• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  arch/arm/common/dmabounce.c
3  *
4  *  Special dma_{map/unmap/dma_sync}_* routines for systems that have
5  *  limited DMA windows. These functions utilize bounce buffers to
6  *  copy data to/from buffers located outside the DMA region. This
7  *  only works for systems in which DMA memory is at the bottom of
8  *  RAM, the remainder of memory is at the top and the DMA memory
9  *  can be marked as ZONE_DMA. Anything beyond that such as discontiguous
10  *  DMA windows will require custom implementations that reserve memory
11  *  areas at early bootup.
12  *
13  *  Original version by Brad Parker (brad@heeltoe.com)
14  *  Re-written by Christopher Hoover <ch@murgatroid.com>
15  *  Made generic by Deepak Saxena <dsaxena@plexity.net>
16  *
17  *  Copyright (C) 2002 Hewlett Packard Company.
18  *  Copyright (C) 2004 MontaVista Software, Inc.
19  *
20  *  This program is free software; you can redistribute it and/or
21  *  modify it under the terms of the GNU General Public License
22  *  version 2 as published by the Free Software Foundation.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/list.h>
32 #include <linux/scatterlist.h>
33 
34 #include <asm/cacheflush.h>
35 
36 #undef STATS
37 
38 #ifdef STATS
39 #define DO_STATS(X) do { X ; } while (0)
40 #else
41 #define DO_STATS(X) do { } while (0)
42 #endif
43 
44 /* ************************************************** */
45 
46 struct safe_buffer {
47 	struct list_head node;
48 
49 	/* original request */
50 	void		*ptr;
51 	size_t		size;
52 	int		direction;
53 
54 	/* safe buffer info */
55 	struct dmabounce_pool *pool;
56 	void		*safe;
57 	dma_addr_t	safe_dma_addr;
58 };
59 
60 struct dmabounce_pool {
61 	unsigned long	size;
62 	struct dma_pool	*pool;
63 #ifdef STATS
64 	unsigned long	allocs;
65 #endif
66 };
67 
68 struct dmabounce_device_info {
69 	struct device *dev;
70 	struct list_head safe_buffers;
71 #ifdef STATS
72 	unsigned long total_allocs;
73 	unsigned long map_op_count;
74 	unsigned long bounce_count;
75 	int attr_res;
76 #endif
77 	struct dmabounce_pool	small;
78 	struct dmabounce_pool	large;
79 
80 	rwlock_t lock;
81 };
82 
83 #ifdef STATS
dmabounce_show(struct device * dev,struct device_attribute * attr,char * buf)84 static ssize_t dmabounce_show(struct device *dev, struct device_attribute *attr,
85 			      char *buf)
86 {
87 	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
88 	return sprintf(buf, "%lu %lu %lu %lu %lu %lu\n",
89 		device_info->small.allocs,
90 		device_info->large.allocs,
91 		device_info->total_allocs - device_info->small.allocs -
92 			device_info->large.allocs,
93 		device_info->total_allocs,
94 		device_info->map_op_count,
95 		device_info->bounce_count);
96 }
97 
98 static DEVICE_ATTR(dmabounce_stats, 0400, dmabounce_show, NULL);
99 #endif
100 
101 
102 /* allocate a 'safe' buffer and keep track of it */
103 static inline struct safe_buffer *
alloc_safe_buffer(struct dmabounce_device_info * device_info,void * ptr,size_t size,enum dma_data_direction dir)104 alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
105 		  size_t size, enum dma_data_direction dir)
106 {
107 	struct safe_buffer *buf;
108 	struct dmabounce_pool *pool;
109 	struct device *dev = device_info->dev;
110 	unsigned long flags;
111 
112 	dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
113 		__func__, ptr, size, dir);
114 
115 	if (size <= device_info->small.size) {
116 		pool = &device_info->small;
117 	} else if (size <= device_info->large.size) {
118 		pool = &device_info->large;
119 	} else {
120 		pool = NULL;
121 	}
122 
123 	buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
124 	if (buf == NULL) {
125 		dev_warn(dev, "%s: kmalloc failed\n", __func__);
126 		return NULL;
127 	}
128 
129 	buf->ptr = ptr;
130 	buf->size = size;
131 	buf->direction = dir;
132 	buf->pool = pool;
133 
134 	if (pool) {
135 		buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
136 					   &buf->safe_dma_addr);
137 	} else {
138 		buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
139 					       GFP_ATOMIC);
140 	}
141 
142 	if (buf->safe == NULL) {
143 		dev_warn(dev,
144 			 "%s: could not alloc dma memory (size=%d)\n",
145 			 __func__, size);
146 		kfree(buf);
147 		return NULL;
148 	}
149 
150 #ifdef STATS
151 	if (pool)
152 		pool->allocs++;
153 	device_info->total_allocs++;
154 #endif
155 
156 	write_lock_irqsave(&device_info->lock, flags);
157 	list_add(&buf->node, &device_info->safe_buffers);
158 	write_unlock_irqrestore(&device_info->lock, flags);
159 
160 	return buf;
161 }
162 
163 /* determine if a buffer is from our "safe" pool */
164 static inline struct safe_buffer *
find_safe_buffer(struct dmabounce_device_info * device_info,dma_addr_t safe_dma_addr)165 find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
166 {
167 	struct safe_buffer *b, *rb = NULL;
168 	unsigned long flags;
169 
170 	read_lock_irqsave(&device_info->lock, flags);
171 
172 	list_for_each_entry(b, &device_info->safe_buffers, node)
173 		if (b->safe_dma_addr == safe_dma_addr) {
174 			rb = b;
175 			break;
176 		}
177 
178 	read_unlock_irqrestore(&device_info->lock, flags);
179 	return rb;
180 }
181 
182 static inline void
free_safe_buffer(struct dmabounce_device_info * device_info,struct safe_buffer * buf)183 free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
184 {
185 	unsigned long flags;
186 
187 	dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
188 
189 	write_lock_irqsave(&device_info->lock, flags);
190 
191 	list_del(&buf->node);
192 
193 	write_unlock_irqrestore(&device_info->lock, flags);
194 
195 	if (buf->pool)
196 		dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
197 	else
198 		dma_free_coherent(device_info->dev, buf->size, buf->safe,
199 				    buf->safe_dma_addr);
200 
201 	kfree(buf);
202 }
203 
204 /* ************************************************** */
205 
find_safe_buffer_dev(struct device * dev,dma_addr_t dma_addr,const char * where)206 static struct safe_buffer *find_safe_buffer_dev(struct device *dev,
207 		dma_addr_t dma_addr, const char *where)
208 {
209 	if (!dev || !dev->archdata.dmabounce)
210 		return NULL;
211 	if (dma_mapping_error(dev, dma_addr)) {
212 		if (dev)
213 			dev_err(dev, "Trying to %s invalid mapping\n", where);
214 		else
215 			pr_err("unknown device: Trying to %s invalid mapping\n", where);
216 		return NULL;
217 	}
218 	return find_safe_buffer(dev->archdata.dmabounce, dma_addr);
219 }
220 
map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)221 static inline dma_addr_t map_single(struct device *dev, void *ptr, size_t size,
222 		enum dma_data_direction dir)
223 {
224 	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
225 	dma_addr_t dma_addr;
226 	int needs_bounce = 0;
227 
228 	if (device_info)
229 		DO_STATS ( device_info->map_op_count++ );
230 
231 	dma_addr = virt_to_dma(dev, ptr);
232 
233 	if (dev->dma_mask) {
234 		unsigned long mask = *dev->dma_mask;
235 		unsigned long limit;
236 
237 		limit = (mask + 1) & ~mask;
238 		if (limit && size > limit) {
239 			dev_err(dev, "DMA mapping too big (requested %#x "
240 				"mask %#Lx)\n", size, *dev->dma_mask);
241 			return ~0;
242 		}
243 
244 		/*
245 		 * Figure out if we need to bounce from the DMA mask.
246 		 */
247 		needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
248 	}
249 
250 	if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
251 		struct safe_buffer *buf;
252 
253 		buf = alloc_safe_buffer(device_info, ptr, size, dir);
254 		if (buf == 0) {
255 			dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
256 			       __func__, ptr);
257 			return 0;
258 		}
259 
260 		dev_dbg(dev,
261 			"%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
262 			__func__, buf->ptr, virt_to_dma(dev, buf->ptr),
263 			buf->safe, buf->safe_dma_addr);
264 
265 		if ((dir == DMA_TO_DEVICE) ||
266 		    (dir == DMA_BIDIRECTIONAL)) {
267 			dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
268 				__func__, ptr, buf->safe, size);
269 			memcpy(buf->safe, ptr, size);
270 		}
271 		ptr = buf->safe;
272 
273 		dma_addr = buf->safe_dma_addr;
274 	} else {
275 		/*
276 		 * We don't need to sync the DMA buffer since
277 		 * it was allocated via the coherent allocators.
278 		 */
279 		dma_cache_maint(ptr, size, dir);
280 	}
281 
282 	return dma_addr;
283 }
284 
unmap_single(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir)285 static inline void unmap_single(struct device *dev, dma_addr_t dma_addr,
286 		size_t size, enum dma_data_direction dir)
287 {
288 	struct safe_buffer *buf = find_safe_buffer_dev(dev, dma_addr, "unmap");
289 
290 	if (buf) {
291 		BUG_ON(buf->size != size);
292 		BUG_ON(buf->direction != dir);
293 
294 		dev_dbg(dev,
295 			"%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
296 			__func__, buf->ptr, virt_to_dma(dev, buf->ptr),
297 			buf->safe, buf->safe_dma_addr);
298 
299 		DO_STATS(dev->archdata.dmabounce->bounce_count++);
300 
301 		if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
302 			void *ptr = buf->ptr;
303 
304 			dev_dbg(dev,
305 				"%s: copy back safe %p to unsafe %p size %d\n",
306 				__func__, buf->safe, ptr, size);
307 			memcpy(ptr, buf->safe, size);
308 
309 			/*
310 			 * DMA buffers must have the same cache properties
311 			 * as if they were really used for DMA - which means
312 			 * data must be written back to RAM.  Note that
313 			 * we don't use dmac_flush_range() here for the
314 			 * bidirectional case because we know the cache
315 			 * lines will be coherent with the data written.
316 			 */
317 			dmac_clean_range(ptr, ptr + size);
318 			outer_clean_range(__pa(ptr), __pa(ptr) + size);
319 		}
320 		free_safe_buffer(dev->archdata.dmabounce, buf);
321 	}
322 }
323 
324 /* ************************************************** */
325 
326 /*
327  * see if a buffer address is in an 'unsafe' range.  if it is
328  * allocate a 'safe' buffer and copy the unsafe buffer into it.
329  * substitute the safe buffer for the unsafe one.
330  * (basically move the buffer from an unsafe area to a safe one)
331  */
dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir)332 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
333 		enum dma_data_direction dir)
334 {
335 	dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
336 		__func__, ptr, size, dir);
337 
338 	BUG_ON(!valid_dma_direction(dir));
339 
340 	return map_single(dev, ptr, size, dir);
341 }
342 EXPORT_SYMBOL(dma_map_single);
343 
dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir)344 dma_addr_t dma_map_page(struct device *dev, struct page *page,
345 		unsigned long offset, size_t size, enum dma_data_direction dir)
346 {
347 	dev_dbg(dev, "%s(page=%p,off=%#lx,size=%zx,dir=%x)\n",
348 		__func__, page, offset, size, dir);
349 
350 	BUG_ON(!valid_dma_direction(dir));
351 
352 	return map_single(dev, page_address(page) + offset, size, dir);
353 }
354 EXPORT_SYMBOL(dma_map_page);
355 
356 /*
357  * see if a mapped address was really a "safe" buffer and if so, copy
358  * the data from the safe buffer back to the unsafe buffer and free up
359  * the safe buffer.  (basically return things back to the way they
360  * should be)
361  */
362 
dma_unmap_single(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir)363 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
364 		enum dma_data_direction dir)
365 {
366 	dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
367 		__func__, (void *) dma_addr, size, dir);
368 
369 	unmap_single(dev, dma_addr, size, dir);
370 }
371 EXPORT_SYMBOL(dma_unmap_single);
372 
dmabounce_sync_for_cpu(struct device * dev,dma_addr_t addr,unsigned long off,size_t sz,enum dma_data_direction dir)373 int dmabounce_sync_for_cpu(struct device *dev, dma_addr_t addr,
374 		unsigned long off, size_t sz, enum dma_data_direction dir)
375 {
376 	struct safe_buffer *buf;
377 
378 	dev_dbg(dev, "%s(dma=%#x,off=%#lx,sz=%zx,dir=%x)\n",
379 		__func__, addr, off, sz, dir);
380 
381 	buf = find_safe_buffer_dev(dev, addr, __func__);
382 	if (!buf)
383 		return 1;
384 
385 	BUG_ON(buf->direction != dir);
386 
387 	dev_dbg(dev, "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
388 		__func__, buf->ptr, virt_to_dma(dev, buf->ptr),
389 		buf->safe, buf->safe_dma_addr);
390 
391 	DO_STATS(dev->archdata.dmabounce->bounce_count++);
392 
393 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
394 		dev_dbg(dev, "%s: copy back safe %p to unsafe %p size %d\n",
395 			__func__, buf->safe + off, buf->ptr + off, sz);
396 		memcpy(buf->ptr + off, buf->safe + off, sz);
397 	}
398 	return 0;
399 }
400 EXPORT_SYMBOL(dmabounce_sync_for_cpu);
401 
dmabounce_sync_for_device(struct device * dev,dma_addr_t addr,unsigned long off,size_t sz,enum dma_data_direction dir)402 int dmabounce_sync_for_device(struct device *dev, dma_addr_t addr,
403 		unsigned long off, size_t sz, enum dma_data_direction dir)
404 {
405 	struct safe_buffer *buf;
406 
407 	dev_dbg(dev, "%s(dma=%#x,off=%#lx,sz=%zx,dir=%x)\n",
408 		__func__, addr, off, sz, dir);
409 
410 	buf = find_safe_buffer_dev(dev, addr, __func__);
411 	if (!buf)
412 		return 1;
413 
414 	BUG_ON(buf->direction != dir);
415 
416 	dev_dbg(dev, "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
417 		__func__, buf->ptr, virt_to_dma(dev, buf->ptr),
418 		buf->safe, buf->safe_dma_addr);
419 
420 	DO_STATS(dev->archdata.dmabounce->bounce_count++);
421 
422 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) {
423 		dev_dbg(dev, "%s: copy out unsafe %p to safe %p, size %d\n",
424 			__func__,buf->ptr + off, buf->safe + off, sz);
425 		memcpy(buf->safe + off, buf->ptr + off, sz);
426 	}
427 	return 0;
428 }
429 EXPORT_SYMBOL(dmabounce_sync_for_device);
430 
dmabounce_init_pool(struct dmabounce_pool * pool,struct device * dev,const char * name,unsigned long size)431 static int dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev,
432 		const char *name, unsigned long size)
433 {
434 	pool->size = size;
435 	DO_STATS(pool->allocs = 0);
436 	pool->pool = dma_pool_create(name, dev, size,
437 				     0 /* byte alignment */,
438 				     0 /* no page-crossing issues */);
439 
440 	return pool->pool ? 0 : -ENOMEM;
441 }
442 
dmabounce_register_dev(struct device * dev,unsigned long small_buffer_size,unsigned long large_buffer_size)443 int dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
444 		unsigned long large_buffer_size)
445 {
446 	struct dmabounce_device_info *device_info;
447 	int ret;
448 
449 	device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
450 	if (!device_info) {
451 		dev_err(dev,
452 			"Could not allocated dmabounce_device_info\n");
453 		return -ENOMEM;
454 	}
455 
456 	ret = dmabounce_init_pool(&device_info->small, dev,
457 				  "small_dmabounce_pool", small_buffer_size);
458 	if (ret) {
459 		dev_err(dev,
460 			"dmabounce: could not allocate DMA pool for %ld byte objects\n",
461 			small_buffer_size);
462 		goto err_free;
463 	}
464 
465 	if (large_buffer_size) {
466 		ret = dmabounce_init_pool(&device_info->large, dev,
467 					  "large_dmabounce_pool",
468 					  large_buffer_size);
469 		if (ret) {
470 			dev_err(dev,
471 				"dmabounce: could not allocate DMA pool for %ld byte objects\n",
472 				large_buffer_size);
473 			goto err_destroy;
474 		}
475 	}
476 
477 	device_info->dev = dev;
478 	INIT_LIST_HEAD(&device_info->safe_buffers);
479 	rwlock_init(&device_info->lock);
480 
481 #ifdef STATS
482 	device_info->total_allocs = 0;
483 	device_info->map_op_count = 0;
484 	device_info->bounce_count = 0;
485 	device_info->attr_res = device_create_file(dev, &dev_attr_dmabounce_stats);
486 #endif
487 
488 	dev->archdata.dmabounce = device_info;
489 
490 	dev_info(dev, "dmabounce: registered device\n");
491 
492 	return 0;
493 
494  err_destroy:
495 	dma_pool_destroy(device_info->small.pool);
496  err_free:
497 	kfree(device_info);
498 	return ret;
499 }
500 EXPORT_SYMBOL(dmabounce_register_dev);
501 
dmabounce_unregister_dev(struct device * dev)502 void dmabounce_unregister_dev(struct device *dev)
503 {
504 	struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
505 
506 	dev->archdata.dmabounce = NULL;
507 
508 	if (!device_info) {
509 		dev_warn(dev,
510 			 "Never registered with dmabounce but attempting"
511 			 "to unregister!\n");
512 		return;
513 	}
514 
515 	if (!list_empty(&device_info->safe_buffers)) {
516 		dev_err(dev,
517 			"Removing from dmabounce with pending buffers!\n");
518 		BUG();
519 	}
520 
521 	if (device_info->small.pool)
522 		dma_pool_destroy(device_info->small.pool);
523 	if (device_info->large.pool)
524 		dma_pool_destroy(device_info->large.pool);
525 
526 #ifdef STATS
527 	if (device_info->attr_res == 0)
528 		device_remove_file(dev, &dev_attr_dmabounce_stats);
529 #endif
530 
531 	kfree(device_info);
532 
533 	dev_info(dev, "dmabounce: device unregistered\n");
534 }
535 EXPORT_SYMBOL(dmabounce_unregister_dev);
536 
537 MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
538 MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
539 MODULE_LICENSE("GPL");
540