1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="LinuxKernelAPI"> 6 <bookinfo> 7 <title>The Linux Kernel API</title> 8 9 <legalnotice> 10 <para> 11 This documentation is free software; you can redistribute 12 it and/or modify it under the terms of the GNU General Public 13 License as published by the Free Software Foundation; either 14 version 2 of the License, or (at your option) any later 15 version. 16 </para> 17 18 <para> 19 This program is distributed in the hope that it will be 20 useful, but WITHOUT ANY WARRANTY; without even the implied 21 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 See the GNU General Public License for more details. 23 </para> 24 25 <para> 26 You should have received a copy of the GNU General Public 27 License along with this program; if not, write to the Free 28 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 29 MA 02111-1307 USA 30 </para> 31 32 <para> 33 For more details see the file COPYING in the source 34 distribution of Linux. 35 </para> 36 </legalnotice> 37 </bookinfo> 38 39<toc></toc> 40 41 <chapter id="adt"> 42 <title>Data Types</title> 43 <sect1><title>Doubly Linked Lists</title> 44!Iinclude/linux/list.h 45 </sect1> 46 </chapter> 47 48 <chapter id="libc"> 49 <title>Basic C Library Functions</title> 50 51 <para> 52 When writing drivers, you cannot in general use routines which are 53 from the C Library. Some of the functions have been found generally 54 useful and they are listed below. The behaviour of these functions 55 may vary slightly from those defined by ANSI, and these deviations 56 are noted in the text. 57 </para> 58 59 <sect1><title>String Conversions</title> 60!Ilib/vsprintf.c 61!Elib/vsprintf.c 62 </sect1> 63 <sect1><title>String Manipulation</title> 64<!-- All functions are exported at now 65X!Ilib/string.c 66 --> 67!Elib/string.c 68 </sect1> 69 <sect1><title>Bit Operations</title> 70!Iarch/x86/include/asm/bitops.h 71 </sect1> 72 </chapter> 73 74 <chapter id="kernel-lib"> 75 <title>Basic Kernel Library Functions</title> 76 77 <para> 78 The Linux kernel provides more basic utility functions. 79 </para> 80 81 <sect1><title>Bitmap Operations</title> 82!Elib/bitmap.c 83!Ilib/bitmap.c 84 </sect1> 85 86 <sect1><title>Command-line Parsing</title> 87!Elib/cmdline.c 88 </sect1> 89 90 <sect1 id="crc"><title>CRC Functions</title> 91!Elib/crc7.c 92!Elib/crc16.c 93!Elib/crc-itu-t.c 94!Elib/crc32.c 95!Elib/crc-ccitt.c 96 </sect1> 97 </chapter> 98 99 <chapter id="mm"> 100 <title>Memory Management in Linux</title> 101 <sect1><title>The Slab Cache</title> 102!Iinclude/linux/slab.h 103!Emm/slab.c 104 </sect1> 105 <sect1><title>User Space Memory Access</title> 106!Iarch/x86/include/asm/uaccess_32.h 107!Earch/x86/lib/usercopy_32.c 108 </sect1> 109 <sect1><title>More Memory Management Functions</title> 110!Emm/readahead.c 111!Emm/filemap.c 112!Emm/memory.c 113!Emm/vmalloc.c 114!Imm/page_alloc.c 115!Emm/mempool.c 116!Emm/dmapool.c 117!Emm/page-writeback.c 118!Emm/truncate.c 119 </sect1> 120 </chapter> 121 122 123 <chapter id="ipc"> 124 <title>Kernel IPC facilities</title> 125 126 <sect1><title>IPC utilities</title> 127!Iipc/util.c 128 </sect1> 129 </chapter> 130 131 <chapter id="kfifo"> 132 <title>FIFO Buffer</title> 133 <sect1><title>kfifo interface</title> 134!Iinclude/linux/kfifo.h 135!Ekernel/kfifo.c 136 </sect1> 137 </chapter> 138 139 <chapter id="relayfs"> 140 <title>relay interface support</title> 141 142 <para> 143 Relay interface support 144 is designed to provide an efficient mechanism for tools and 145 facilities to relay large amounts of data from kernel space to 146 user space. 147 </para> 148 149 <sect1><title>relay interface</title> 150!Ekernel/relay.c 151!Ikernel/relay.c 152 </sect1> 153 </chapter> 154 155 <chapter id="modload"> 156 <title>Module Support</title> 157 <sect1><title>Module Loading</title> 158!Ekernel/kmod.c 159 </sect1> 160 <sect1><title>Inter Module support</title> 161 <para> 162 Refer to the file kernel/module.c for more information. 163 </para> 164<!-- FIXME: Removed for now since no structured comments in source 165X!Ekernel/module.c 166--> 167 </sect1> 168 </chapter> 169 170 <chapter id="hardware"> 171 <title>Hardware Interfaces</title> 172 <sect1><title>Interrupt Handling</title> 173!Ekernel/irq/manage.c 174 </sect1> 175 176 <sect1><title>DMA Channels</title> 177!Ekernel/dma.c 178 </sect1> 179 180 <sect1><title>Resources Management</title> 181!Ikernel/resource.c 182!Ekernel/resource.c 183 </sect1> 184 185 <sect1><title>MTRR Handling</title> 186!Earch/x86/kernel/cpu/mtrr/main.c 187 </sect1> 188 189 <sect1><title>PCI Support Library</title> 190!Edrivers/pci/pci.c 191!Edrivers/pci/pci-driver.c 192!Edrivers/pci/remove.c 193!Edrivers/pci/pci-acpi.c 194!Edrivers/pci/search.c 195!Edrivers/pci/msi.c 196!Edrivers/pci/bus.c 197<!-- FIXME: Removed for now since no structured comments in source 198X!Edrivers/pci/hotplug.c 199--> 200!Edrivers/pci/probe.c 201!Edrivers/pci/rom.c 202 </sect1> 203 <sect1><title>PCI Hotplug Support Library</title> 204!Edrivers/pci/hotplug/pci_hotplug_core.c 205 </sect1> 206 <sect1><title>MCA Architecture</title> 207 <sect2><title>MCA Device Functions</title> 208 <para> 209 Refer to the file arch/x86/kernel/mca_32.c for more information. 210 </para> 211<!-- FIXME: Removed for now since no structured comments in source 212X!Earch/x86/kernel/mca_32.c 213--> 214 </sect2> 215 <sect2><title>MCA Bus DMA</title> 216!Iarch/x86/include/asm/mca_dma.h 217 </sect2> 218 </sect1> 219 </chapter> 220 221 <chapter id="firmware"> 222 <title>Firmware Interfaces</title> 223 <sect1><title>DMI Interfaces</title> 224!Edrivers/firmware/dmi_scan.c 225 </sect1> 226 <sect1><title>EDD Interfaces</title> 227!Idrivers/firmware/edd.c 228 </sect1> 229 </chapter> 230 231 <chapter id="security"> 232 <title>Security Framework</title> 233!Isecurity/security.c 234!Esecurity/inode.c 235 </chapter> 236 237 <chapter id="audit"> 238 <title>Audit Interfaces</title> 239!Ekernel/audit.c 240!Ikernel/auditsc.c 241!Ikernel/auditfilter.c 242 </chapter> 243 244 <chapter id="accounting"> 245 <title>Accounting Framework</title> 246!Ikernel/acct.c 247 </chapter> 248 249 <chapter id="blkdev"> 250 <title>Block Devices</title> 251!Eblock/blk-core.c 252!Iblock/blk-core.c 253!Eblock/blk-map.c 254!Iblock/blk-sysfs.c 255!Eblock/blk-settings.c 256!Eblock/blk-exec.c 257!Eblock/blk-barrier.c 258!Eblock/blk-tag.c 259!Iblock/blk-tag.c 260!Eblock/blk-integrity.c 261!Iblock/blktrace.c 262!Iblock/genhd.c 263!Eblock/genhd.c 264 </chapter> 265 266 <chapter id="chrdev"> 267 <title>Char devices</title> 268!Efs/char_dev.c 269 </chapter> 270 271 <chapter id="miscdev"> 272 <title>Miscellaneous Devices</title> 273!Edrivers/char/misc.c 274 </chapter> 275 276 <chapter id="clk"> 277 <title>Clock Framework</title> 278 279 <para> 280 The clock framework defines programming interfaces to support 281 software management of the system clock tree. 282 This framework is widely used with System-On-Chip (SOC) platforms 283 to support power management and various devices which may need 284 custom clock rates. 285 Note that these "clocks" don't relate to timekeeping or real 286 time clocks (RTCs), each of which have separate frameworks. 287 These <structname>struct clk</structname> instances may be used 288 to manage for example a 96 MHz signal that is used to shift bits 289 into and out of peripherals or busses, or otherwise trigger 290 synchronous state machine transitions in system hardware. 291 </para> 292 293 <para> 294 Power management is supported by explicit software clock gating: 295 unused clocks are disabled, so the system doesn't waste power 296 changing the state of transistors that aren't in active use. 297 On some systems this may be backed by hardware clock gating, 298 where clocks are gated without being disabled in software. 299 Sections of chips that are powered but not clocked may be able 300 to retain their last state. 301 This low power state is often called a <emphasis>retention 302 mode</emphasis>. 303 This mode still incurs leakage currents, especially with finer 304 circuit geometries, but for CMOS circuits power is mostly used 305 by clocked state changes. 306 </para> 307 308 <para> 309 Power-aware drivers only enable their clocks when the device 310 they manage is in active use. Also, system sleep states often 311 differ according to which clock domains are active: while a 312 "standby" state may allow wakeup from several active domains, a 313 "mem" (suspend-to-RAM) state may require a more wholesale shutdown 314 of clocks derived from higher speed PLLs and oscillators, limiting 315 the number of possible wakeup event sources. A driver's suspend 316 method may need to be aware of system-specific clock constraints 317 on the target sleep state. 318 </para> 319 320 <para> 321 Some platforms support programmable clock generators. These 322 can be used by external chips of various kinds, such as other 323 CPUs, multimedia codecs, and devices with strict requirements 324 for interface clocking. 325 </para> 326 327!Iinclude/linux/clk.h 328 </chapter> 329 330</book> 331