• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 static char version[] __devinitdata =
20       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
21 #define MAX_UNITS 8
22 static int mtu[MAX_UNITS];
23 static int vlan[MAX_UNITS];
24 static int jumbo[MAX_UNITS];
25 static char *media[MAX_UNITS];
26 static int tx_flow=-1;
27 static int rx_flow=-1;
28 static int copy_thresh;
29 static int rx_coalesce=10;	/* Rx frame count each interrupt */
30 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
32 
33 
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu, int, NULL, 0);
38 module_param_array(media, charp, NULL, 0);
39 module_param_array(vlan, int, NULL, 0);
40 module_param_array(jumbo, int, NULL, 0);
41 module_param(tx_flow, int, 0);
42 module_param(rx_flow, int, 0);
43 module_param(copy_thresh, int, 0);
44 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
45 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
47 
48 
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51        UpdateStats | LinkEvent)
52 #define EnableInt() \
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
54 
55 static const int max_intrloop = 50;
56 static const int multicast_filter_limit = 0x40;
57 
58 static int rio_open (struct net_device *dev);
59 static void rio_timer (unsigned long data);
60 static void rio_tx_timeout (struct net_device *dev);
61 static void alloc_list (struct net_device *dev);
62 static int start_xmit (struct sk_buff *skb, struct net_device *dev);
63 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
64 static void rio_free_tx (struct net_device *dev, int irq);
65 static void tx_error (struct net_device *dev, int tx_status);
66 static int receive_packet (struct net_device *dev);
67 static void rio_error (struct net_device *dev, int int_status);
68 static int change_mtu (struct net_device *dev, int new_mtu);
69 static void set_multicast (struct net_device *dev);
70 static struct net_device_stats *get_stats (struct net_device *dev);
71 static int clear_stats (struct net_device *dev);
72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
73 static int rio_close (struct net_device *dev);
74 static int find_miiphy (struct net_device *dev);
75 static int parse_eeprom (struct net_device *dev);
76 static int read_eeprom (long ioaddr, int eep_addr);
77 static int mii_wait_link (struct net_device *dev, int wait);
78 static int mii_set_media (struct net_device *dev);
79 static int mii_get_media (struct net_device *dev);
80 static int mii_set_media_pcs (struct net_device *dev);
81 static int mii_get_media_pcs (struct net_device *dev);
82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
84 		      u16 data);
85 
86 static const struct ethtool_ops ethtool_ops;
87 
88 static const struct net_device_ops netdev_ops = {
89 	.ndo_open		= rio_open,
90 	.ndo_start_xmit	= start_xmit,
91 	.ndo_stop		= rio_close,
92 	.ndo_get_stats		= get_stats,
93 	.ndo_validate_addr	= eth_validate_addr,
94 	.ndo_set_mac_address 	= eth_mac_addr,
95 	.ndo_set_multicast_list = set_multicast,
96 	.ndo_do_ioctl		= rio_ioctl,
97 	.ndo_tx_timeout		= rio_tx_timeout,
98 	.ndo_change_mtu		= change_mtu,
99 };
100 
101 static int __devinit
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)102 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
103 {
104 	struct net_device *dev;
105 	struct netdev_private *np;
106 	static int card_idx;
107 	int chip_idx = ent->driver_data;
108 	int err, irq;
109 	long ioaddr;
110 	static int version_printed;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	if (!version_printed++)
115 		printk ("%s", version);
116 
117 	err = pci_enable_device (pdev);
118 	if (err)
119 		return err;
120 
121 	irq = pdev->irq;
122 	err = pci_request_regions (pdev, "dl2k");
123 	if (err)
124 		goto err_out_disable;
125 
126 	pci_set_master (pdev);
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev) {
129 		err = -ENOMEM;
130 		goto err_out_res;
131 	}
132 	SET_NETDEV_DEV(dev, &pdev->dev);
133 
134 #ifdef MEM_MAPPING
135 	ioaddr = pci_resource_start (pdev, 1);
136 	ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
137 	if (!ioaddr) {
138 		err = -ENOMEM;
139 		goto err_out_dev;
140 	}
141 #else
142 	ioaddr = pci_resource_start (pdev, 0);
143 #endif
144 	dev->base_addr = ioaddr;
145 	dev->irq = irq;
146 	np = netdev_priv(dev);
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 	spin_lock_init (&np->tx_lock);
150 	spin_lock_init (&np->rx_lock);
151 
152 	/* Parse manual configuration */
153 	np->an_enable = 1;
154 	np->tx_coalesce = 1;
155 	if (card_idx < MAX_UNITS) {
156 		if (media[card_idx] != NULL) {
157 			np->an_enable = 0;
158 			if (strcmp (media[card_idx], "auto") == 0 ||
159 			    strcmp (media[card_idx], "autosense") == 0 ||
160 			    strcmp (media[card_idx], "0") == 0 ) {
161 				np->an_enable = 2;
162 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 			    strcmp (media[card_idx], "4") == 0) {
164 				np->speed = 100;
165 				np->full_duplex = 1;
166 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0
167 				   || strcmp (media[card_idx], "3") == 0) {
168 				np->speed = 100;
169 				np->full_duplex = 0;
170 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 				   strcmp (media[card_idx], "2") == 0) {
172 				np->speed = 10;
173 				np->full_duplex = 1;
174 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 				   strcmp (media[card_idx], "1") == 0) {
176 				np->speed = 10;
177 				np->full_duplex = 0;
178 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 				 strcmp (media[card_idx], "6") == 0) {
180 				np->speed=1000;
181 				np->full_duplex=1;
182 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 				 strcmp (media[card_idx], "5") == 0) {
184 				np->speed = 1000;
185 				np->full_duplex = 0;
186 			} else {
187 				np->an_enable = 1;
188 			}
189 		}
190 		if (jumbo[card_idx] != 0) {
191 			np->jumbo = 1;
192 			dev->mtu = MAX_JUMBO;
193 		} else {
194 			np->jumbo = 0;
195 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 				dev->mtu = mtu[card_idx];
197 		}
198 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 		    vlan[card_idx] : 0;
200 		if (rx_coalesce > 0 && rx_timeout > 0) {
201 			np->rx_coalesce = rx_coalesce;
202 			np->rx_timeout = rx_timeout;
203 			np->coalesce = 1;
204 		}
205 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207 
208 		if (tx_coalesce < 1)
209 			tx_coalesce = 1;
210 		else if (tx_coalesce > TX_RING_SIZE-1)
211 			tx_coalesce = TX_RING_SIZE - 1;
212 	}
213 	dev->netdev_ops = &netdev_ops;
214 	dev->watchdog_timeo = TX_TIMEOUT;
215 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
216 #if 0
217 	dev->features = NETIF_F_IP_CSUM;
218 #endif
219 	pci_set_drvdata (pdev, dev);
220 
221 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
222 	if (!ring_space)
223 		goto err_out_iounmap;
224 	np->tx_ring = (struct netdev_desc *) ring_space;
225 	np->tx_ring_dma = ring_dma;
226 
227 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
228 	if (!ring_space)
229 		goto err_out_unmap_tx;
230 	np->rx_ring = (struct netdev_desc *) ring_space;
231 	np->rx_ring_dma = ring_dma;
232 
233 	/* Parse eeprom data */
234 	parse_eeprom (dev);
235 
236 	/* Find PHY address */
237 	err = find_miiphy (dev);
238 	if (err)
239 		goto err_out_unmap_rx;
240 
241 	/* Fiber device? */
242 	np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
243 	np->link_status = 0;
244 	/* Set media and reset PHY */
245 	if (np->phy_media) {
246 		/* default Auto-Negotiation for fiber deivices */
247 	 	if (np->an_enable == 2) {
248 			np->an_enable = 1;
249 		}
250 		mii_set_media_pcs (dev);
251 	} else {
252 		/* Auto-Negotiation is mandatory for 1000BASE-T,
253 		   IEEE 802.3ab Annex 28D page 14 */
254 		if (np->speed == 1000)
255 			np->an_enable = 1;
256 		mii_set_media (dev);
257 	}
258 
259 	err = register_netdev (dev);
260 	if (err)
261 		goto err_out_unmap_rx;
262 
263 	card_idx++;
264 
265 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
266 		dev->name, np->name, dev->dev_addr, irq);
267 	if (tx_coalesce > 1)
268 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
269 				tx_coalesce);
270 	if (np->coalesce)
271 		printk(KERN_INFO "rx_coalesce:\t%d packets\n"
272 		       KERN_INFO "rx_timeout: \t%d ns\n",
273 				np->rx_coalesce, np->rx_timeout*640);
274 	if (np->vlan)
275 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
276 	return 0;
277 
278       err_out_unmap_rx:
279 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
280       err_out_unmap_tx:
281 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
282       err_out_iounmap:
283 #ifdef MEM_MAPPING
284 	iounmap ((void *) ioaddr);
285 
286       err_out_dev:
287 #endif
288 	free_netdev (dev);
289 
290       err_out_res:
291 	pci_release_regions (pdev);
292 
293       err_out_disable:
294 	pci_disable_device (pdev);
295 	return err;
296 }
297 
298 static int
find_miiphy(struct net_device * dev)299 find_miiphy (struct net_device *dev)
300 {
301 	int i, phy_found = 0;
302 	struct netdev_private *np;
303 	long ioaddr;
304 	np = netdev_priv(dev);
305 	ioaddr = dev->base_addr;
306 	np->phy_addr = 1;
307 
308 	for (i = 31; i >= 0; i--) {
309 		int mii_status = mii_read (dev, i, 1);
310 		if (mii_status != 0xffff && mii_status != 0x0000) {
311 			np->phy_addr = i;
312 			phy_found++;
313 		}
314 	}
315 	if (!phy_found) {
316 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
317 		return -ENODEV;
318 	}
319 	return 0;
320 }
321 
322 static int
parse_eeprom(struct net_device * dev)323 parse_eeprom (struct net_device *dev)
324 {
325 	int i, j;
326 	long ioaddr = dev->base_addr;
327 	u8 sromdata[256];
328 	u8 *psib;
329 	u32 crc;
330 	PSROM_t psrom = (PSROM_t) sromdata;
331 	struct netdev_private *np = netdev_priv(dev);
332 
333 	int cid, next;
334 
335 #ifdef	MEM_MAPPING
336 	ioaddr = pci_resource_start (np->pdev, 0);
337 #endif
338 	/* Read eeprom */
339 	for (i = 0; i < 128; i++) {
340 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i));
341 	}
342 #ifdef	MEM_MAPPING
343 	ioaddr = dev->base_addr;
344 #endif
345 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
346 		/* Check CRC */
347 		crc = ~ether_crc_le (256 - 4, sromdata);
348 		if (psrom->crc != crc) {
349 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
350 					dev->name);
351 			return -1;
352 		}
353 	}
354 
355 	/* Set MAC address */
356 	for (i = 0; i < 6; i++)
357 		dev->dev_addr[i] = psrom->mac_addr[i];
358 
359 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
360 		return 0;
361 	}
362 
363 	/* Parse Software Information Block */
364 	i = 0x30;
365 	psib = (u8 *) sromdata;
366 	do {
367 		cid = psib[i++];
368 		next = psib[i++];
369 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370 			printk (KERN_ERR "Cell data error\n");
371 			return -1;
372 		}
373 		switch (cid) {
374 		case 0:	/* Format version */
375 			break;
376 		case 1:	/* End of cell */
377 			return 0;
378 		case 2:	/* Duplex Polarity */
379 			np->duplex_polarity = psib[i];
380 			writeb (readb (ioaddr + PhyCtrl) | psib[i],
381 				ioaddr + PhyCtrl);
382 			break;
383 		case 3:	/* Wake Polarity */
384 			np->wake_polarity = psib[i];
385 			break;
386 		case 9:	/* Adapter description */
387 			j = (next - i > 255) ? 255 : next - i;
388 			memcpy (np->name, &(psib[i]), j);
389 			break;
390 		case 4:
391 		case 5:
392 		case 6:
393 		case 7:
394 		case 8:	/* Reversed */
395 			break;
396 		default:	/* Unknown cell */
397 			return -1;
398 		}
399 		i = next;
400 	} while (1);
401 
402 	return 0;
403 }
404 
405 static int
rio_open(struct net_device * dev)406 rio_open (struct net_device *dev)
407 {
408 	struct netdev_private *np = netdev_priv(dev);
409 	long ioaddr = dev->base_addr;
410 	int i;
411 	u16 macctrl;
412 
413 	i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
414 	if (i)
415 		return i;
416 
417 	/* Reset all logic functions */
418 	writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
419 		ioaddr + ASICCtrl + 2);
420 	mdelay(10);
421 
422 	/* DebugCtrl bit 4, 5, 9 must set */
423 	writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
424 
425 	/* Jumbo frame */
426 	if (np->jumbo != 0)
427 		writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
428 
429 	alloc_list (dev);
430 
431 	/* Get station address */
432 	for (i = 0; i < 6; i++)
433 		writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
434 
435 	set_multicast (dev);
436 	if (np->coalesce) {
437 		writel (np->rx_coalesce | np->rx_timeout << 16,
438 			ioaddr + RxDMAIntCtrl);
439 	}
440 	/* Set RIO to poll every N*320nsec. */
441 	writeb (0x20, ioaddr + RxDMAPollPeriod);
442 	writeb (0xff, ioaddr + TxDMAPollPeriod);
443 	writeb (0x30, ioaddr + RxDMABurstThresh);
444 	writeb (0x30, ioaddr + RxDMAUrgentThresh);
445 	writel (0x0007ffff, ioaddr + RmonStatMask);
446 	/* clear statistics */
447 	clear_stats (dev);
448 
449 	/* VLAN supported */
450 	if (np->vlan) {
451 		/* priority field in RxDMAIntCtrl  */
452 		writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
453 			ioaddr + RxDMAIntCtrl);
454 		/* VLANId */
455 		writew (np->vlan, ioaddr + VLANId);
456 		/* Length/Type should be 0x8100 */
457 		writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
458 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
459 		   VLAN information tagged by TFC' VID, CFI fields. */
460 		writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
461 			ioaddr + MACCtrl);
462 	}
463 
464 	init_timer (&np->timer);
465 	np->timer.expires = jiffies + 1*HZ;
466 	np->timer.data = (unsigned long) dev;
467 	np->timer.function = &rio_timer;
468 	add_timer (&np->timer);
469 
470 	/* Start Tx/Rx */
471 	writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
472 			ioaddr + MACCtrl);
473 
474 	macctrl = 0;
475 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
476 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
477 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
478 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
479 	writew(macctrl,	ioaddr + MACCtrl);
480 
481 	netif_start_queue (dev);
482 
483 	/* Enable default interrupts */
484 	EnableInt ();
485 	return 0;
486 }
487 
488 static void
rio_timer(unsigned long data)489 rio_timer (unsigned long data)
490 {
491 	struct net_device *dev = (struct net_device *)data;
492 	struct netdev_private *np = netdev_priv(dev);
493 	unsigned int entry;
494 	int next_tick = 1*HZ;
495 	unsigned long flags;
496 
497 	spin_lock_irqsave(&np->rx_lock, flags);
498 	/* Recover rx ring exhausted error */
499 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
500 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
501 		/* Re-allocate skbuffs to fill the descriptor ring */
502 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
503 			struct sk_buff *skb;
504 			entry = np->old_rx % RX_RING_SIZE;
505 			/* Dropped packets don't need to re-allocate */
506 			if (np->rx_skbuff[entry] == NULL) {
507 				skb = netdev_alloc_skb (dev, np->rx_buf_sz);
508 				if (skb == NULL) {
509 					np->rx_ring[entry].fraginfo = 0;
510 					printk (KERN_INFO
511 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
512 						dev->name, entry);
513 					break;
514 				}
515 				np->rx_skbuff[entry] = skb;
516 				/* 16 byte align the IP header */
517 				skb_reserve (skb, 2);
518 				np->rx_ring[entry].fraginfo =
519 				    cpu_to_le64 (pci_map_single
520 					 (np->pdev, skb->data, np->rx_buf_sz,
521 					  PCI_DMA_FROMDEVICE));
522 			}
523 			np->rx_ring[entry].fraginfo |=
524 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
525 			np->rx_ring[entry].status = 0;
526 		} /* end for */
527 	} /* end if */
528 	spin_unlock_irqrestore (&np->rx_lock, flags);
529 	np->timer.expires = jiffies + next_tick;
530 	add_timer(&np->timer);
531 }
532 
533 static void
rio_tx_timeout(struct net_device * dev)534 rio_tx_timeout (struct net_device *dev)
535 {
536 	long ioaddr = dev->base_addr;
537 
538 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
539 		dev->name, readl (ioaddr + TxStatus));
540 	rio_free_tx(dev, 0);
541 	dev->if_port = 0;
542 	dev->trans_start = jiffies;
543 }
544 
545  /* allocate and initialize Tx and Rx descriptors */
546 static void
alloc_list(struct net_device * dev)547 alloc_list (struct net_device *dev)
548 {
549 	struct netdev_private *np = netdev_priv(dev);
550 	int i;
551 
552 	np->cur_rx = np->cur_tx = 0;
553 	np->old_rx = np->old_tx = 0;
554 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
555 
556 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
557 	for (i = 0; i < TX_RING_SIZE; i++) {
558 		np->tx_skbuff[i] = NULL;
559 		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
560 		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
561 					      ((i+1)%TX_RING_SIZE) *
562 					      sizeof (struct netdev_desc));
563 	}
564 
565 	/* Initialize Rx descriptors */
566 	for (i = 0; i < RX_RING_SIZE; i++) {
567 		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
568 						((i + 1) % RX_RING_SIZE) *
569 						sizeof (struct netdev_desc));
570 		np->rx_ring[i].status = 0;
571 		np->rx_ring[i].fraginfo = 0;
572 		np->rx_skbuff[i] = NULL;
573 	}
574 
575 	/* Allocate the rx buffers */
576 	for (i = 0; i < RX_RING_SIZE; i++) {
577 		/* Allocated fixed size of skbuff */
578 		struct sk_buff *skb = netdev_alloc_skb (dev, np->rx_buf_sz);
579 		np->rx_skbuff[i] = skb;
580 		if (skb == NULL) {
581 			printk (KERN_ERR
582 				"%s: alloc_list: allocate Rx buffer error! ",
583 				dev->name);
584 			break;
585 		}
586 		skb_reserve (skb, 2);	/* 16 byte align the IP header. */
587 		/* Rubicon now supports 40 bits of addressing space. */
588 		np->rx_ring[i].fraginfo =
589 		    cpu_to_le64 ( pci_map_single (
590 			 	  np->pdev, skb->data, np->rx_buf_sz,
591 				  PCI_DMA_FROMDEVICE));
592 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
593 	}
594 
595 	/* Set RFDListPtr */
596 	writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0);
597 	writel (0, dev->base_addr + RFDListPtr1);
598 
599 	return;
600 }
601 
602 static int
start_xmit(struct sk_buff * skb,struct net_device * dev)603 start_xmit (struct sk_buff *skb, struct net_device *dev)
604 {
605 	struct netdev_private *np = netdev_priv(dev);
606 	struct netdev_desc *txdesc;
607 	unsigned entry;
608 	u32 ioaddr;
609 	u64 tfc_vlan_tag = 0;
610 
611 	if (np->link_status == 0) {	/* Link Down */
612 		dev_kfree_skb(skb);
613 		return 0;
614 	}
615 	ioaddr = dev->base_addr;
616 	entry = np->cur_tx % TX_RING_SIZE;
617 	np->tx_skbuff[entry] = skb;
618 	txdesc = &np->tx_ring[entry];
619 
620 #if 0
621 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
622 		txdesc->status |=
623 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
624 				 IPChecksumEnable);
625 	}
626 #endif
627 	if (np->vlan) {
628 		tfc_vlan_tag = VLANTagInsert |
629 		    ((u64)np->vlan << 32) |
630 		    ((u64)skb->priority << 45);
631 	}
632 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
633 							skb->len,
634 							PCI_DMA_TODEVICE));
635 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
636 
637 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
638 	 * Work around: Always use 1 descriptor in 10Mbps mode */
639 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
640 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
641 					      WordAlignDisable |
642 					      TxDMAIndicate |
643 					      (1 << FragCountShift));
644 	else
645 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
646 					      WordAlignDisable |
647 					      (1 << FragCountShift));
648 
649 	/* TxDMAPollNow */
650 	writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
651 	/* Schedule ISR */
652 	writel(10000, ioaddr + CountDown);
653 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
654 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
655 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
656 		/* do nothing */
657 	} else if (!netif_queue_stopped(dev)) {
658 		netif_stop_queue (dev);
659 	}
660 
661 	/* The first TFDListPtr */
662 	if (readl (dev->base_addr + TFDListPtr0) == 0) {
663 		writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
664 			dev->base_addr + TFDListPtr0);
665 		writel (0, dev->base_addr + TFDListPtr1);
666 	}
667 
668 	/* NETDEV WATCHDOG timer */
669 	dev->trans_start = jiffies;
670 	return 0;
671 }
672 
673 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)674 rio_interrupt (int irq, void *dev_instance)
675 {
676 	struct net_device *dev = dev_instance;
677 	struct netdev_private *np;
678 	unsigned int_status;
679 	long ioaddr;
680 	int cnt = max_intrloop;
681 	int handled = 0;
682 
683 	ioaddr = dev->base_addr;
684 	np = netdev_priv(dev);
685 	while (1) {
686 		int_status = readw (ioaddr + IntStatus);
687 		writew (int_status, ioaddr + IntStatus);
688 		int_status &= DEFAULT_INTR;
689 		if (int_status == 0 || --cnt < 0)
690 			break;
691 		handled = 1;
692 		/* Processing received packets */
693 		if (int_status & RxDMAComplete)
694 			receive_packet (dev);
695 		/* TxDMAComplete interrupt */
696 		if ((int_status & (TxDMAComplete|IntRequested))) {
697 			int tx_status;
698 			tx_status = readl (ioaddr + TxStatus);
699 			if (tx_status & 0x01)
700 				tx_error (dev, tx_status);
701 			/* Free used tx skbuffs */
702 			rio_free_tx (dev, 1);
703 		}
704 
705 		/* Handle uncommon events */
706 		if (int_status &
707 		    (HostError | LinkEvent | UpdateStats))
708 			rio_error (dev, int_status);
709 	}
710 	if (np->cur_tx != np->old_tx)
711 		writel (100, ioaddr + CountDown);
712 	return IRQ_RETVAL(handled);
713 }
714 
desc_to_dma(struct netdev_desc * desc)715 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
716 {
717 	return le64_to_cpu(desc->fraginfo) & DMA_48BIT_MASK;
718 }
719 
720 static void
rio_free_tx(struct net_device * dev,int irq)721 rio_free_tx (struct net_device *dev, int irq)
722 {
723 	struct netdev_private *np = netdev_priv(dev);
724 	int entry = np->old_tx % TX_RING_SIZE;
725 	int tx_use = 0;
726 	unsigned long flag = 0;
727 
728 	if (irq)
729 		spin_lock(&np->tx_lock);
730 	else
731 		spin_lock_irqsave(&np->tx_lock, flag);
732 
733 	/* Free used tx skbuffs */
734 	while (entry != np->cur_tx) {
735 		struct sk_buff *skb;
736 
737 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
738 			break;
739 		skb = np->tx_skbuff[entry];
740 		pci_unmap_single (np->pdev,
741 				  desc_to_dma(&np->tx_ring[entry]),
742 				  skb->len, PCI_DMA_TODEVICE);
743 		if (irq)
744 			dev_kfree_skb_irq (skb);
745 		else
746 			dev_kfree_skb (skb);
747 
748 		np->tx_skbuff[entry] = NULL;
749 		entry = (entry + 1) % TX_RING_SIZE;
750 		tx_use++;
751 	}
752 	if (irq)
753 		spin_unlock(&np->tx_lock);
754 	else
755 		spin_unlock_irqrestore(&np->tx_lock, flag);
756 	np->old_tx = entry;
757 
758 	/* If the ring is no longer full, clear tx_full and
759 	   call netif_wake_queue() */
760 
761 	if (netif_queue_stopped(dev) &&
762 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
763 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
764 		netif_wake_queue (dev);
765 	}
766 }
767 
768 static void
tx_error(struct net_device * dev,int tx_status)769 tx_error (struct net_device *dev, int tx_status)
770 {
771 	struct netdev_private *np;
772 	long ioaddr = dev->base_addr;
773 	int frame_id;
774 	int i;
775 
776 	np = netdev_priv(dev);
777 
778 	frame_id = (tx_status & 0xffff0000);
779 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
780 		dev->name, tx_status, frame_id);
781 	np->stats.tx_errors++;
782 	/* Ttransmit Underrun */
783 	if (tx_status & 0x10) {
784 		np->stats.tx_fifo_errors++;
785 		writew (readw (ioaddr + TxStartThresh) + 0x10,
786 			ioaddr + TxStartThresh);
787 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
788 		writew (TxReset | DMAReset | FIFOReset | NetworkReset,
789 			ioaddr + ASICCtrl + 2);
790 		/* Wait for ResetBusy bit clear */
791 		for (i = 50; i > 0; i--) {
792 			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
793 				break;
794 			mdelay (1);
795 		}
796 		rio_free_tx (dev, 1);
797 		/* Reset TFDListPtr */
798 		writel (np->tx_ring_dma +
799 			np->old_tx * sizeof (struct netdev_desc),
800 			dev->base_addr + TFDListPtr0);
801 		writel (0, dev->base_addr + TFDListPtr1);
802 
803 		/* Let TxStartThresh stay default value */
804 	}
805 	/* Late Collision */
806 	if (tx_status & 0x04) {
807 		np->stats.tx_fifo_errors++;
808 		/* TxReset and clear FIFO */
809 		writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
810 		/* Wait reset done */
811 		for (i = 50; i > 0; i--) {
812 			if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
813 				break;
814 			mdelay (1);
815 		}
816 		/* Let TxStartThresh stay default value */
817 	}
818 	/* Maximum Collisions */
819 #ifdef ETHER_STATS
820 	if (tx_status & 0x08)
821 		np->stats.collisions16++;
822 #else
823 	if (tx_status & 0x08)
824 		np->stats.collisions++;
825 #endif
826 	/* Restart the Tx */
827 	writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
828 }
829 
830 static int
receive_packet(struct net_device * dev)831 receive_packet (struct net_device *dev)
832 {
833 	struct netdev_private *np = netdev_priv(dev);
834 	int entry = np->cur_rx % RX_RING_SIZE;
835 	int cnt = 30;
836 
837 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
838 	while (1) {
839 		struct netdev_desc *desc = &np->rx_ring[entry];
840 		int pkt_len;
841 		u64 frame_status;
842 
843 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
844 		    !(desc->status & cpu_to_le64(FrameStart)) ||
845 		    !(desc->status & cpu_to_le64(FrameEnd)))
846 			break;
847 
848 		/* Chip omits the CRC. */
849 		frame_status = le64_to_cpu(desc->status);
850 		pkt_len = frame_status & 0xffff;
851 		if (--cnt < 0)
852 			break;
853 		/* Update rx error statistics, drop packet. */
854 		if (frame_status & RFS_Errors) {
855 			np->stats.rx_errors++;
856 			if (frame_status & (RxRuntFrame | RxLengthError))
857 				np->stats.rx_length_errors++;
858 			if (frame_status & RxFCSError)
859 				np->stats.rx_crc_errors++;
860 			if (frame_status & RxAlignmentError && np->speed != 1000)
861 				np->stats.rx_frame_errors++;
862 			if (frame_status & RxFIFOOverrun)
863 	 			np->stats.rx_fifo_errors++;
864 		} else {
865 			struct sk_buff *skb;
866 
867 			/* Small skbuffs for short packets */
868 			if (pkt_len > copy_thresh) {
869 				pci_unmap_single (np->pdev,
870 						  desc_to_dma(desc),
871 						  np->rx_buf_sz,
872 						  PCI_DMA_FROMDEVICE);
873 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
874 				np->rx_skbuff[entry] = NULL;
875 			} else if ((skb = netdev_alloc_skb(dev, pkt_len + 2))) {
876 				pci_dma_sync_single_for_cpu(np->pdev,
877 							    desc_to_dma(desc),
878 							    np->rx_buf_sz,
879 							    PCI_DMA_FROMDEVICE);
880 				/* 16 byte align the IP header */
881 				skb_reserve (skb, 2);
882 				skb_copy_to_linear_data (skb,
883 						  np->rx_skbuff[entry]->data,
884 						  pkt_len);
885 				skb_put (skb, pkt_len);
886 				pci_dma_sync_single_for_device(np->pdev,
887 							       desc_to_dma(desc),
888 							       np->rx_buf_sz,
889 							       PCI_DMA_FROMDEVICE);
890 			}
891 			skb->protocol = eth_type_trans (skb, dev);
892 #if 0
893 			/* Checksum done by hw, but csum value unavailable. */
894 			if (np->pdev->pci_rev_id >= 0x0c &&
895 				!(frame_status & (TCPError | UDPError | IPError))) {
896 				skb->ip_summed = CHECKSUM_UNNECESSARY;
897 			}
898 #endif
899 			netif_rx (skb);
900 		}
901 		entry = (entry + 1) % RX_RING_SIZE;
902 	}
903 	spin_lock(&np->rx_lock);
904 	np->cur_rx = entry;
905 	/* Re-allocate skbuffs to fill the descriptor ring */
906 	entry = np->old_rx;
907 	while (entry != np->cur_rx) {
908 		struct sk_buff *skb;
909 		/* Dropped packets don't need to re-allocate */
910 		if (np->rx_skbuff[entry] == NULL) {
911 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
912 			if (skb == NULL) {
913 				np->rx_ring[entry].fraginfo = 0;
914 				printk (KERN_INFO
915 					"%s: receive_packet: "
916 					"Unable to re-allocate Rx skbuff.#%d\n",
917 					dev->name, entry);
918 				break;
919 			}
920 			np->rx_skbuff[entry] = skb;
921 			/* 16 byte align the IP header */
922 			skb_reserve (skb, 2);
923 			np->rx_ring[entry].fraginfo =
924 			    cpu_to_le64 (pci_map_single
925 					 (np->pdev, skb->data, np->rx_buf_sz,
926 					  PCI_DMA_FROMDEVICE));
927 		}
928 		np->rx_ring[entry].fraginfo |=
929 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
930 		np->rx_ring[entry].status = 0;
931 		entry = (entry + 1) % RX_RING_SIZE;
932 	}
933 	np->old_rx = entry;
934 	spin_unlock(&np->rx_lock);
935 	return 0;
936 }
937 
938 static void
rio_error(struct net_device * dev,int int_status)939 rio_error (struct net_device *dev, int int_status)
940 {
941 	long ioaddr = dev->base_addr;
942 	struct netdev_private *np = netdev_priv(dev);
943 	u16 macctrl;
944 
945 	/* Link change event */
946 	if (int_status & LinkEvent) {
947 		if (mii_wait_link (dev, 10) == 0) {
948 			printk (KERN_INFO "%s: Link up\n", dev->name);
949 			if (np->phy_media)
950 				mii_get_media_pcs (dev);
951 			else
952 				mii_get_media (dev);
953 			if (np->speed == 1000)
954 				np->tx_coalesce = tx_coalesce;
955 			else
956 				np->tx_coalesce = 1;
957 			macctrl = 0;
958 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
959 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
960 			macctrl |= (np->tx_flow) ?
961 				TxFlowControlEnable : 0;
962 			macctrl |= (np->rx_flow) ?
963 				RxFlowControlEnable : 0;
964 			writew(macctrl,	ioaddr + MACCtrl);
965 			np->link_status = 1;
966 			netif_carrier_on(dev);
967 		} else {
968 			printk (KERN_INFO "%s: Link off\n", dev->name);
969 			np->link_status = 0;
970 			netif_carrier_off(dev);
971 		}
972 	}
973 
974 	/* UpdateStats statistics registers */
975 	if (int_status & UpdateStats) {
976 		get_stats (dev);
977 	}
978 
979 	/* PCI Error, a catastronphic error related to the bus interface
980 	   occurs, set GlobalReset and HostReset to reset. */
981 	if (int_status & HostError) {
982 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
983 			dev->name, int_status);
984 		writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
985 		mdelay (500);
986 	}
987 }
988 
989 static struct net_device_stats *
get_stats(struct net_device * dev)990 get_stats (struct net_device *dev)
991 {
992 	long ioaddr = dev->base_addr;
993 	struct netdev_private *np = netdev_priv(dev);
994 #ifdef MEM_MAPPING
995 	int i;
996 #endif
997 	unsigned int stat_reg;
998 
999 	/* All statistics registers need to be acknowledged,
1000 	   else statistic overflow could cause problems */
1001 
1002 	np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
1003 	np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
1004 	np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
1005 	np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
1006 
1007 	np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
1008 	np->stats.collisions += readl (ioaddr + SingleColFrames)
1009 			     +  readl (ioaddr + MultiColFrames);
1010 
1011 	/* detailed tx errors */
1012 	stat_reg = readw (ioaddr + FramesAbortXSColls);
1013 	np->stats.tx_aborted_errors += stat_reg;
1014 	np->stats.tx_errors += stat_reg;
1015 
1016 	stat_reg = readw (ioaddr + CarrierSenseErrors);
1017 	np->stats.tx_carrier_errors += stat_reg;
1018 	np->stats.tx_errors += stat_reg;
1019 
1020 	/* Clear all other statistic register. */
1021 	readl (ioaddr + McstOctetXmtOk);
1022 	readw (ioaddr + BcstFramesXmtdOk);
1023 	readl (ioaddr + McstFramesXmtdOk);
1024 	readw (ioaddr + BcstFramesRcvdOk);
1025 	readw (ioaddr + MacControlFramesRcvd);
1026 	readw (ioaddr + FrameTooLongErrors);
1027 	readw (ioaddr + InRangeLengthErrors);
1028 	readw (ioaddr + FramesCheckSeqErrors);
1029 	readw (ioaddr + FramesLostRxErrors);
1030 	readl (ioaddr + McstOctetXmtOk);
1031 	readl (ioaddr + BcstOctetXmtOk);
1032 	readl (ioaddr + McstFramesXmtdOk);
1033 	readl (ioaddr + FramesWDeferredXmt);
1034 	readl (ioaddr + LateCollisions);
1035 	readw (ioaddr + BcstFramesXmtdOk);
1036 	readw (ioaddr + MacControlFramesXmtd);
1037 	readw (ioaddr + FramesWEXDeferal);
1038 
1039 #ifdef MEM_MAPPING
1040 	for (i = 0x100; i <= 0x150; i += 4)
1041 		readl (ioaddr + i);
1042 #endif
1043 	readw (ioaddr + TxJumboFrames);
1044 	readw (ioaddr + RxJumboFrames);
1045 	readw (ioaddr + TCPCheckSumErrors);
1046 	readw (ioaddr + UDPCheckSumErrors);
1047 	readw (ioaddr + IPCheckSumErrors);
1048 	return &np->stats;
1049 }
1050 
1051 static int
clear_stats(struct net_device * dev)1052 clear_stats (struct net_device *dev)
1053 {
1054 	long ioaddr = dev->base_addr;
1055 #ifdef MEM_MAPPING
1056 	int i;
1057 #endif
1058 
1059 	/* All statistics registers need to be acknowledged,
1060 	   else statistic overflow could cause problems */
1061 	readl (ioaddr + FramesRcvOk);
1062 	readl (ioaddr + FramesXmtOk);
1063 	readl (ioaddr + OctetRcvOk);
1064 	readl (ioaddr + OctetXmtOk);
1065 
1066 	readl (ioaddr + McstFramesRcvdOk);
1067 	readl (ioaddr + SingleColFrames);
1068 	readl (ioaddr + MultiColFrames);
1069 	readl (ioaddr + LateCollisions);
1070 	/* detailed rx errors */
1071 	readw (ioaddr + FrameTooLongErrors);
1072 	readw (ioaddr + InRangeLengthErrors);
1073 	readw (ioaddr + FramesCheckSeqErrors);
1074 	readw (ioaddr + FramesLostRxErrors);
1075 
1076 	/* detailed tx errors */
1077 	readw (ioaddr + FramesAbortXSColls);
1078 	readw (ioaddr + CarrierSenseErrors);
1079 
1080 	/* Clear all other statistic register. */
1081 	readl (ioaddr + McstOctetXmtOk);
1082 	readw (ioaddr + BcstFramesXmtdOk);
1083 	readl (ioaddr + McstFramesXmtdOk);
1084 	readw (ioaddr + BcstFramesRcvdOk);
1085 	readw (ioaddr + MacControlFramesRcvd);
1086 	readl (ioaddr + McstOctetXmtOk);
1087 	readl (ioaddr + BcstOctetXmtOk);
1088 	readl (ioaddr + McstFramesXmtdOk);
1089 	readl (ioaddr + FramesWDeferredXmt);
1090 	readw (ioaddr + BcstFramesXmtdOk);
1091 	readw (ioaddr + MacControlFramesXmtd);
1092 	readw (ioaddr + FramesWEXDeferal);
1093 #ifdef MEM_MAPPING
1094 	for (i = 0x100; i <= 0x150; i += 4)
1095 		readl (ioaddr + i);
1096 #endif
1097 	readw (ioaddr + TxJumboFrames);
1098 	readw (ioaddr + RxJumboFrames);
1099 	readw (ioaddr + TCPCheckSumErrors);
1100 	readw (ioaddr + UDPCheckSumErrors);
1101 	readw (ioaddr + IPCheckSumErrors);
1102 	return 0;
1103 }
1104 
1105 
1106 static int
change_mtu(struct net_device * dev,int new_mtu)1107 change_mtu (struct net_device *dev, int new_mtu)
1108 {
1109 	struct netdev_private *np = netdev_priv(dev);
1110 	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1111 
1112 	if ((new_mtu < 68) || (new_mtu > max)) {
1113 		return -EINVAL;
1114 	}
1115 
1116 	dev->mtu = new_mtu;
1117 
1118 	return 0;
1119 }
1120 
1121 static void
set_multicast(struct net_device * dev)1122 set_multicast (struct net_device *dev)
1123 {
1124 	long ioaddr = dev->base_addr;
1125 	u32 hash_table[2];
1126 	u16 rx_mode = 0;
1127 	struct netdev_private *np = netdev_priv(dev);
1128 
1129 	hash_table[0] = hash_table[1] = 0;
1130 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1131 	hash_table[1] |= 0x02000000;
1132 	if (dev->flags & IFF_PROMISC) {
1133 		/* Receive all frames promiscuously. */
1134 		rx_mode = ReceiveAllFrames;
1135 	} else if ((dev->flags & IFF_ALLMULTI) ||
1136 			(dev->mc_count > multicast_filter_limit)) {
1137 		/* Receive broadcast and multicast frames */
1138 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1139 	} else if (dev->mc_count > 0) {
1140 		int i;
1141 		struct dev_mc_list *mclist;
1142 		/* Receive broadcast frames and multicast frames filtering
1143 		   by Hashtable */
1144 		rx_mode =
1145 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1146 		for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1147 				i++, mclist=mclist->next)
1148 		{
1149 			int bit, index = 0;
1150 			int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1151 			/* The inverted high significant 6 bits of CRC are
1152 			   used as an index to hashtable */
1153 			for (bit = 0; bit < 6; bit++)
1154 				if (crc & (1 << (31 - bit)))
1155 					index |= (1 << bit);
1156 			hash_table[index / 32] |= (1 << (index % 32));
1157 		}
1158 	} else {
1159 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1160 	}
1161 	if (np->vlan) {
1162 		/* ReceiveVLANMatch field in ReceiveMode */
1163 		rx_mode |= ReceiveVLANMatch;
1164 	}
1165 
1166 	writel (hash_table[0], ioaddr + HashTable0);
1167 	writel (hash_table[1], ioaddr + HashTable1);
1168 	writew (rx_mode, ioaddr + ReceiveMode);
1169 }
1170 
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1171 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1172 {
1173 	struct netdev_private *np = netdev_priv(dev);
1174 	strcpy(info->driver, "dl2k");
1175 	strcpy(info->version, DRV_VERSION);
1176 	strcpy(info->bus_info, pci_name(np->pdev));
1177 }
1178 
rio_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1179 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1180 {
1181 	struct netdev_private *np = netdev_priv(dev);
1182 	if (np->phy_media) {
1183 		/* fiber device */
1184 		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1185 		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1186 		cmd->port = PORT_FIBRE;
1187 		cmd->transceiver = XCVR_INTERNAL;
1188 	} else {
1189 		/* copper device */
1190 		cmd->supported = SUPPORTED_10baseT_Half |
1191 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1192 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1193 			SUPPORTED_Autoneg | SUPPORTED_MII;
1194 		cmd->advertising = ADVERTISED_10baseT_Half |
1195 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1196 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1197 			ADVERTISED_Autoneg | ADVERTISED_MII;
1198 		cmd->port = PORT_MII;
1199 		cmd->transceiver = XCVR_INTERNAL;
1200 	}
1201 	if ( np->link_status ) {
1202 		cmd->speed = np->speed;
1203 		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1204 	} else {
1205 		cmd->speed = -1;
1206 		cmd->duplex = -1;
1207 	}
1208 	if ( np->an_enable)
1209 		cmd->autoneg = AUTONEG_ENABLE;
1210 	else
1211 		cmd->autoneg = AUTONEG_DISABLE;
1212 
1213 	cmd->phy_address = np->phy_addr;
1214 	return 0;
1215 }
1216 
rio_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1217 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1218 {
1219 	struct netdev_private *np = netdev_priv(dev);
1220 	netif_carrier_off(dev);
1221 	if (cmd->autoneg == AUTONEG_ENABLE) {
1222 		if (np->an_enable)
1223 			return 0;
1224 		else {
1225 			np->an_enable = 1;
1226 			mii_set_media(dev);
1227 			return 0;
1228 		}
1229 	} else {
1230 		np->an_enable = 0;
1231 		if (np->speed == 1000) {
1232 			cmd->speed = SPEED_100;
1233 			cmd->duplex = DUPLEX_FULL;
1234 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1235 		}
1236 		switch(cmd->speed + cmd->duplex) {
1237 
1238 		case SPEED_10 + DUPLEX_HALF:
1239 			np->speed = 10;
1240 			np->full_duplex = 0;
1241 			break;
1242 
1243 		case SPEED_10 + DUPLEX_FULL:
1244 			np->speed = 10;
1245 			np->full_duplex = 1;
1246 			break;
1247 		case SPEED_100 + DUPLEX_HALF:
1248 			np->speed = 100;
1249 			np->full_duplex = 0;
1250 			break;
1251 		case SPEED_100 + DUPLEX_FULL:
1252 			np->speed = 100;
1253 			np->full_duplex = 1;
1254 			break;
1255 		case SPEED_1000 + DUPLEX_HALF:/* not supported */
1256 		case SPEED_1000 + DUPLEX_FULL:/* not supported */
1257 		default:
1258 			return -EINVAL;
1259 		}
1260 		mii_set_media(dev);
1261 	}
1262 	return 0;
1263 }
1264 
rio_get_link(struct net_device * dev)1265 static u32 rio_get_link(struct net_device *dev)
1266 {
1267 	struct netdev_private *np = netdev_priv(dev);
1268 	return np->link_status;
1269 }
1270 
1271 static const struct ethtool_ops ethtool_ops = {
1272 	.get_drvinfo = rio_get_drvinfo,
1273 	.get_settings = rio_get_settings,
1274 	.set_settings = rio_set_settings,
1275 	.get_link = rio_get_link,
1276 };
1277 
1278 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1279 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1280 {
1281 	int phy_addr;
1282 	struct netdev_private *np = netdev_priv(dev);
1283 	struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
1284 
1285 	struct netdev_desc *desc;
1286 	int i;
1287 
1288 	phy_addr = np->phy_addr;
1289 	switch (cmd) {
1290 	case SIOCDEVPRIVATE:
1291 		break;
1292 
1293 	case SIOCDEVPRIVATE + 1:
1294 		miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
1295 		break;
1296 	case SIOCDEVPRIVATE + 2:
1297 		mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
1298 		break;
1299 	case SIOCDEVPRIVATE + 3:
1300 		break;
1301 	case SIOCDEVPRIVATE + 4:
1302 		break;
1303 	case SIOCDEVPRIVATE + 5:
1304 		netif_stop_queue (dev);
1305 		break;
1306 	case SIOCDEVPRIVATE + 6:
1307 		netif_wake_queue (dev);
1308 		break;
1309 	case SIOCDEVPRIVATE + 7:
1310 		printk
1311 		    ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1312 		     netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
1313 		     np->old_rx);
1314 		break;
1315 	case SIOCDEVPRIVATE + 8:
1316 		printk("TX ring:\n");
1317 		for (i = 0; i < TX_RING_SIZE; i++) {
1318 			desc = &np->tx_ring[i];
1319 			printk
1320 			    ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1321 			     i,
1322 			     (u32) (np->tx_ring_dma + i * sizeof (*desc)),
1323 			     (u32)le64_to_cpu(desc->next_desc),
1324 			     (u32)le64_to_cpu(desc->status),
1325 			     (u32)(le64_to_cpu(desc->fraginfo) >> 32),
1326 			     (u32)le64_to_cpu(desc->fraginfo));
1327 			printk ("\n");
1328 		}
1329 		printk ("\n");
1330 		break;
1331 
1332 	default:
1333 		return -EOPNOTSUPP;
1334 	}
1335 	return 0;
1336 }
1337 
1338 #define EEP_READ 0x0200
1339 #define EEP_BUSY 0x8000
1340 /* Read the EEPROM word */
1341 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1342 static int
read_eeprom(long ioaddr,int eep_addr)1343 read_eeprom (long ioaddr, int eep_addr)
1344 {
1345 	int i = 1000;
1346 	outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
1347 	while (i-- > 0) {
1348 		if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
1349 			return inw (ioaddr + EepromData);
1350 		}
1351 	}
1352 	return 0;
1353 }
1354 
1355 enum phy_ctrl_bits {
1356 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1357 	MII_DUPLEX = 0x08,
1358 };
1359 
1360 #define mii_delay() readb(ioaddr)
1361 static void
mii_sendbit(struct net_device * dev,u32 data)1362 mii_sendbit (struct net_device *dev, u32 data)
1363 {
1364 	long ioaddr = dev->base_addr + PhyCtrl;
1365 	data = (data) ? MII_DATA1 : 0;
1366 	data |= MII_WRITE;
1367 	data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
1368 	writeb (data, ioaddr);
1369 	mii_delay ();
1370 	writeb (data | MII_CLK, ioaddr);
1371 	mii_delay ();
1372 }
1373 
1374 static int
mii_getbit(struct net_device * dev)1375 mii_getbit (struct net_device *dev)
1376 {
1377 	long ioaddr = dev->base_addr + PhyCtrl;
1378 	u8 data;
1379 
1380 	data = (readb (ioaddr) & 0xf8) | MII_READ;
1381 	writeb (data, ioaddr);
1382 	mii_delay ();
1383 	writeb (data | MII_CLK, ioaddr);
1384 	mii_delay ();
1385 	return ((readb (ioaddr) >> 1) & 1);
1386 }
1387 
1388 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1389 mii_send_bits (struct net_device *dev, u32 data, int len)
1390 {
1391 	int i;
1392 	for (i = len - 1; i >= 0; i--) {
1393 		mii_sendbit (dev, data & (1 << i));
1394 	}
1395 }
1396 
1397 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1398 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1399 {
1400 	u32 cmd;
1401 	int i;
1402 	u32 retval = 0;
1403 
1404 	/* Preamble */
1405 	mii_send_bits (dev, 0xffffffff, 32);
1406 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1407 	/* ST,OP = 0110'b for read operation */
1408 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1409 	mii_send_bits (dev, cmd, 14);
1410 	/* Turnaround */
1411 	if (mii_getbit (dev))
1412 		goto err_out;
1413 	/* Read data */
1414 	for (i = 0; i < 16; i++) {
1415 		retval |= mii_getbit (dev);
1416 		retval <<= 1;
1417 	}
1418 	/* End cycle */
1419 	mii_getbit (dev);
1420 	return (retval >> 1) & 0xffff;
1421 
1422       err_out:
1423 	return 0;
1424 }
1425 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1426 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1427 {
1428 	u32 cmd;
1429 
1430 	/* Preamble */
1431 	mii_send_bits (dev, 0xffffffff, 32);
1432 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1433 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1434 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1435 	mii_send_bits (dev, cmd, 32);
1436 	/* End cycle */
1437 	mii_getbit (dev);
1438 	return 0;
1439 }
1440 static int
mii_wait_link(struct net_device * dev,int wait)1441 mii_wait_link (struct net_device *dev, int wait)
1442 {
1443 	__u16 bmsr;
1444 	int phy_addr;
1445 	struct netdev_private *np;
1446 
1447 	np = netdev_priv(dev);
1448 	phy_addr = np->phy_addr;
1449 
1450 	do {
1451 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1452 		if (bmsr & MII_BMSR_LINK_STATUS)
1453 			return 0;
1454 		mdelay (1);
1455 	} while (--wait > 0);
1456 	return -1;
1457 }
1458 static int
mii_get_media(struct net_device * dev)1459 mii_get_media (struct net_device *dev)
1460 {
1461 	__u16 negotiate;
1462 	__u16 bmsr;
1463 	__u16 mscr;
1464 	__u16 mssr;
1465 	int phy_addr;
1466 	struct netdev_private *np;
1467 
1468 	np = netdev_priv(dev);
1469 	phy_addr = np->phy_addr;
1470 
1471 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1472 	if (np->an_enable) {
1473 		if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1474 			/* Auto-Negotiation not completed */
1475 			return -1;
1476 		}
1477 		negotiate = mii_read (dev, phy_addr, MII_ANAR) &
1478 			mii_read (dev, phy_addr, MII_ANLPAR);
1479 		mscr = mii_read (dev, phy_addr, MII_MSCR);
1480 		mssr = mii_read (dev, phy_addr, MII_MSSR);
1481 		if (mscr & MII_MSCR_1000BT_FD && mssr & MII_MSSR_LP_1000BT_FD) {
1482 			np->speed = 1000;
1483 			np->full_duplex = 1;
1484 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1485 		} else if (mscr & MII_MSCR_1000BT_HD && mssr & MII_MSSR_LP_1000BT_HD) {
1486 			np->speed = 1000;
1487 			np->full_duplex = 0;
1488 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1489 		} else if (negotiate & MII_ANAR_100BX_FD) {
1490 			np->speed = 100;
1491 			np->full_duplex = 1;
1492 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1493 		} else if (negotiate & MII_ANAR_100BX_HD) {
1494 			np->speed = 100;
1495 			np->full_duplex = 0;
1496 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1497 		} else if (negotiate & MII_ANAR_10BT_FD) {
1498 			np->speed = 10;
1499 			np->full_duplex = 1;
1500 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1501 		} else if (negotiate & MII_ANAR_10BT_HD) {
1502 			np->speed = 10;
1503 			np->full_duplex = 0;
1504 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1505 		}
1506 		if (negotiate & MII_ANAR_PAUSE) {
1507 			np->tx_flow &= 1;
1508 			np->rx_flow &= 1;
1509 		} else if (negotiate & MII_ANAR_ASYMMETRIC) {
1510 			np->tx_flow = 0;
1511 			np->rx_flow &= 1;
1512 		}
1513 		/* else tx_flow, rx_flow = user select  */
1514 	} else {
1515 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1516 		switch (bmcr & (MII_BMCR_SPEED_100 | MII_BMCR_SPEED_1000)) {
1517 		case MII_BMCR_SPEED_1000:
1518 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1519 			break;
1520 		case MII_BMCR_SPEED_100:
1521 			printk (KERN_INFO "Operating at 100 Mbps, ");
1522 			break;
1523 		case 0:
1524 			printk (KERN_INFO "Operating at 10 Mbps, ");
1525 		}
1526 		if (bmcr & MII_BMCR_DUPLEX_MODE) {
1527 			printk ("Full duplex\n");
1528 		} else {
1529 			printk ("Half duplex\n");
1530 		}
1531 	}
1532 	if (np->tx_flow)
1533 		printk(KERN_INFO "Enable Tx Flow Control\n");
1534 	else
1535 		printk(KERN_INFO "Disable Tx Flow Control\n");
1536 	if (np->rx_flow)
1537 		printk(KERN_INFO "Enable Rx Flow Control\n");
1538 	else
1539 		printk(KERN_INFO "Disable Rx Flow Control\n");
1540 
1541 	return 0;
1542 }
1543 
1544 static int
mii_set_media(struct net_device * dev)1545 mii_set_media (struct net_device *dev)
1546 {
1547 	__u16 pscr;
1548 	__u16 bmcr;
1549 	__u16 bmsr;
1550 	__u16 anar;
1551 	int phy_addr;
1552 	struct netdev_private *np;
1553 	np = netdev_priv(dev);
1554 	phy_addr = np->phy_addr;
1555 
1556 	/* Does user set speed? */
1557 	if (np->an_enable) {
1558 		/* Advertise capabilities */
1559 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1560 		anar = mii_read (dev, phy_addr, MII_ANAR) &
1561 			     ~MII_ANAR_100BX_FD &
1562 			     ~MII_ANAR_100BX_HD &
1563 			     ~MII_ANAR_100BT4 &
1564 			     ~MII_ANAR_10BT_FD &
1565 			     ~MII_ANAR_10BT_HD;
1566 		if (bmsr & MII_BMSR_100BX_FD)
1567 			anar |= MII_ANAR_100BX_FD;
1568 		if (bmsr & MII_BMSR_100BX_HD)
1569 			anar |= MII_ANAR_100BX_HD;
1570 		if (bmsr & MII_BMSR_100BT4)
1571 			anar |= MII_ANAR_100BT4;
1572 		if (bmsr & MII_BMSR_10BT_FD)
1573 			anar |= MII_ANAR_10BT_FD;
1574 		if (bmsr & MII_BMSR_10BT_HD)
1575 			anar |= MII_ANAR_10BT_HD;
1576 		anar |= MII_ANAR_PAUSE | MII_ANAR_ASYMMETRIC;
1577 		mii_write (dev, phy_addr, MII_ANAR, anar);
1578 
1579 		/* Enable Auto crossover */
1580 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1581 		pscr |= 3 << 5;	/* 11'b */
1582 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1583 
1584 		/* Soft reset PHY */
1585 		mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1586 		bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN | MII_BMCR_RESET;
1587 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1588 		mdelay(1);
1589 	} else {
1590 		/* Force speed setting */
1591 		/* 1) Disable Auto crossover */
1592 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1593 		pscr &= ~(3 << 5);
1594 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1595 
1596 		/* 2) PHY Reset */
1597 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1598 		bmcr |= MII_BMCR_RESET;
1599 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1600 
1601 		/* 3) Power Down */
1602 		bmcr = 0x1940;	/* must be 0x1940 */
1603 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1604 		mdelay (100);	/* wait a certain time */
1605 
1606 		/* 4) Advertise nothing */
1607 		mii_write (dev, phy_addr, MII_ANAR, 0);
1608 
1609 		/* 5) Set media and Power Up */
1610 		bmcr = MII_BMCR_POWER_DOWN;
1611 		if (np->speed == 100) {
1612 			bmcr |= MII_BMCR_SPEED_100;
1613 			printk (KERN_INFO "Manual 100 Mbps, ");
1614 		} else if (np->speed == 10) {
1615 			printk (KERN_INFO "Manual 10 Mbps, ");
1616 		}
1617 		if (np->full_duplex) {
1618 			bmcr |= MII_BMCR_DUPLEX_MODE;
1619 			printk ("Full duplex\n");
1620 		} else {
1621 			printk ("Half duplex\n");
1622 		}
1623 #if 0
1624 		/* Set 1000BaseT Master/Slave setting */
1625 		mscr = mii_read (dev, phy_addr, MII_MSCR);
1626 		mscr |= MII_MSCR_CFG_ENABLE;
1627 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1628 #endif
1629 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630 		mdelay(10);
1631 	}
1632 	return 0;
1633 }
1634 
1635 static int
mii_get_media_pcs(struct net_device * dev)1636 mii_get_media_pcs (struct net_device *dev)
1637 {
1638 	__u16 negotiate;
1639 	__u16 bmsr;
1640 	int phy_addr;
1641 	struct netdev_private *np;
1642 
1643 	np = netdev_priv(dev);
1644 	phy_addr = np->phy_addr;
1645 
1646 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1647 	if (np->an_enable) {
1648 		if (!(bmsr & MII_BMSR_AN_COMPLETE)) {
1649 			/* Auto-Negotiation not completed */
1650 			return -1;
1651 		}
1652 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1653 			mii_read (dev, phy_addr, PCS_ANLPAR);
1654 		np->speed = 1000;
1655 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1656 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1657 			np->full_duplex = 1;
1658 		} else {
1659 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1660 			np->full_duplex = 0;
1661 		}
1662 		if (negotiate & PCS_ANAR_PAUSE) {
1663 			np->tx_flow &= 1;
1664 			np->rx_flow &= 1;
1665 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1666 			np->tx_flow = 0;
1667 			np->rx_flow &= 1;
1668 		}
1669 		/* else tx_flow, rx_flow = user select  */
1670 	} else {
1671 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1672 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1673 		if (bmcr & MII_BMCR_DUPLEX_MODE) {
1674 			printk ("Full duplex\n");
1675 		} else {
1676 			printk ("Half duplex\n");
1677 		}
1678 	}
1679 	if (np->tx_flow)
1680 		printk(KERN_INFO "Enable Tx Flow Control\n");
1681 	else
1682 		printk(KERN_INFO "Disable Tx Flow Control\n");
1683 	if (np->rx_flow)
1684 		printk(KERN_INFO "Enable Rx Flow Control\n");
1685 	else
1686 		printk(KERN_INFO "Disable Rx Flow Control\n");
1687 
1688 	return 0;
1689 }
1690 
1691 static int
mii_set_media_pcs(struct net_device * dev)1692 mii_set_media_pcs (struct net_device *dev)
1693 {
1694 	__u16 bmcr;
1695 	__u16 esr;
1696 	__u16 anar;
1697 	int phy_addr;
1698 	struct netdev_private *np;
1699 	np = netdev_priv(dev);
1700 	phy_addr = np->phy_addr;
1701 
1702 	/* Auto-Negotiation? */
1703 	if (np->an_enable) {
1704 		/* Advertise capabilities */
1705 		esr = mii_read (dev, phy_addr, PCS_ESR);
1706 		anar = mii_read (dev, phy_addr, MII_ANAR) &
1707 			~PCS_ANAR_HALF_DUPLEX &
1708 			~PCS_ANAR_FULL_DUPLEX;
1709 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1710 			anar |= PCS_ANAR_HALF_DUPLEX;
1711 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1712 			anar |= PCS_ANAR_FULL_DUPLEX;
1713 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1714 		mii_write (dev, phy_addr, MII_ANAR, anar);
1715 
1716 		/* Soft reset PHY */
1717 		mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
1718 		bmcr = MII_BMCR_AN_ENABLE | MII_BMCR_RESTART_AN |
1719 		       MII_BMCR_RESET;
1720 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1721 		mdelay(1);
1722 	} else {
1723 		/* Force speed setting */
1724 		/* PHY Reset */
1725 		bmcr = MII_BMCR_RESET;
1726 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1727 		mdelay(10);
1728 		if (np->full_duplex) {
1729 			bmcr = MII_BMCR_DUPLEX_MODE;
1730 			printk (KERN_INFO "Manual full duplex\n");
1731 		} else {
1732 			bmcr = 0;
1733 			printk (KERN_INFO "Manual half duplex\n");
1734 		}
1735 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1736 		mdelay(10);
1737 
1738 		/*  Advertise nothing */
1739 		mii_write (dev, phy_addr, MII_ANAR, 0);
1740 	}
1741 	return 0;
1742 }
1743 
1744 
1745 static int
rio_close(struct net_device * dev)1746 rio_close (struct net_device *dev)
1747 {
1748 	long ioaddr = dev->base_addr;
1749 	struct netdev_private *np = netdev_priv(dev);
1750 	struct sk_buff *skb;
1751 	int i;
1752 
1753 	netif_stop_queue (dev);
1754 
1755 	/* Disable interrupts */
1756 	writew (0, ioaddr + IntEnable);
1757 
1758 	/* Stop Tx and Rx logics */
1759 	writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
1760 
1761 	free_irq (dev->irq, dev);
1762 	del_timer_sync (&np->timer);
1763 
1764 	/* Free all the skbuffs in the queue. */
1765 	for (i = 0; i < RX_RING_SIZE; i++) {
1766 		np->rx_ring[i].status = 0;
1767 		np->rx_ring[i].fraginfo = 0;
1768 		skb = np->rx_skbuff[i];
1769 		if (skb) {
1770 			pci_unmap_single(np->pdev,
1771 					 desc_to_dma(&np->rx_ring[i]),
1772 					 skb->len, PCI_DMA_FROMDEVICE);
1773 			dev_kfree_skb (skb);
1774 			np->rx_skbuff[i] = NULL;
1775 		}
1776 	}
1777 	for (i = 0; i < TX_RING_SIZE; i++) {
1778 		skb = np->tx_skbuff[i];
1779 		if (skb) {
1780 			pci_unmap_single(np->pdev,
1781 					 desc_to_dma(&np->tx_ring[i]),
1782 					 skb->len, PCI_DMA_TODEVICE);
1783 			dev_kfree_skb (skb);
1784 			np->tx_skbuff[i] = NULL;
1785 		}
1786 	}
1787 
1788 	return 0;
1789 }
1790 
1791 static void __devexit
rio_remove1(struct pci_dev * pdev)1792 rio_remove1 (struct pci_dev *pdev)
1793 {
1794 	struct net_device *dev = pci_get_drvdata (pdev);
1795 
1796 	if (dev) {
1797 		struct netdev_private *np = netdev_priv(dev);
1798 
1799 		unregister_netdev (dev);
1800 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1801 				     np->rx_ring_dma);
1802 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1803 				     np->tx_ring_dma);
1804 #ifdef MEM_MAPPING
1805 		iounmap ((char *) (dev->base_addr));
1806 #endif
1807 		free_netdev (dev);
1808 		pci_release_regions (pdev);
1809 		pci_disable_device (pdev);
1810 	}
1811 	pci_set_drvdata (pdev, NULL);
1812 }
1813 
1814 static struct pci_driver rio_driver = {
1815 	.name		= "dl2k",
1816 	.id_table	= rio_pci_tbl,
1817 	.probe		= rio_probe1,
1818 	.remove		= __devexit_p(rio_remove1),
1819 };
1820 
1821 static int __init
rio_init(void)1822 rio_init (void)
1823 {
1824 	return pci_register_driver(&rio_driver);
1825 }
1826 
1827 static void __exit
rio_exit(void)1828 rio_exit (void)
1829 {
1830 	pci_unregister_driver (&rio_driver);
1831 }
1832 
1833 module_init (rio_init);
1834 module_exit (rio_exit);
1835 
1836 /*
1837 
1838 Compile command:
1839 
1840 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1841 
1842 Read Documentation/networking/dl2k.txt for details.
1843 
1844 */
1845 
1846