• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * arch/alpha/lib/ev6-csum_ipv6_magic.S
3 * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
4 *
5 * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
6 *                                struct in6_addr *daddr,
7 *                                __u32 len,
8 *                                unsigned short proto,
9 *                                unsigned int csum);
10 *
11 * Much of the information about 21264 scheduling/coding comes from:
12 *	Compiler Writer's Guide for the Alpha 21264
13 *	abbreviated as 'CWG' in other comments here
14 *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
15 * Scheduling notation:
16 *	E	- either cluster
17 *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
18 *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
19 * Try not to change the actual algorithm if possible for consistency.
20 * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
21 *
22 * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
23 *                                struct in6_addr *daddr,
24 *                                __u32 len,
25 *                                unsigned short proto,
26 *                                unsigned int csum);
27 *
28 * Swap <proto> (takes form 0xaabb)
29 * Then shift it left by 48, so result is:
30 *	0xbbaa0000 00000000
31 * Then turn it back into a sign extended 32-bit item
32 *	0xbbaa0000
33 *
34 * Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence
35 * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence)
36 * Assume input takes form 0xAABBCCDD
37 *
38 * Finally, original 'folding' approach is to split the long into 4 unsigned shorts
39 * add 4 ushorts, resulting in ushort/carry
40 * add carry bits + ushort --> ushort
41 * add carry bits + ushort --> ushort (in case the carry results in an overflow)
42 * Truncate to a ushort.  (took 13 instructions)
43 * From doing some testing, using the approach in checksum.c:from64to16()
44 * results in the same outcome:
45 * split into 2 uints, add those, generating a ulong
46 * add the 3 low ushorts together, generating a uint
47 * a final add of the 2 lower ushorts
48 * truncating the result.
49 *
50 * Misalignment handling added by Ivan Kokshaysky <ink@jurassic.park.msu.ru>
51 * The cost is 16 instructions (~8 cycles), including two extra loads which
52 * may cause additional delay in rare cases (load-load replay traps).
53 */
54
55	.globl csum_ipv6_magic
56	.align 4
57	.ent csum_ipv6_magic
58	.frame $30,0,$26,0
59csum_ipv6_magic:
60	.prologue 0
61
62	ldq_u	$0,0($16)	# L : Latency: 3
63	inslh	$18,7,$4	# U : 0000000000AABBCC
64	ldq_u	$1,8($16)	# L : Latency: 3
65	sll	$19,8,$7	# U : U L U L : 0x00000000 00aabb00
66
67	and	$16,7,$6	# E : src misalignment
68	ldq_u	$5,15($16)	# L : Latency: 3
69	zapnot	$20,15,$20	# U : zero extend incoming csum
70	ldq_u	$2,0($17)	# L : U L U L : Latency: 3
71
72	extql	$0,$6,$0	# U :
73	extqh	$1,$6,$22	# U :
74	ldq_u	$3,8($17)	# L : Latency: 3
75	sll	$19,24,$19	# U : U U L U : 0x000000aa bb000000
76
77	cmoveq	$6,$31,$22	# E : src aligned?
78	ldq_u	$23,15($17)	# L : Latency: 3
79	inswl	$18,3,$18	# U : 000000CCDD000000
80	addl	$19,$7,$19	# E : U L U L : <sign bits>bbaabb00
81
82	or	$0,$22,$0	# E : 1st src word complete
83	extql	$1,$6,$1	# U :
84	or	$18,$4,$18	# E : 000000CCDDAABBCC
85	extqh	$5,$6,$5	# U : L U L U
86
87	and	$17,7,$6	# E : dst misalignment
88	extql	$2,$6,$2	# U :
89	or	$1,$5,$1	# E : 2nd src word complete
90	extqh	$3,$6,$22	# U : L U L U :
91
92	cmoveq	$6,$31,$22	# E : dst aligned?
93	extql	$3,$6,$3	# U :
94	addq	$20,$0,$20	# E : begin summing the words
95	extqh	$23,$6,$23	# U : L U L U :
96
97	srl	$18,16,$4	# U : 0000000000CCDDAA
98	or	$2,$22,$2	# E : 1st dst word complete
99	zap	$19,0x3,$19	# U : <sign bits>bbaa0000
100	or	$3,$23,$3	# E : U L U L : 2nd dst word complete
101
102	cmpult	$20,$0,$0	# E :
103	addq	$20,$1,$20	# E :
104	zapnot	$18,0xa,$18	# U : 00000000DD00BB00
105	zap	$4,0xa,$4	# U : U U L L : 0000000000CC00AA
106
107	or	$18,$4,$18	# E : 00000000DDCCBBAA
108	nop			# E :
109	cmpult	$20,$1,$1	# E :
110	addq	$20,$2,$20	# E : U L U L
111
112	cmpult	$20,$2,$2	# E :
113	addq	$20,$3,$20	# E :
114	cmpult	$20,$3,$3	# E : (1 cycle stall on $20)
115	addq	$20,$18,$20	# E : U L U L (1 cycle stall on $20)
116
117	cmpult	$20,$18,$18	# E :
118	addq	$20,$19,$20	# E : (1 cycle stall on $20)
119	addq	$0,$1,$0	# E : merge the carries back into the csum
120	addq	$2,$3,$2	# E :
121
122	cmpult	$20,$19,$19	# E :
123	addq	$18,$19,$18	# E : (1 cycle stall on $19)
124	addq	$0,$2,$0	# E :
125	addq	$20,$18,$20	# E : U L U L :
126		/* (1 cycle stall on $18, 2 cycles on $20) */
127
128	addq	$0,$20,$0	# E :
129	zapnot	$0,15,$1	# U : Start folding output (1 cycle stall on $0)
130	nop			# E :
131	srl	$0,32,$0	# U : U L U L : (1 cycle stall on $0)
132
133	addq	$1,$0,$1	# E : Finished generating ulong
134	extwl	$1,2,$2		# U : ushort[1] (1 cycle stall on $1)
135	zapnot	$1,3,$0		# U : ushort[0] (1 cycle stall on $1)
136	extwl	$1,4,$1		# U : ushort[2] (1 cycle stall on $1)
137
138	addq	$0,$2,$0	# E
139	addq	$0,$1,$3	# E : Finished generating uint
140		/* (1 cycle stall on $0) */
141	extwl	$3,2,$1		# U : ushort[1] (1 cycle stall on $3)
142	nop			# E : L U L U
143
144	addq	$1,$3,$0	# E : Final carry
145	not	$0,$4		# E : complement (1 cycle stall on $0)
146	zapnot	$4,3,$0		# U : clear upper garbage bits
147		/* (1 cycle stall on $4) */
148	ret			# L0 : L U L U
149
150	.end csum_ipv6_magic
151