1 /*
2 * linux/arch/arm/common/sa1111.c
3 *
4 * SA1111 support
5 *
6 * Original code by John Dorsey
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This file contains all generic SA1111 support.
13 *
14 * All initialization functions provided here are intended to be called
15 * from machine specific code with proper arguments when required.
16 */
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/ioport.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/clk.h>
28 #include <linux/io.h>
29
30 #include <mach/hardware.h>
31 #include <asm/mach-types.h>
32 #include <asm/irq.h>
33 #include <asm/mach/irq.h>
34 #include <asm/sizes.h>
35
36 #include <asm/hardware/sa1111.h>
37
38 extern void __init sa1110_mb_enable(void);
39
40 /*
41 * We keep the following data for the overall SA1111. Note that the
42 * struct device and struct resource are "fake"; they should be supplied
43 * by the bus above us. However, in the interests of getting all SA1111
44 * drivers converted over to the device model, we provide this as an
45 * anchor point for all the other drivers.
46 */
47 struct sa1111 {
48 struct device *dev;
49 struct clk *clk;
50 unsigned long phys;
51 int irq;
52 spinlock_t lock;
53 void __iomem *base;
54 #ifdef CONFIG_PM
55 void *saved_state;
56 #endif
57 };
58
59 /*
60 * We _really_ need to eliminate this. Its only users
61 * are the PWM and DMA checking code.
62 */
63 static struct sa1111 *g_sa1111;
64
65 struct sa1111_dev_info {
66 unsigned long offset;
67 unsigned long skpcr_mask;
68 unsigned int devid;
69 unsigned int irq[6];
70 };
71
72 static struct sa1111_dev_info sa1111_devices[] = {
73 {
74 .offset = SA1111_USB,
75 .skpcr_mask = SKPCR_UCLKEN,
76 .devid = SA1111_DEVID_USB,
77 .irq = {
78 IRQ_USBPWR,
79 IRQ_HCIM,
80 IRQ_HCIBUFFACC,
81 IRQ_HCIRMTWKP,
82 IRQ_NHCIMFCIR,
83 IRQ_USB_PORT_RESUME
84 },
85 },
86 {
87 .offset = 0x0600,
88 .skpcr_mask = SKPCR_I2SCLKEN | SKPCR_L3CLKEN,
89 .devid = SA1111_DEVID_SAC,
90 .irq = {
91 AUDXMTDMADONEA,
92 AUDXMTDMADONEB,
93 AUDRCVDMADONEA,
94 AUDRCVDMADONEB
95 },
96 },
97 {
98 .offset = 0x0800,
99 .skpcr_mask = SKPCR_SCLKEN,
100 .devid = SA1111_DEVID_SSP,
101 },
102 {
103 .offset = SA1111_KBD,
104 .skpcr_mask = SKPCR_PTCLKEN,
105 .devid = SA1111_DEVID_PS2,
106 .irq = {
107 IRQ_TPRXINT,
108 IRQ_TPTXINT
109 },
110 },
111 {
112 .offset = SA1111_MSE,
113 .skpcr_mask = SKPCR_PMCLKEN,
114 .devid = SA1111_DEVID_PS2,
115 .irq = {
116 IRQ_MSRXINT,
117 IRQ_MSTXINT
118 },
119 },
120 {
121 .offset = 0x1800,
122 .skpcr_mask = 0,
123 .devid = SA1111_DEVID_PCMCIA,
124 .irq = {
125 IRQ_S0_READY_NINT,
126 IRQ_S0_CD_VALID,
127 IRQ_S0_BVD1_STSCHG,
128 IRQ_S1_READY_NINT,
129 IRQ_S1_CD_VALID,
130 IRQ_S1_BVD1_STSCHG,
131 },
132 },
133 };
134
sa1111_adjust_zones(int node,unsigned long * size,unsigned long * holes)135 void __init sa1111_adjust_zones(int node, unsigned long *size, unsigned long *holes)
136 {
137 unsigned int sz = SZ_1M >> PAGE_SHIFT;
138
139 if (node != 0)
140 sz = 0;
141
142 size[1] = size[0] - sz;
143 size[0] = sz;
144 }
145
146 /*
147 * SA1111 interrupt support. Since clearing an IRQ while there are
148 * active IRQs causes the interrupt output to pulse, the upper levels
149 * will call us again if there are more interrupts to process.
150 */
151 static void
sa1111_irq_handler(unsigned int irq,struct irq_desc * desc)152 sa1111_irq_handler(unsigned int irq, struct irq_desc *desc)
153 {
154 unsigned int stat0, stat1, i;
155 void __iomem *base = get_irq_data(irq);
156
157 stat0 = sa1111_readl(base + SA1111_INTSTATCLR0);
158 stat1 = sa1111_readl(base + SA1111_INTSTATCLR1);
159
160 sa1111_writel(stat0, base + SA1111_INTSTATCLR0);
161
162 desc->chip->ack(irq);
163
164 sa1111_writel(stat1, base + SA1111_INTSTATCLR1);
165
166 if (stat0 == 0 && stat1 == 0) {
167 do_bad_IRQ(irq, desc);
168 return;
169 }
170
171 for (i = IRQ_SA1111_START; stat0; i++, stat0 >>= 1)
172 if (stat0 & 1)
173 handle_edge_irq(i, irq_desc + i);
174
175 for (i = IRQ_SA1111_START + 32; stat1; i++, stat1 >>= 1)
176 if (stat1 & 1)
177 handle_edge_irq(i, irq_desc + i);
178
179 /* For level-based interrupts */
180 desc->chip->unmask(irq);
181 }
182
183 #define SA1111_IRQMASK_LO(x) (1 << (x - IRQ_SA1111_START))
184 #define SA1111_IRQMASK_HI(x) (1 << (x - IRQ_SA1111_START - 32))
185
sa1111_ack_irq(unsigned int irq)186 static void sa1111_ack_irq(unsigned int irq)
187 {
188 }
189
sa1111_mask_lowirq(unsigned int irq)190 static void sa1111_mask_lowirq(unsigned int irq)
191 {
192 void __iomem *mapbase = get_irq_chip_data(irq);
193 unsigned long ie0;
194
195 ie0 = sa1111_readl(mapbase + SA1111_INTEN0);
196 ie0 &= ~SA1111_IRQMASK_LO(irq);
197 writel(ie0, mapbase + SA1111_INTEN0);
198 }
199
sa1111_unmask_lowirq(unsigned int irq)200 static void sa1111_unmask_lowirq(unsigned int irq)
201 {
202 void __iomem *mapbase = get_irq_chip_data(irq);
203 unsigned long ie0;
204
205 ie0 = sa1111_readl(mapbase + SA1111_INTEN0);
206 ie0 |= SA1111_IRQMASK_LO(irq);
207 sa1111_writel(ie0, mapbase + SA1111_INTEN0);
208 }
209
210 /*
211 * Attempt to re-trigger the interrupt. The SA1111 contains a register
212 * (INTSET) which claims to do this. However, in practice no amount of
213 * manipulation of INTEN and INTSET guarantees that the interrupt will
214 * be triggered. In fact, its very difficult, if not impossible to get
215 * INTSET to re-trigger the interrupt.
216 */
sa1111_retrigger_lowirq(unsigned int irq)217 static int sa1111_retrigger_lowirq(unsigned int irq)
218 {
219 unsigned int mask = SA1111_IRQMASK_LO(irq);
220 void __iomem *mapbase = get_irq_chip_data(irq);
221 unsigned long ip0;
222 int i;
223
224 ip0 = sa1111_readl(mapbase + SA1111_INTPOL0);
225 for (i = 0; i < 8; i++) {
226 sa1111_writel(ip0 ^ mask, mapbase + SA1111_INTPOL0);
227 sa1111_writel(ip0, mapbase + SA1111_INTPOL0);
228 if (sa1111_readl(mapbase + SA1111_INTSTATCLR1) & mask)
229 break;
230 }
231
232 if (i == 8)
233 printk(KERN_ERR "Danger Will Robinson: failed to "
234 "re-trigger IRQ%d\n", irq);
235 return i == 8 ? -1 : 0;
236 }
237
sa1111_type_lowirq(unsigned int irq,unsigned int flags)238 static int sa1111_type_lowirq(unsigned int irq, unsigned int flags)
239 {
240 unsigned int mask = SA1111_IRQMASK_LO(irq);
241 void __iomem *mapbase = get_irq_chip_data(irq);
242 unsigned long ip0;
243
244 if (flags == IRQ_TYPE_PROBE)
245 return 0;
246
247 if ((!(flags & IRQ_TYPE_EDGE_RISING) ^ !(flags & IRQ_TYPE_EDGE_FALLING)) == 0)
248 return -EINVAL;
249
250 ip0 = sa1111_readl(mapbase + SA1111_INTPOL0);
251 if (flags & IRQ_TYPE_EDGE_RISING)
252 ip0 &= ~mask;
253 else
254 ip0 |= mask;
255 sa1111_writel(ip0, mapbase + SA1111_INTPOL0);
256 sa1111_writel(ip0, mapbase + SA1111_WAKEPOL0);
257
258 return 0;
259 }
260
sa1111_wake_lowirq(unsigned int irq,unsigned int on)261 static int sa1111_wake_lowirq(unsigned int irq, unsigned int on)
262 {
263 unsigned int mask = SA1111_IRQMASK_LO(irq);
264 void __iomem *mapbase = get_irq_chip_data(irq);
265 unsigned long we0;
266
267 we0 = sa1111_readl(mapbase + SA1111_WAKEEN0);
268 if (on)
269 we0 |= mask;
270 else
271 we0 &= ~mask;
272 sa1111_writel(we0, mapbase + SA1111_WAKEEN0);
273
274 return 0;
275 }
276
277 static struct irq_chip sa1111_low_chip = {
278 .name = "SA1111-l",
279 .ack = sa1111_ack_irq,
280 .mask = sa1111_mask_lowirq,
281 .unmask = sa1111_unmask_lowirq,
282 .retrigger = sa1111_retrigger_lowirq,
283 .set_type = sa1111_type_lowirq,
284 .set_wake = sa1111_wake_lowirq,
285 };
286
sa1111_mask_highirq(unsigned int irq)287 static void sa1111_mask_highirq(unsigned int irq)
288 {
289 void __iomem *mapbase = get_irq_chip_data(irq);
290 unsigned long ie1;
291
292 ie1 = sa1111_readl(mapbase + SA1111_INTEN1);
293 ie1 &= ~SA1111_IRQMASK_HI(irq);
294 sa1111_writel(ie1, mapbase + SA1111_INTEN1);
295 }
296
sa1111_unmask_highirq(unsigned int irq)297 static void sa1111_unmask_highirq(unsigned int irq)
298 {
299 void __iomem *mapbase = get_irq_chip_data(irq);
300 unsigned long ie1;
301
302 ie1 = sa1111_readl(mapbase + SA1111_INTEN1);
303 ie1 |= SA1111_IRQMASK_HI(irq);
304 sa1111_writel(ie1, mapbase + SA1111_INTEN1);
305 }
306
307 /*
308 * Attempt to re-trigger the interrupt. The SA1111 contains a register
309 * (INTSET) which claims to do this. However, in practice no amount of
310 * manipulation of INTEN and INTSET guarantees that the interrupt will
311 * be triggered. In fact, its very difficult, if not impossible to get
312 * INTSET to re-trigger the interrupt.
313 */
sa1111_retrigger_highirq(unsigned int irq)314 static int sa1111_retrigger_highirq(unsigned int irq)
315 {
316 unsigned int mask = SA1111_IRQMASK_HI(irq);
317 void __iomem *mapbase = get_irq_chip_data(irq);
318 unsigned long ip1;
319 int i;
320
321 ip1 = sa1111_readl(mapbase + SA1111_INTPOL1);
322 for (i = 0; i < 8; i++) {
323 sa1111_writel(ip1 ^ mask, mapbase + SA1111_INTPOL1);
324 sa1111_writel(ip1, mapbase + SA1111_INTPOL1);
325 if (sa1111_readl(mapbase + SA1111_INTSTATCLR1) & mask)
326 break;
327 }
328
329 if (i == 8)
330 printk(KERN_ERR "Danger Will Robinson: failed to "
331 "re-trigger IRQ%d\n", irq);
332 return i == 8 ? -1 : 0;
333 }
334
sa1111_type_highirq(unsigned int irq,unsigned int flags)335 static int sa1111_type_highirq(unsigned int irq, unsigned int flags)
336 {
337 unsigned int mask = SA1111_IRQMASK_HI(irq);
338 void __iomem *mapbase = get_irq_chip_data(irq);
339 unsigned long ip1;
340
341 if (flags == IRQ_TYPE_PROBE)
342 return 0;
343
344 if ((!(flags & IRQ_TYPE_EDGE_RISING) ^ !(flags & IRQ_TYPE_EDGE_FALLING)) == 0)
345 return -EINVAL;
346
347 ip1 = sa1111_readl(mapbase + SA1111_INTPOL1);
348 if (flags & IRQ_TYPE_EDGE_RISING)
349 ip1 &= ~mask;
350 else
351 ip1 |= mask;
352 sa1111_writel(ip1, mapbase + SA1111_INTPOL1);
353 sa1111_writel(ip1, mapbase + SA1111_WAKEPOL1);
354
355 return 0;
356 }
357
sa1111_wake_highirq(unsigned int irq,unsigned int on)358 static int sa1111_wake_highirq(unsigned int irq, unsigned int on)
359 {
360 unsigned int mask = SA1111_IRQMASK_HI(irq);
361 void __iomem *mapbase = get_irq_chip_data(irq);
362 unsigned long we1;
363
364 we1 = sa1111_readl(mapbase + SA1111_WAKEEN1);
365 if (on)
366 we1 |= mask;
367 else
368 we1 &= ~mask;
369 sa1111_writel(we1, mapbase + SA1111_WAKEEN1);
370
371 return 0;
372 }
373
374 static struct irq_chip sa1111_high_chip = {
375 .name = "SA1111-h",
376 .ack = sa1111_ack_irq,
377 .mask = sa1111_mask_highirq,
378 .unmask = sa1111_unmask_highirq,
379 .retrigger = sa1111_retrigger_highirq,
380 .set_type = sa1111_type_highirq,
381 .set_wake = sa1111_wake_highirq,
382 };
383
sa1111_setup_irq(struct sa1111 * sachip)384 static void sa1111_setup_irq(struct sa1111 *sachip)
385 {
386 void __iomem *irqbase = sachip->base + SA1111_INTC;
387 unsigned int irq;
388
389 /*
390 * We're guaranteed that this region hasn't been taken.
391 */
392 request_mem_region(sachip->phys + SA1111_INTC, 512, "irq");
393
394 /* disable all IRQs */
395 sa1111_writel(0, irqbase + SA1111_INTEN0);
396 sa1111_writel(0, irqbase + SA1111_INTEN1);
397 sa1111_writel(0, irqbase + SA1111_WAKEEN0);
398 sa1111_writel(0, irqbase + SA1111_WAKEEN1);
399
400 /*
401 * detect on rising edge. Note: Feb 2001 Errata for SA1111
402 * specifies that S0ReadyInt and S1ReadyInt should be '1'.
403 */
404 sa1111_writel(0, irqbase + SA1111_INTPOL0);
405 sa1111_writel(SA1111_IRQMASK_HI(IRQ_S0_READY_NINT) |
406 SA1111_IRQMASK_HI(IRQ_S1_READY_NINT),
407 irqbase + SA1111_INTPOL1);
408
409 /* clear all IRQs */
410 sa1111_writel(~0, irqbase + SA1111_INTSTATCLR0);
411 sa1111_writel(~0, irqbase + SA1111_INTSTATCLR1);
412
413 for (irq = IRQ_GPAIN0; irq <= SSPROR; irq++) {
414 set_irq_chip(irq, &sa1111_low_chip);
415 set_irq_chip_data(irq, irqbase);
416 set_irq_handler(irq, handle_edge_irq);
417 set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
418 }
419
420 for (irq = AUDXMTDMADONEA; irq <= IRQ_S1_BVD1_STSCHG; irq++) {
421 set_irq_chip(irq, &sa1111_high_chip);
422 set_irq_chip_data(irq, irqbase);
423 set_irq_handler(irq, handle_edge_irq);
424 set_irq_flags(irq, IRQF_VALID | IRQF_PROBE);
425 }
426
427 /*
428 * Register SA1111 interrupt
429 */
430 set_irq_type(sachip->irq, IRQ_TYPE_EDGE_RISING);
431 set_irq_data(sachip->irq, irqbase);
432 set_irq_chained_handler(sachip->irq, sa1111_irq_handler);
433 }
434
435 /*
436 * Bring the SA1111 out of reset. This requires a set procedure:
437 * 1. nRESET asserted (by hardware)
438 * 2. CLK turned on from SA1110
439 * 3. nRESET deasserted
440 * 4. VCO turned on, PLL_BYPASS turned off
441 * 5. Wait lock time, then assert RCLKEn
442 * 7. PCR set to allow clocking of individual functions
443 *
444 * Until we've done this, the only registers we can access are:
445 * SBI_SKCR
446 * SBI_SMCR
447 * SBI_SKID
448 */
sa1111_wake(struct sa1111 * sachip)449 static void sa1111_wake(struct sa1111 *sachip)
450 {
451 unsigned long flags, r;
452
453 spin_lock_irqsave(&sachip->lock, flags);
454
455 clk_enable(sachip->clk);
456
457 /*
458 * Turn VCO on, and disable PLL Bypass.
459 */
460 r = sa1111_readl(sachip->base + SA1111_SKCR);
461 r &= ~SKCR_VCO_OFF;
462 sa1111_writel(r, sachip->base + SA1111_SKCR);
463 r |= SKCR_PLL_BYPASS | SKCR_OE_EN;
464 sa1111_writel(r, sachip->base + SA1111_SKCR);
465
466 /*
467 * Wait lock time. SA1111 manual _doesn't_
468 * specify a figure for this! We choose 100us.
469 */
470 udelay(100);
471
472 /*
473 * Enable RCLK. We also ensure that RDYEN is set.
474 */
475 r |= SKCR_RCLKEN | SKCR_RDYEN;
476 sa1111_writel(r, sachip->base + SA1111_SKCR);
477
478 /*
479 * Wait 14 RCLK cycles for the chip to finish coming out
480 * of reset. (RCLK=24MHz). This is 590ns.
481 */
482 udelay(1);
483
484 /*
485 * Ensure all clocks are initially off.
486 */
487 sa1111_writel(0, sachip->base + SA1111_SKPCR);
488
489 spin_unlock_irqrestore(&sachip->lock, flags);
490 }
491
492 #ifdef CONFIG_ARCH_SA1100
493
494 static u32 sa1111_dma_mask[] = {
495 ~0,
496 ~(1 << 20),
497 ~(1 << 23),
498 ~(1 << 24),
499 ~(1 << 25),
500 ~(1 << 20),
501 ~(1 << 20),
502 0,
503 };
504
505 /*
506 * Configure the SA1111 shared memory controller.
507 */
508 void
sa1111_configure_smc(struct sa1111 * sachip,int sdram,unsigned int drac,unsigned int cas_latency)509 sa1111_configure_smc(struct sa1111 *sachip, int sdram, unsigned int drac,
510 unsigned int cas_latency)
511 {
512 unsigned int smcr = SMCR_DTIM | SMCR_MBGE | FInsrt(drac, SMCR_DRAC);
513
514 if (cas_latency == 3)
515 smcr |= SMCR_CLAT;
516
517 sa1111_writel(smcr, sachip->base + SA1111_SMCR);
518
519 /*
520 * Now clear the bits in the DMA mask to work around the SA1111
521 * DMA erratum (Intel StrongARM SA-1111 Microprocessor Companion
522 * Chip Specification Update, June 2000, Erratum #7).
523 */
524 if (sachip->dev->dma_mask)
525 *sachip->dev->dma_mask &= sa1111_dma_mask[drac >> 2];
526
527 sachip->dev->coherent_dma_mask &= sa1111_dma_mask[drac >> 2];
528 }
529
530 #endif
531
sa1111_dev_release(struct device * _dev)532 static void sa1111_dev_release(struct device *_dev)
533 {
534 struct sa1111_dev *dev = SA1111_DEV(_dev);
535
536 release_resource(&dev->res);
537 kfree(dev);
538 }
539
540 static int
sa1111_init_one_child(struct sa1111 * sachip,struct resource * parent,struct sa1111_dev_info * info)541 sa1111_init_one_child(struct sa1111 *sachip, struct resource *parent,
542 struct sa1111_dev_info *info)
543 {
544 struct sa1111_dev *dev;
545 int ret;
546
547 dev = kzalloc(sizeof(struct sa1111_dev), GFP_KERNEL);
548 if (!dev) {
549 ret = -ENOMEM;
550 goto out;
551 }
552
553 dev_set_name(&dev->dev, "%4.4lx", info->offset);
554 dev->devid = info->devid;
555 dev->dev.parent = sachip->dev;
556 dev->dev.bus = &sa1111_bus_type;
557 dev->dev.release = sa1111_dev_release;
558 dev->dev.coherent_dma_mask = sachip->dev->coherent_dma_mask;
559 dev->res.start = sachip->phys + info->offset;
560 dev->res.end = dev->res.start + 511;
561 dev->res.name = dev_name(&dev->dev);
562 dev->res.flags = IORESOURCE_MEM;
563 dev->mapbase = sachip->base + info->offset;
564 dev->skpcr_mask = info->skpcr_mask;
565 memmove(dev->irq, info->irq, sizeof(dev->irq));
566
567 ret = request_resource(parent, &dev->res);
568 if (ret) {
569 printk("SA1111: failed to allocate resource for %s\n",
570 dev->res.name);
571 dev_set_name(&dev->dev, NULL);
572 kfree(dev);
573 goto out;
574 }
575
576
577 ret = device_register(&dev->dev);
578 if (ret) {
579 release_resource(&dev->res);
580 kfree(dev);
581 goto out;
582 }
583
584 #ifdef CONFIG_DMABOUNCE
585 /*
586 * If the parent device has a DMA mask associated with it,
587 * propagate it down to the children.
588 */
589 if (sachip->dev->dma_mask) {
590 dev->dma_mask = *sachip->dev->dma_mask;
591 dev->dev.dma_mask = &dev->dma_mask;
592
593 if (dev->dma_mask != 0xffffffffUL) {
594 ret = dmabounce_register_dev(&dev->dev, 1024, 4096);
595 if (ret) {
596 dev_err(&dev->dev, "SA1111: Failed to register"
597 " with dmabounce\n");
598 device_unregister(&dev->dev);
599 }
600 }
601 }
602 #endif
603
604 out:
605 return ret;
606 }
607
608 /**
609 * sa1111_probe - probe for a single SA1111 chip.
610 * @phys_addr: physical address of device.
611 *
612 * Probe for a SA1111 chip. This must be called
613 * before any other SA1111-specific code.
614 *
615 * Returns:
616 * %-ENODEV device not found.
617 * %-EBUSY physical address already marked in-use.
618 * %0 successful.
619 */
620 static int
__sa1111_probe(struct device * me,struct resource * mem,int irq)621 __sa1111_probe(struct device *me, struct resource *mem, int irq)
622 {
623 struct sa1111 *sachip;
624 unsigned long id;
625 unsigned int has_devs;
626 int i, ret = -ENODEV;
627
628 sachip = kzalloc(sizeof(struct sa1111), GFP_KERNEL);
629 if (!sachip)
630 return -ENOMEM;
631
632 sachip->clk = clk_get(me, "SA1111_CLK");
633 if (IS_ERR(sachip->clk)) {
634 ret = PTR_ERR(sachip->clk);
635 goto err_free;
636 }
637
638 spin_lock_init(&sachip->lock);
639
640 sachip->dev = me;
641 dev_set_drvdata(sachip->dev, sachip);
642
643 sachip->phys = mem->start;
644 sachip->irq = irq;
645
646 /*
647 * Map the whole region. This also maps the
648 * registers for our children.
649 */
650 sachip->base = ioremap(mem->start, PAGE_SIZE * 2);
651 if (!sachip->base) {
652 ret = -ENOMEM;
653 goto err_clkput;
654 }
655
656 /*
657 * Probe for the chip. Only touch the SBI registers.
658 */
659 id = sa1111_readl(sachip->base + SA1111_SKID);
660 if ((id & SKID_ID_MASK) != SKID_SA1111_ID) {
661 printk(KERN_DEBUG "SA1111 not detected: ID = %08lx\n", id);
662 ret = -ENODEV;
663 goto err_unmap;
664 }
665
666 printk(KERN_INFO "SA1111 Microprocessor Companion Chip: "
667 "silicon revision %lx, metal revision %lx\n",
668 (id & SKID_SIREV_MASK)>>4, (id & SKID_MTREV_MASK));
669
670 /*
671 * We found it. Wake the chip up, and initialise.
672 */
673 sa1111_wake(sachip);
674
675 #ifdef CONFIG_ARCH_SA1100
676 {
677 unsigned int val;
678
679 /*
680 * The SDRAM configuration of the SA1110 and the SA1111 must
681 * match. This is very important to ensure that SA1111 accesses
682 * don't corrupt the SDRAM. Note that this ungates the SA1111's
683 * MBGNT signal, so we must have called sa1110_mb_disable()
684 * beforehand.
685 */
686 sa1111_configure_smc(sachip, 1,
687 FExtr(MDCNFG, MDCNFG_SA1110_DRAC0),
688 FExtr(MDCNFG, MDCNFG_SA1110_TDL0));
689
690 /*
691 * We only need to turn on DCLK whenever we want to use the
692 * DMA. It can otherwise be held firmly in the off position.
693 * (currently, we always enable it.)
694 */
695 val = sa1111_readl(sachip->base + SA1111_SKPCR);
696 sa1111_writel(val | SKPCR_DCLKEN, sachip->base + SA1111_SKPCR);
697
698 /*
699 * Enable the SA1110 memory bus request and grant signals.
700 */
701 sa1110_mb_enable();
702 }
703 #endif
704
705 /*
706 * The interrupt controller must be initialised before any
707 * other device to ensure that the interrupts are available.
708 */
709 if (sachip->irq != NO_IRQ)
710 sa1111_setup_irq(sachip);
711
712 g_sa1111 = sachip;
713
714 has_devs = ~0;
715 if (machine_is_assabet() || machine_is_jornada720() ||
716 machine_is_badge4())
717 has_devs &= ~(1 << 4);
718 else
719 has_devs &= ~(1 << 1);
720
721 for (i = 0; i < ARRAY_SIZE(sa1111_devices); i++)
722 if (has_devs & (1 << i))
723 sa1111_init_one_child(sachip, mem, &sa1111_devices[i]);
724
725 return 0;
726
727 err_unmap:
728 iounmap(sachip->base);
729 err_clkput:
730 clk_put(sachip->clk);
731 err_free:
732 kfree(sachip);
733 return ret;
734 }
735
sa1111_remove_one(struct device * dev,void * data)736 static int sa1111_remove_one(struct device *dev, void *data)
737 {
738 device_unregister(dev);
739 return 0;
740 }
741
__sa1111_remove(struct sa1111 * sachip)742 static void __sa1111_remove(struct sa1111 *sachip)
743 {
744 void __iomem *irqbase = sachip->base + SA1111_INTC;
745
746 device_for_each_child(sachip->dev, NULL, sa1111_remove_one);
747
748 /* disable all IRQs */
749 sa1111_writel(0, irqbase + SA1111_INTEN0);
750 sa1111_writel(0, irqbase + SA1111_INTEN1);
751 sa1111_writel(0, irqbase + SA1111_WAKEEN0);
752 sa1111_writel(0, irqbase + SA1111_WAKEEN1);
753
754 clk_disable(sachip->clk);
755
756 if (sachip->irq != NO_IRQ) {
757 set_irq_chained_handler(sachip->irq, NULL);
758 set_irq_data(sachip->irq, NULL);
759
760 release_mem_region(sachip->phys + SA1111_INTC, 512);
761 }
762
763 iounmap(sachip->base);
764 clk_put(sachip->clk);
765 kfree(sachip);
766 }
767
768 /*
769 * According to the "Intel StrongARM SA-1111 Microprocessor Companion
770 * Chip Specification Update" (June 2000), erratum #7, there is a
771 * significant bug in the SA1111 SDRAM shared memory controller. If
772 * an access to a region of memory above 1MB relative to the bank base,
773 * it is important that address bit 10 _NOT_ be asserted. Depending
774 * on the configuration of the RAM, bit 10 may correspond to one
775 * of several different (processor-relative) address bits.
776 *
777 * This routine only identifies whether or not a given DMA address
778 * is susceptible to the bug.
779 *
780 * This should only get called for sa1111_device types due to the
781 * way we configure our device dma_masks.
782 */
dma_needs_bounce(struct device * dev,dma_addr_t addr,size_t size)783 int dma_needs_bounce(struct device *dev, dma_addr_t addr, size_t size)
784 {
785 /*
786 * Section 4.6 of the "Intel StrongARM SA-1111 Development Module
787 * User's Guide" mentions that jumpers R51 and R52 control the
788 * target of SA-1111 DMA (either SDRAM bank 0 on Assabet, or
789 * SDRAM bank 1 on Neponset). The default configuration selects
790 * Assabet, so any address in bank 1 is necessarily invalid.
791 */
792 return ((machine_is_assabet() || machine_is_pfs168()) &&
793 (addr >= 0xc8000000 || (addr + size) >= 0xc8000000));
794 }
795
796 struct sa1111_save_data {
797 unsigned int skcr;
798 unsigned int skpcr;
799 unsigned int skcdr;
800 unsigned char skaud;
801 unsigned char skpwm0;
802 unsigned char skpwm1;
803
804 /*
805 * Interrupt controller
806 */
807 unsigned int intpol0;
808 unsigned int intpol1;
809 unsigned int inten0;
810 unsigned int inten1;
811 unsigned int wakepol0;
812 unsigned int wakepol1;
813 unsigned int wakeen0;
814 unsigned int wakeen1;
815 };
816
817 #ifdef CONFIG_PM
818
sa1111_suspend(struct platform_device * dev,pm_message_t state)819 static int sa1111_suspend(struct platform_device *dev, pm_message_t state)
820 {
821 struct sa1111 *sachip = platform_get_drvdata(dev);
822 struct sa1111_save_data *save;
823 unsigned long flags;
824 unsigned int val;
825 void __iomem *base;
826
827 save = kmalloc(sizeof(struct sa1111_save_data), GFP_KERNEL);
828 if (!save)
829 return -ENOMEM;
830 sachip->saved_state = save;
831
832 spin_lock_irqsave(&sachip->lock, flags);
833
834 /*
835 * Save state.
836 */
837 base = sachip->base;
838 save->skcr = sa1111_readl(base + SA1111_SKCR);
839 save->skpcr = sa1111_readl(base + SA1111_SKPCR);
840 save->skcdr = sa1111_readl(base + SA1111_SKCDR);
841 save->skaud = sa1111_readl(base + SA1111_SKAUD);
842 save->skpwm0 = sa1111_readl(base + SA1111_SKPWM0);
843 save->skpwm1 = sa1111_readl(base + SA1111_SKPWM1);
844
845 base = sachip->base + SA1111_INTC;
846 save->intpol0 = sa1111_readl(base + SA1111_INTPOL0);
847 save->intpol1 = sa1111_readl(base + SA1111_INTPOL1);
848 save->inten0 = sa1111_readl(base + SA1111_INTEN0);
849 save->inten1 = sa1111_readl(base + SA1111_INTEN1);
850 save->wakepol0 = sa1111_readl(base + SA1111_WAKEPOL0);
851 save->wakepol1 = sa1111_readl(base + SA1111_WAKEPOL1);
852 save->wakeen0 = sa1111_readl(base + SA1111_WAKEEN0);
853 save->wakeen1 = sa1111_readl(base + SA1111_WAKEEN1);
854
855 /*
856 * Disable.
857 */
858 val = sa1111_readl(sachip->base + SA1111_SKCR);
859 sa1111_writel(val | SKCR_SLEEP, sachip->base + SA1111_SKCR);
860 sa1111_writel(0, sachip->base + SA1111_SKPWM0);
861 sa1111_writel(0, sachip->base + SA1111_SKPWM1);
862
863 clk_disable(sachip->clk);
864
865 spin_unlock_irqrestore(&sachip->lock, flags);
866
867 return 0;
868 }
869
870 /*
871 * sa1111_resume - Restore the SA1111 device state.
872 * @dev: device to restore
873 *
874 * Restore the general state of the SA1111; clock control and
875 * interrupt controller. Other parts of the SA1111 must be
876 * restored by their respective drivers, and must be called
877 * via LDM after this function.
878 */
sa1111_resume(struct platform_device * dev)879 static int sa1111_resume(struct platform_device *dev)
880 {
881 struct sa1111 *sachip = platform_get_drvdata(dev);
882 struct sa1111_save_data *save;
883 unsigned long flags, id;
884 void __iomem *base;
885
886 save = sachip->saved_state;
887 if (!save)
888 return 0;
889
890 spin_lock_irqsave(&sachip->lock, flags);
891
892 /*
893 * Ensure that the SA1111 is still here.
894 * FIXME: shouldn't do this here.
895 */
896 id = sa1111_readl(sachip->base + SA1111_SKID);
897 if ((id & SKID_ID_MASK) != SKID_SA1111_ID) {
898 __sa1111_remove(sachip);
899 platform_set_drvdata(dev, NULL);
900 kfree(save);
901 return 0;
902 }
903
904 /*
905 * First of all, wake up the chip.
906 */
907 sa1111_wake(sachip);
908 sa1111_writel(0, sachip->base + SA1111_INTC + SA1111_INTEN0);
909 sa1111_writel(0, sachip->base + SA1111_INTC + SA1111_INTEN1);
910
911 base = sachip->base;
912 sa1111_writel(save->skcr, base + SA1111_SKCR);
913 sa1111_writel(save->skpcr, base + SA1111_SKPCR);
914 sa1111_writel(save->skcdr, base + SA1111_SKCDR);
915 sa1111_writel(save->skaud, base + SA1111_SKAUD);
916 sa1111_writel(save->skpwm0, base + SA1111_SKPWM0);
917 sa1111_writel(save->skpwm1, base + SA1111_SKPWM1);
918
919 base = sachip->base + SA1111_INTC;
920 sa1111_writel(save->intpol0, base + SA1111_INTPOL0);
921 sa1111_writel(save->intpol1, base + SA1111_INTPOL1);
922 sa1111_writel(save->inten0, base + SA1111_INTEN0);
923 sa1111_writel(save->inten1, base + SA1111_INTEN1);
924 sa1111_writel(save->wakepol0, base + SA1111_WAKEPOL0);
925 sa1111_writel(save->wakepol1, base + SA1111_WAKEPOL1);
926 sa1111_writel(save->wakeen0, base + SA1111_WAKEEN0);
927 sa1111_writel(save->wakeen1, base + SA1111_WAKEEN1);
928
929 spin_unlock_irqrestore(&sachip->lock, flags);
930
931 sachip->saved_state = NULL;
932 kfree(save);
933
934 return 0;
935 }
936
937 #else
938 #define sa1111_suspend NULL
939 #define sa1111_resume NULL
940 #endif
941
sa1111_probe(struct platform_device * pdev)942 static int __devinit sa1111_probe(struct platform_device *pdev)
943 {
944 struct resource *mem;
945 int irq;
946
947 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
948 if (!mem)
949 return -EINVAL;
950 irq = platform_get_irq(pdev, 0);
951 if (irq < 0)
952 return -ENXIO;
953
954 return __sa1111_probe(&pdev->dev, mem, irq);
955 }
956
sa1111_remove(struct platform_device * pdev)957 static int sa1111_remove(struct platform_device *pdev)
958 {
959 struct sa1111 *sachip = platform_get_drvdata(pdev);
960
961 if (sachip) {
962 __sa1111_remove(sachip);
963 platform_set_drvdata(pdev, NULL);
964
965 #ifdef CONFIG_PM
966 kfree(sachip->saved_state);
967 sachip->saved_state = NULL;
968 #endif
969 }
970
971 return 0;
972 }
973
974 /*
975 * Not sure if this should be on the system bus or not yet.
976 * We really want some way to register a system device at
977 * the per-machine level, and then have this driver pick
978 * up the registered devices.
979 *
980 * We also need to handle the SDRAM configuration for
981 * PXA250/SA1110 machine classes.
982 */
983 static struct platform_driver sa1111_device_driver = {
984 .probe = sa1111_probe,
985 .remove = sa1111_remove,
986 .suspend = sa1111_suspend,
987 .resume = sa1111_resume,
988 .driver = {
989 .name = "sa1111",
990 },
991 };
992
993 /*
994 * Get the parent device driver (us) structure
995 * from a child function device
996 */
sa1111_chip_driver(struct sa1111_dev * sadev)997 static inline struct sa1111 *sa1111_chip_driver(struct sa1111_dev *sadev)
998 {
999 return (struct sa1111 *)dev_get_drvdata(sadev->dev.parent);
1000 }
1001
1002 /*
1003 * The bits in the opdiv field are non-linear.
1004 */
1005 static unsigned char opdiv_table[] = { 1, 4, 2, 8 };
1006
__sa1111_pll_clock(struct sa1111 * sachip)1007 static unsigned int __sa1111_pll_clock(struct sa1111 *sachip)
1008 {
1009 unsigned int skcdr, fbdiv, ipdiv, opdiv;
1010
1011 skcdr = sa1111_readl(sachip->base + SA1111_SKCDR);
1012
1013 fbdiv = (skcdr & 0x007f) + 2;
1014 ipdiv = ((skcdr & 0x0f80) >> 7) + 2;
1015 opdiv = opdiv_table[(skcdr & 0x3000) >> 12];
1016
1017 return 3686400 * fbdiv / (ipdiv * opdiv);
1018 }
1019
1020 /**
1021 * sa1111_pll_clock - return the current PLL clock frequency.
1022 * @sadev: SA1111 function block
1023 *
1024 * BUG: we should look at SKCR. We also blindly believe that
1025 * the chip is being fed with the 3.6864MHz clock.
1026 *
1027 * Returns the PLL clock in Hz.
1028 */
sa1111_pll_clock(struct sa1111_dev * sadev)1029 unsigned int sa1111_pll_clock(struct sa1111_dev *sadev)
1030 {
1031 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1032
1033 return __sa1111_pll_clock(sachip);
1034 }
1035
1036 /**
1037 * sa1111_select_audio_mode - select I2S or AC link mode
1038 * @sadev: SA1111 function block
1039 * @mode: One of %SA1111_AUDIO_ACLINK or %SA1111_AUDIO_I2S
1040 *
1041 * Frob the SKCR to select AC Link mode or I2S mode for
1042 * the audio block.
1043 */
sa1111_select_audio_mode(struct sa1111_dev * sadev,int mode)1044 void sa1111_select_audio_mode(struct sa1111_dev *sadev, int mode)
1045 {
1046 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1047 unsigned long flags;
1048 unsigned int val;
1049
1050 spin_lock_irqsave(&sachip->lock, flags);
1051
1052 val = sa1111_readl(sachip->base + SA1111_SKCR);
1053 if (mode == SA1111_AUDIO_I2S) {
1054 val &= ~SKCR_SELAC;
1055 } else {
1056 val |= SKCR_SELAC;
1057 }
1058 sa1111_writel(val, sachip->base + SA1111_SKCR);
1059
1060 spin_unlock_irqrestore(&sachip->lock, flags);
1061 }
1062
1063 /**
1064 * sa1111_set_audio_rate - set the audio sample rate
1065 * @sadev: SA1111 SAC function block
1066 * @rate: sample rate to select
1067 */
sa1111_set_audio_rate(struct sa1111_dev * sadev,int rate)1068 int sa1111_set_audio_rate(struct sa1111_dev *sadev, int rate)
1069 {
1070 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1071 unsigned int div;
1072
1073 if (sadev->devid != SA1111_DEVID_SAC)
1074 return -EINVAL;
1075
1076 div = (__sa1111_pll_clock(sachip) / 256 + rate / 2) / rate;
1077 if (div == 0)
1078 div = 1;
1079 if (div > 128)
1080 div = 128;
1081
1082 sa1111_writel(div - 1, sachip->base + SA1111_SKAUD);
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * sa1111_get_audio_rate - get the audio sample rate
1089 * @sadev: SA1111 SAC function block device
1090 */
sa1111_get_audio_rate(struct sa1111_dev * sadev)1091 int sa1111_get_audio_rate(struct sa1111_dev *sadev)
1092 {
1093 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1094 unsigned long div;
1095
1096 if (sadev->devid != SA1111_DEVID_SAC)
1097 return -EINVAL;
1098
1099 div = sa1111_readl(sachip->base + SA1111_SKAUD) + 1;
1100
1101 return __sa1111_pll_clock(sachip) / (256 * div);
1102 }
1103
sa1111_set_io_dir(struct sa1111_dev * sadev,unsigned int bits,unsigned int dir,unsigned int sleep_dir)1104 void sa1111_set_io_dir(struct sa1111_dev *sadev,
1105 unsigned int bits, unsigned int dir,
1106 unsigned int sleep_dir)
1107 {
1108 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1109 unsigned long flags;
1110 unsigned int val;
1111 void __iomem *gpio = sachip->base + SA1111_GPIO;
1112
1113 #define MODIFY_BITS(port, mask, dir) \
1114 if (mask) { \
1115 val = sa1111_readl(port); \
1116 val &= ~(mask); \
1117 val |= (dir) & (mask); \
1118 sa1111_writel(val, port); \
1119 }
1120
1121 spin_lock_irqsave(&sachip->lock, flags);
1122 MODIFY_BITS(gpio + SA1111_GPIO_PADDR, bits & 15, dir);
1123 MODIFY_BITS(gpio + SA1111_GPIO_PBDDR, (bits >> 8) & 255, dir >> 8);
1124 MODIFY_BITS(gpio + SA1111_GPIO_PCDDR, (bits >> 16) & 255, dir >> 16);
1125
1126 MODIFY_BITS(gpio + SA1111_GPIO_PASDR, bits & 15, sleep_dir);
1127 MODIFY_BITS(gpio + SA1111_GPIO_PBSDR, (bits >> 8) & 255, sleep_dir >> 8);
1128 MODIFY_BITS(gpio + SA1111_GPIO_PCSDR, (bits >> 16) & 255, sleep_dir >> 16);
1129 spin_unlock_irqrestore(&sachip->lock, flags);
1130 }
1131
sa1111_set_io(struct sa1111_dev * sadev,unsigned int bits,unsigned int v)1132 void sa1111_set_io(struct sa1111_dev *sadev, unsigned int bits, unsigned int v)
1133 {
1134 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1135 unsigned long flags;
1136 unsigned int val;
1137 void __iomem *gpio = sachip->base + SA1111_GPIO;
1138
1139 spin_lock_irqsave(&sachip->lock, flags);
1140 MODIFY_BITS(gpio + SA1111_GPIO_PADWR, bits & 15, v);
1141 MODIFY_BITS(gpio + SA1111_GPIO_PBDWR, (bits >> 8) & 255, v >> 8);
1142 MODIFY_BITS(gpio + SA1111_GPIO_PCDWR, (bits >> 16) & 255, v >> 16);
1143 spin_unlock_irqrestore(&sachip->lock, flags);
1144 }
1145
sa1111_set_sleep_io(struct sa1111_dev * sadev,unsigned int bits,unsigned int v)1146 void sa1111_set_sleep_io(struct sa1111_dev *sadev, unsigned int bits, unsigned int v)
1147 {
1148 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1149 unsigned long flags;
1150 unsigned int val;
1151 void __iomem *gpio = sachip->base + SA1111_GPIO;
1152
1153 spin_lock_irqsave(&sachip->lock, flags);
1154 MODIFY_BITS(gpio + SA1111_GPIO_PASSR, bits & 15, v);
1155 MODIFY_BITS(gpio + SA1111_GPIO_PBSSR, (bits >> 8) & 255, v >> 8);
1156 MODIFY_BITS(gpio + SA1111_GPIO_PCSSR, (bits >> 16) & 255, v >> 16);
1157 spin_unlock_irqrestore(&sachip->lock, flags);
1158 }
1159
1160 /*
1161 * Individual device operations.
1162 */
1163
1164 /**
1165 * sa1111_enable_device - enable an on-chip SA1111 function block
1166 * @sadev: SA1111 function block device to enable
1167 */
sa1111_enable_device(struct sa1111_dev * sadev)1168 void sa1111_enable_device(struct sa1111_dev *sadev)
1169 {
1170 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1171 unsigned long flags;
1172 unsigned int val;
1173
1174 spin_lock_irqsave(&sachip->lock, flags);
1175 val = sa1111_readl(sachip->base + SA1111_SKPCR);
1176 sa1111_writel(val | sadev->skpcr_mask, sachip->base + SA1111_SKPCR);
1177 spin_unlock_irqrestore(&sachip->lock, flags);
1178 }
1179
1180 /**
1181 * sa1111_disable_device - disable an on-chip SA1111 function block
1182 * @sadev: SA1111 function block device to disable
1183 */
sa1111_disable_device(struct sa1111_dev * sadev)1184 void sa1111_disable_device(struct sa1111_dev *sadev)
1185 {
1186 struct sa1111 *sachip = sa1111_chip_driver(sadev);
1187 unsigned long flags;
1188 unsigned int val;
1189
1190 spin_lock_irqsave(&sachip->lock, flags);
1191 val = sa1111_readl(sachip->base + SA1111_SKPCR);
1192 sa1111_writel(val & ~sadev->skpcr_mask, sachip->base + SA1111_SKPCR);
1193 spin_unlock_irqrestore(&sachip->lock, flags);
1194 }
1195
1196 /*
1197 * SA1111 "Register Access Bus."
1198 *
1199 * We model this as a regular bus type, and hang devices directly
1200 * off this.
1201 */
sa1111_match(struct device * _dev,struct device_driver * _drv)1202 static int sa1111_match(struct device *_dev, struct device_driver *_drv)
1203 {
1204 struct sa1111_dev *dev = SA1111_DEV(_dev);
1205 struct sa1111_driver *drv = SA1111_DRV(_drv);
1206
1207 return dev->devid == drv->devid;
1208 }
1209
sa1111_bus_suspend(struct device * dev,pm_message_t state)1210 static int sa1111_bus_suspend(struct device *dev, pm_message_t state)
1211 {
1212 struct sa1111_dev *sadev = SA1111_DEV(dev);
1213 struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1214 int ret = 0;
1215
1216 if (drv && drv->suspend)
1217 ret = drv->suspend(sadev, state);
1218 return ret;
1219 }
1220
sa1111_bus_resume(struct device * dev)1221 static int sa1111_bus_resume(struct device *dev)
1222 {
1223 struct sa1111_dev *sadev = SA1111_DEV(dev);
1224 struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1225 int ret = 0;
1226
1227 if (drv && drv->resume)
1228 ret = drv->resume(sadev);
1229 return ret;
1230 }
1231
sa1111_bus_probe(struct device * dev)1232 static int sa1111_bus_probe(struct device *dev)
1233 {
1234 struct sa1111_dev *sadev = SA1111_DEV(dev);
1235 struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1236 int ret = -ENODEV;
1237
1238 if (drv->probe)
1239 ret = drv->probe(sadev);
1240 return ret;
1241 }
1242
sa1111_bus_remove(struct device * dev)1243 static int sa1111_bus_remove(struct device *dev)
1244 {
1245 struct sa1111_dev *sadev = SA1111_DEV(dev);
1246 struct sa1111_driver *drv = SA1111_DRV(dev->driver);
1247 int ret = 0;
1248
1249 if (drv->remove)
1250 ret = drv->remove(sadev);
1251 return ret;
1252 }
1253
1254 struct bus_type sa1111_bus_type = {
1255 .name = "sa1111-rab",
1256 .match = sa1111_match,
1257 .probe = sa1111_bus_probe,
1258 .remove = sa1111_bus_remove,
1259 .suspend = sa1111_bus_suspend,
1260 .resume = sa1111_bus_resume,
1261 };
1262
sa1111_driver_register(struct sa1111_driver * driver)1263 int sa1111_driver_register(struct sa1111_driver *driver)
1264 {
1265 driver->drv.bus = &sa1111_bus_type;
1266 return driver_register(&driver->drv);
1267 }
1268
sa1111_driver_unregister(struct sa1111_driver * driver)1269 void sa1111_driver_unregister(struct sa1111_driver *driver)
1270 {
1271 driver_unregister(&driver->drv);
1272 }
1273
sa1111_init(void)1274 static int __init sa1111_init(void)
1275 {
1276 int ret = bus_register(&sa1111_bus_type);
1277 if (ret == 0)
1278 platform_driver_register(&sa1111_device_driver);
1279 return ret;
1280 }
1281
sa1111_exit(void)1282 static void __exit sa1111_exit(void)
1283 {
1284 platform_driver_unregister(&sa1111_device_driver);
1285 bus_unregister(&sa1111_bus_type);
1286 }
1287
1288 subsys_initcall(sa1111_init);
1289 module_exit(sa1111_exit);
1290
1291 MODULE_DESCRIPTION("Intel Corporation SA1111 core driver");
1292 MODULE_LICENSE("GPL");
1293
1294 EXPORT_SYMBOL(sa1111_select_audio_mode);
1295 EXPORT_SYMBOL(sa1111_set_audio_rate);
1296 EXPORT_SYMBOL(sa1111_get_audio_rate);
1297 EXPORT_SYMBOL(sa1111_set_io_dir);
1298 EXPORT_SYMBOL(sa1111_set_io);
1299 EXPORT_SYMBOL(sa1111_set_sleep_io);
1300 EXPORT_SYMBOL(sa1111_enable_device);
1301 EXPORT_SYMBOL(sa1111_disable_device);
1302 EXPORT_SYMBOL(sa1111_pll_clock);
1303 EXPORT_SYMBOL(sa1111_bus_type);
1304 EXPORT_SYMBOL(sa1111_driver_register);
1305 EXPORT_SYMBOL(sa1111_driver_unregister);
1306