1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="Generic-IRQ-Guide"> 6 <bookinfo> 7 <title>Linux generic IRQ handling</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Thomas</firstname> 12 <surname>Gleixner</surname> 13 <affiliation> 14 <address> 15 <email>tglx@linutronix.de</email> 16 </address> 17 </affiliation> 18 </author> 19 <author> 20 <firstname>Ingo</firstname> 21 <surname>Molnar</surname> 22 <affiliation> 23 <address> 24 <email>mingo@elte.hu</email> 25 </address> 26 </affiliation> 27 </author> 28 </authorgroup> 29 30 <copyright> 31 <year>2005-2006</year> 32 <holder>Thomas Gleixner</holder> 33 </copyright> 34 <copyright> 35 <year>2005-2006</year> 36 <holder>Ingo Molnar</holder> 37 </copyright> 38 39 <legalnotice> 40 <para> 41 This documentation is free software; you can redistribute 42 it and/or modify it under the terms of the GNU General Public 43 License version 2 as published by the Free Software Foundation. 44 </para> 45 46 <para> 47 This program is distributed in the hope that it will be 48 useful, but WITHOUT ANY WARRANTY; without even the implied 49 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 50 See the GNU General Public License for more details. 51 </para> 52 53 <para> 54 You should have received a copy of the GNU General Public 55 License along with this program; if not, write to the Free 56 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 57 MA 02111-1307 USA 58 </para> 59 60 <para> 61 For more details see the file COPYING in the source 62 distribution of Linux. 63 </para> 64 </legalnotice> 65 </bookinfo> 66 67<toc></toc> 68 69 <chapter id="intro"> 70 <title>Introduction</title> 71 <para> 72 The generic interrupt handling layer is designed to provide a 73 complete abstraction of interrupt handling for device drivers. 74 It is able to handle all the different types of interrupt controller 75 hardware. Device drivers use generic API functions to request, enable, 76 disable and free interrupts. The drivers do not have to know anything 77 about interrupt hardware details, so they can be used on different 78 platforms without code changes. 79 </para> 80 <para> 81 This documentation is provided to developers who want to implement 82 an interrupt subsystem based for their architecture, with the help 83 of the generic IRQ handling layer. 84 </para> 85 </chapter> 86 87 <chapter id="rationale"> 88 <title>Rationale</title> 89 <para> 90 The original implementation of interrupt handling in Linux is using 91 the __do_IRQ() super-handler, which is able to deal with every 92 type of interrupt logic. 93 </para> 94 <para> 95 Originally, Russell King identified different types of handlers to 96 build a quite universal set for the ARM interrupt handler 97 implementation in Linux 2.5/2.6. He distinguished between: 98 <itemizedlist> 99 <listitem><para>Level type</para></listitem> 100 <listitem><para>Edge type</para></listitem> 101 <listitem><para>Simple type</para></listitem> 102 </itemizedlist> 103 In the SMP world of the __do_IRQ() super-handler another type 104 was identified: 105 <itemizedlist> 106 <listitem><para>Per CPU type</para></listitem> 107 </itemizedlist> 108 </para> 109 <para> 110 This split implementation of highlevel IRQ handlers allows us to 111 optimize the flow of the interrupt handling for each specific 112 interrupt type. This reduces complexity in that particular codepath 113 and allows the optimized handling of a given type. 114 </para> 115 <para> 116 The original general IRQ implementation used hw_interrupt_type 117 structures and their ->ack(), ->end() [etc.] callbacks to 118 differentiate the flow control in the super-handler. This leads to 119 a mix of flow logic and lowlevel hardware logic, and it also leads 120 to unnecessary code duplication: for example in i386, there is a 121 ioapic_level_irq and a ioapic_edge_irq irq-type which share many 122 of the lowlevel details but have different flow handling. 123 </para> 124 <para> 125 A more natural abstraction is the clean separation of the 126 'irq flow' and the 'chip details'. 127 </para> 128 <para> 129 Analysing a couple of architecture's IRQ subsystem implementations 130 reveals that most of them can use a generic set of 'irq flow' 131 methods and only need to add the chip level specific code. 132 The separation is also valuable for (sub)architectures 133 which need specific quirks in the irq flow itself but not in the 134 chip-details - and thus provides a more transparent IRQ subsystem 135 design. 136 </para> 137 <para> 138 Each interrupt descriptor is assigned its own highlevel flow 139 handler, which is normally one of the generic 140 implementations. (This highlevel flow handler implementation also 141 makes it simple to provide demultiplexing handlers which can be 142 found in embedded platforms on various architectures.) 143 </para> 144 <para> 145 The separation makes the generic interrupt handling layer more 146 flexible and extensible. For example, an (sub)architecture can 147 use a generic irq-flow implementation for 'level type' interrupts 148 and add a (sub)architecture specific 'edge type' implementation. 149 </para> 150 <para> 151 To make the transition to the new model easier and prevent the 152 breakage of existing implementations, the __do_IRQ() super-handler 153 is still available. This leads to a kind of duality for the time 154 being. Over time the new model should be used in more and more 155 architectures, as it enables smaller and cleaner IRQ subsystems. 156 </para> 157 </chapter> 158 <chapter id="bugs"> 159 <title>Known Bugs And Assumptions</title> 160 <para> 161 None (knock on wood). 162 </para> 163 </chapter> 164 165 <chapter id="Abstraction"> 166 <title>Abstraction layers</title> 167 <para> 168 There are three main levels of abstraction in the interrupt code: 169 <orderedlist> 170 <listitem><para>Highlevel driver API</para></listitem> 171 <listitem><para>Highlevel IRQ flow handlers</para></listitem> 172 <listitem><para>Chiplevel hardware encapsulation</para></listitem> 173 </orderedlist> 174 </para> 175 <sect1 id="Interrupt_control_flow"> 176 <title>Interrupt control flow</title> 177 <para> 178 Each interrupt is described by an interrupt descriptor structure 179 irq_desc. The interrupt is referenced by an 'unsigned int' numeric 180 value which selects the corresponding interrupt decription structure 181 in the descriptor structures array. 182 The descriptor structure contains status information and pointers 183 to the interrupt flow method and the interrupt chip structure 184 which are assigned to this interrupt. 185 </para> 186 <para> 187 Whenever an interrupt triggers, the lowlevel arch code calls into 188 the generic interrupt code by calling desc->handle_irq(). 189 This highlevel IRQ handling function only uses desc->chip primitives 190 referenced by the assigned chip descriptor structure. 191 </para> 192 </sect1> 193 <sect1 id="Highlevel_Driver_API"> 194 <title>Highlevel Driver API</title> 195 <para> 196 The highlevel Driver API consists of following functions: 197 <itemizedlist> 198 <listitem><para>request_irq()</para></listitem> 199 <listitem><para>free_irq()</para></listitem> 200 <listitem><para>disable_irq()</para></listitem> 201 <listitem><para>enable_irq()</para></listitem> 202 <listitem><para>disable_irq_nosync() (SMP only)</para></listitem> 203 <listitem><para>synchronize_irq() (SMP only)</para></listitem> 204 <listitem><para>set_irq_type()</para></listitem> 205 <listitem><para>set_irq_wake()</para></listitem> 206 <listitem><para>set_irq_data()</para></listitem> 207 <listitem><para>set_irq_chip()</para></listitem> 208 <listitem><para>set_irq_chip_data()</para></listitem> 209 </itemizedlist> 210 See the autogenerated function documentation for details. 211 </para> 212 </sect1> 213 <sect1 id="Highlevel_IRQ_flow_handlers"> 214 <title>Highlevel IRQ flow handlers</title> 215 <para> 216 The generic layer provides a set of pre-defined irq-flow methods: 217 <itemizedlist> 218 <listitem><para>handle_level_irq</para></listitem> 219 <listitem><para>handle_edge_irq</para></listitem> 220 <listitem><para>handle_simple_irq</para></listitem> 221 <listitem><para>handle_percpu_irq</para></listitem> 222 </itemizedlist> 223 The interrupt flow handlers (either predefined or architecture 224 specific) are assigned to specific interrupts by the architecture 225 either during bootup or during device initialization. 226 </para> 227 <sect2 id="Default_flow_implementations"> 228 <title>Default flow implementations</title> 229 <sect3 id="Helper_functions"> 230 <title>Helper functions</title> 231 <para> 232 The helper functions call the chip primitives and 233 are used by the default flow implementations. 234 The following helper functions are implemented (simplified excerpt): 235 <programlisting> 236default_enable(irq) 237{ 238 desc->chip->unmask(irq); 239} 240 241default_disable(irq) 242{ 243 if (!delay_disable(irq)) 244 desc->chip->mask(irq); 245} 246 247default_ack(irq) 248{ 249 chip->ack(irq); 250} 251 252default_mask_ack(irq) 253{ 254 if (chip->mask_ack) { 255 chip->mask_ack(irq); 256 } else { 257 chip->mask(irq); 258 chip->ack(irq); 259 } 260} 261 262noop(irq) 263{ 264} 265 266 </programlisting> 267 </para> 268 </sect3> 269 </sect2> 270 <sect2 id="Default_flow_handler_implementations"> 271 <title>Default flow handler implementations</title> 272 <sect3 id="Default_Level_IRQ_flow_handler"> 273 <title>Default Level IRQ flow handler</title> 274 <para> 275 handle_level_irq provides a generic implementation 276 for level-triggered interrupts. 277 </para> 278 <para> 279 The following control flow is implemented (simplified excerpt): 280 <programlisting> 281desc->chip->start(); 282handle_IRQ_event(desc->action); 283desc->chip->end(); 284 </programlisting> 285 </para> 286 </sect3> 287 <sect3 id="Default_Edge_IRQ_flow_handler"> 288 <title>Default Edge IRQ flow handler</title> 289 <para> 290 handle_edge_irq provides a generic implementation 291 for edge-triggered interrupts. 292 </para> 293 <para> 294 The following control flow is implemented (simplified excerpt): 295 <programlisting> 296if (desc->status & running) { 297 desc->chip->hold(); 298 desc->status |= pending | masked; 299 return; 300} 301desc->chip->start(); 302desc->status |= running; 303do { 304 if (desc->status & masked) 305 desc->chip->enable(); 306 desc->status &= ~pending; 307 handle_IRQ_event(desc->action); 308} while (status & pending); 309desc->status &= ~running; 310desc->chip->end(); 311 </programlisting> 312 </para> 313 </sect3> 314 <sect3 id="Default_simple_IRQ_flow_handler"> 315 <title>Default simple IRQ flow handler</title> 316 <para> 317 handle_simple_irq provides a generic implementation 318 for simple interrupts. 319 </para> 320 <para> 321 Note: The simple flow handler does not call any 322 handler/chip primitives. 323 </para> 324 <para> 325 The following control flow is implemented (simplified excerpt): 326 <programlisting> 327handle_IRQ_event(desc->action); 328 </programlisting> 329 </para> 330 </sect3> 331 <sect3 id="Default_per_CPU_flow_handler"> 332 <title>Default per CPU flow handler</title> 333 <para> 334 handle_percpu_irq provides a generic implementation 335 for per CPU interrupts. 336 </para> 337 <para> 338 Per CPU interrupts are only available on SMP and 339 the handler provides a simplified version without 340 locking. 341 </para> 342 <para> 343 The following control flow is implemented (simplified excerpt): 344 <programlisting> 345desc->chip->start(); 346handle_IRQ_event(desc->action); 347desc->chip->end(); 348 </programlisting> 349 </para> 350 </sect3> 351 </sect2> 352 <sect2 id="Quirks_and_optimizations"> 353 <title>Quirks and optimizations</title> 354 <para> 355 The generic functions are intended for 'clean' architectures and chips, 356 which have no platform-specific IRQ handling quirks. If an architecture 357 needs to implement quirks on the 'flow' level then it can do so by 358 overriding the highlevel irq-flow handler. 359 </para> 360 </sect2> 361 <sect2 id="Delayed_interrupt_disable"> 362 <title>Delayed interrupt disable</title> 363 <para> 364 This per interrupt selectable feature, which was introduced by Russell 365 King in the ARM interrupt implementation, does not mask an interrupt 366 at the hardware level when disable_irq() is called. The interrupt is 367 kept enabled and is masked in the flow handler when an interrupt event 368 happens. This prevents losing edge interrupts on hardware which does 369 not store an edge interrupt event while the interrupt is disabled at 370 the hardware level. When an interrupt arrives while the IRQ_DISABLED 371 flag is set, then the interrupt is masked at the hardware level and 372 the IRQ_PENDING bit is set. When the interrupt is re-enabled by 373 enable_irq() the pending bit is checked and if it is set, the 374 interrupt is resent either via hardware or by a software resend 375 mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when 376 you want to use the delayed interrupt disable feature and your 377 hardware is not capable of retriggering an interrupt.) 378 The delayed interrupt disable can be runtime enabled, per interrupt, 379 by setting the IRQ_DELAYED_DISABLE flag in the irq_desc status field. 380 </para> 381 </sect2> 382 </sect1> 383 <sect1 id="Chiplevel_hardware_encapsulation"> 384 <title>Chiplevel hardware encapsulation</title> 385 <para> 386 The chip level hardware descriptor structure irq_chip 387 contains all the direct chip relevant functions, which 388 can be utilized by the irq flow implementations. 389 <itemizedlist> 390 <listitem><para>ack()</para></listitem> 391 <listitem><para>mask_ack() - Optional, recommended for performance</para></listitem> 392 <listitem><para>mask()</para></listitem> 393 <listitem><para>unmask()</para></listitem> 394 <listitem><para>retrigger() - Optional</para></listitem> 395 <listitem><para>set_type() - Optional</para></listitem> 396 <listitem><para>set_wake() - Optional</para></listitem> 397 </itemizedlist> 398 These primitives are strictly intended to mean what they say: ack means 399 ACK, masking means masking of an IRQ line, etc. It is up to the flow 400 handler(s) to use these basic units of lowlevel functionality. 401 </para> 402 </sect1> 403 </chapter> 404 405 <chapter id="doirq"> 406 <title>__do_IRQ entry point</title> 407 <para> 408 The original implementation __do_IRQ() is an alternative entry 409 point for all types of interrupts. 410 </para> 411 <para> 412 This handler turned out to be not suitable for all 413 interrupt hardware and was therefore reimplemented with split 414 functionality for egde/level/simple/percpu interrupts. This is not 415 only a functional optimization. It also shortens code paths for 416 interrupts. 417 </para> 418 <para> 419 To make use of the split implementation, replace the call to 420 __do_IRQ by a call to desc->chip->handle_irq() and associate 421 the appropriate handler function to desc->chip->handle_irq(). 422 In most cases the generic handler implementations should 423 be sufficient. 424 </para> 425 </chapter> 426 427 <chapter id="locking"> 428 <title>Locking on SMP</title> 429 <para> 430 The locking of chip registers is up to the architecture that 431 defines the chip primitives. There is a chip->lock field that can be used 432 for serialization, but the generic layer does not touch it. The per-irq 433 structure is protected via desc->lock, by the generic layer. 434 </para> 435 </chapter> 436 <chapter id="structs"> 437 <title>Structures</title> 438 <para> 439 This chapter contains the autogenerated documentation of the structures which are 440 used in the generic IRQ layer. 441 </para> 442!Iinclude/linux/irq.h 443 </chapter> 444 445 <chapter id="pubfunctions"> 446 <title>Public Functions Provided</title> 447 <para> 448 This chapter contains the autogenerated documentation of the kernel API functions 449 which are exported. 450 </para> 451!Ekernel/irq/manage.c 452!Ekernel/irq/chip.c 453 </chapter> 454 455 <chapter id="intfunctions"> 456 <title>Internal Functions Provided</title> 457 <para> 458 This chapter contains the autogenerated documentation of the internal functions. 459 </para> 460!Ikernel/irq/handle.c 461!Ikernel/irq/chip.c 462 </chapter> 463 464 <chapter id="credits"> 465 <title>Credits</title> 466 <para> 467 The following people have contributed to this document: 468 <orderedlist> 469 <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> 470 <listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem> 471 </orderedlist> 472 </para> 473 </chapter> 474</book> 475