct net_device *dev = pci_get_drvdata (pdev);
1795
1796 if (dev) {
1797 struct netdev_private *np = netdev_priv(dev);
1798
1799 unregister_netdev (dev);
1800 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1801 np->rx_ring_dma);
1802 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1803 np->tx_ring_dma);
1804 #ifdef MEM_MAPPING
1805 iounmap ((char *) (dev->base_addr));
1806 #endif
1807 free_netdev (dev);
1808 pci_release_regions (pdev);
1809 pci_disable_device (pdev);
1810 }
1811 pci_set_drvdata (pdev, NULL);
1812 }
1813
1814 static struct pci_driver rio_driver = {
1815 .name = "dl2k",
1816 .id_table = rio_pci_tbl,
1817 .probe = rio_probe1,
1818 .remove = __devexit_p(rio_remove1),
1819 };
1820
1821 static int __init
rio_init(void)1822 rio_init (void)
1823 {
1824 return pci_register_driver(&rio_driver);
1825 }
1826
1827 static void __exit
rio_exit(void)1828 rio_exit (void)
1829 {
1830 pci_unregister_driver (&rio_driver);
1831 }
1832
1833 module_init (rio_init);
1834 module_exit (rio_exit);
1835
1836 /*
1837
1838 Compile command:
1839
1840 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1841
1842 Read Documentation/networking/dl2k.txt for details.
1843
1844 */
1845
1846