• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  arch/arm/include/asm/cacheflush.h
3  *
4  *  Copyright (C) 1999-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
12 
13 #include <linux/mm.h>
14 
15 #include <asm/glue.h>
16 #include <asm/shmparam.h>
17 #include <asm/cachetype.h>
18 
19 #define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
20 
21 /*
22  *	Cache Model
23  *	===========
24  */
25 #undef _CACHE
26 #undef MULTI_CACHE
27 
28 #if defined(CONFIG_CPU_CACHE_V3)
29 # ifdef _CACHE
30 #  define MULTI_CACHE 1
31 # else
32 #  define _CACHE v3
33 # endif
34 #endif
35 
36 #if defined(CONFIG_CPU_CACHE_V4)
37 # ifdef _CACHE
38 #  define MULTI_CACHE 1
39 # else
40 #  define _CACHE v4
41 # endif
42 #endif
43 
44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45     defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46 # define MULTI_CACHE 1
47 #endif
48 
49 #if defined(CONFIG_CPU_ARM926T)
50 # ifdef _CACHE
51 #  define MULTI_CACHE 1
52 # else
53 #  define _CACHE arm926
54 # endif
55 #endif
56 
57 #if defined(CONFIG_CPU_ARM940T)
58 # ifdef _CACHE
59 #  define MULTI_CACHE 1
60 # else
61 #  define _CACHE arm940
62 # endif
63 #endif
64 
65 #if defined(CONFIG_CPU_ARM946E)
66 # ifdef _CACHE
67 #  define MULTI_CACHE 1
68 # else
69 #  define _CACHE arm946
70 # endif
71 #endif
72 
73 #if defined(CONFIG_CPU_CACHE_V4WB)
74 # ifdef _CACHE
75 #  define MULTI_CACHE 1
76 # else
77 #  define _CACHE v4wb
78 # endif
79 #endif
80 
81 #if defined(CONFIG_CPU_XSCALE)
82 # ifdef _CACHE
83 #  define MULTI_CACHE 1
84 # else
85 #  define _CACHE xscale
86 # endif
87 #endif
88 
89 #if defined(CONFIG_CPU_XSC3)
90 # ifdef _CACHE
91 #  define MULTI_CACHE 1
92 # else
93 #  define _CACHE xsc3
94 # endif
95 #endif
96 
97 #if defined(CONFIG_CPU_FEROCEON)
98 # define MULTI_CACHE 1
99 #endif
100 
101 #if defined(CONFIG_CPU_V6)
102 //# ifdef _CACHE
103 #  define MULTI_CACHE 1
104 //# else
105 //#  define _CACHE v6
106 //# endif
107 #endif
108 
109 #if defined(CONFIG_CPU_V7)
110 //# ifdef _CACHE
111 #  define MULTI_CACHE 1
112 //# else
113 //#  define _CACHE v7
114 //# endif
115 #endif
116 
117 #if !defined(_CACHE) && !defined(MULTI_CACHE)
118 #error Unknown cache maintainence model
119 #endif
120 
121 /*
122  * This flag is used to indicate that the page pointed to by a pte
123  * is dirty and requires cleaning before returning it to the user.
124  */
125 #define PG_dcache_dirty PG_arch_1
126 
127 /*
128  *	MM Cache Management
129  *	===================
130  *
131  *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
132  *	implement these methods.
133  *
134  *	Start addresses are inclusive and end addresses are exclusive;
135  *	start addresses should be rounded down, end addresses up.
136  *
137  *	See Documentation/cachetlb.txt for more information.
138  *	Please note that the implementation of these, and the required
139  *	effects are cache-type (VIVT/VIPT/PIPT) specific.
140  *
141  *	flush_cache_kern_all()
142  *
143  *		Unconditionally clean and invalidate the entire cache.
144  *
145  *	flush_cache_user_mm(mm)
146  *
147  *		Clean and invalidate all user space cache entries
148  *		before a change of page tables.
149  *
150  *	flush_cache_user_range(start, end, flags)
151  *
152  *		Clean and invalidate a range of cache entries in the
153  *		specified address space before a change of page tables.
154  *		- start - user start address (inclusive, page aligned)
155  *		- end   - user end address   (exclusive, page aligned)
156  *		- flags - vma->vm_flags field
157  *
158  *	coherent_kern_range(start, end)
159  *
160  *		Ensure coherency between the Icache and the Dcache in the
161  *		region described by start, end.  If you have non-snooping
162  *		Harvard caches, you need to implement this function.
163  *		- start  - virtual start address
164  *		- end    - virtual end address
165  *
166  *	DMA Cache Coherency
167  *	===================
168  *
169  *	dma_inv_range(start, end)
170  *
171  *		Invalidate (discard) the specified virtual address range.
172  *		May not write back any entries.  If 'start' or 'end'
173  *		are not cache line aligned, those lines must be written
174  *		back.
175  *		- start  - virtual start address
176  *		- end    - virtual end address
177  *
178  *	dma_clean_range(start, end)
179  *
180  *		Clean (write back) the specified virtual address range.
181  *		- start  - virtual start address
182  *		- end    - virtual end address
183  *
184  *	dma_flush_range(start, end)
185  *
186  *		Clean and invalidate the specified virtual address range.
187  *		- start  - virtual start address
188  *		- end    - virtual end address
189  */
190 
191 struct cpu_cache_fns {
192 	void (*flush_kern_all)(void);
193 	void (*flush_user_all)(void);
194 	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
195 
196 	void (*coherent_kern_range)(unsigned long, unsigned long);
197 	void (*coherent_user_range)(unsigned long, unsigned long);
198 	void (*flush_kern_dcache_page)(void *);
199 
200 	void (*dma_inv_range)(const void *, const void *);
201 	void (*dma_clean_range)(const void *, const void *);
202 	void (*dma_flush_range)(const void *, const void *);
203 };
204 
205 struct outer_cache_fns {
206 	void (*inv_range)(unsigned long, unsigned long);
207 	void (*clean_range)(unsigned long, unsigned long);
208 	void (*flush_range)(unsigned long, unsigned long);
209 };
210 
211 /*
212  * Select the calling method
213  */
214 #ifdef MULTI_CACHE
215 
216 extern struct cpu_cache_fns cpu_cache;
217 
218 #define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
219 #define __cpuc_flush_user_all		cpu_cache.flush_user_all
220 #define __cpuc_flush_user_range		cpu_cache.flush_user_range
221 #define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
222 #define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
223 #define __cpuc_flush_dcache_page	cpu_cache.flush_kern_dcache_page
224 
225 /*
226  * These are private to the dma-mapping API.  Do not use directly.
227  * Their sole purpose is to ensure that data held in the cache
228  * is visible to DMA, or data written by DMA to system memory is
229  * visible to the CPU.
230  */
231 #define dmac_inv_range			cpu_cache.dma_inv_range
232 #define dmac_clean_range		cpu_cache.dma_clean_range
233 #define dmac_flush_range		cpu_cache.dma_flush_range
234 
235 #else
236 
237 #define __cpuc_flush_kern_all		__glue(_CACHE,_flush_kern_cache_all)
238 #define __cpuc_flush_user_all		__glue(_CACHE,_flush_user_cache_all)
239 #define __cpuc_flush_user_range		__glue(_CACHE,_flush_user_cache_range)
240 #define __cpuc_coherent_kern_range	__glue(_CACHE,_coherent_kern_range)
241 #define __cpuc_coherent_user_range	__glue(_CACHE,_coherent_user_range)
242 #define __cpuc_flush_dcache_page	__glue(_CACHE,_flush_kern_dcache_page)
243 
244 extern void __cpuc_flush_kern_all(void);
245 extern void __cpuc_flush_user_all(void);
246 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
247 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
248 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
249 extern void __cpuc_flush_dcache_page(void *);
250 
251 /*
252  * These are private to the dma-mapping API.  Do not use directly.
253  * Their sole purpose is to ensure that data held in the cache
254  * is visible to DMA, or data written by DMA to system memory is
255  * visible to the CPU.
256  */
257 #define dmac_inv_range			__glue(_CACHE,_dma_inv_range)
258 #define dmac_clean_range		__glue(_CACHE,_dma_clean_range)
259 #define dmac_flush_range		__glue(_CACHE,_dma_flush_range)
260 
261 extern void dmac_inv_range(const void *, const void *);
262 extern void dmac_clean_range(const void *, const void *);
263 extern void dmac_flush_range(const void *, const void *);
264 
265 #endif
266 
267 #ifdef CONFIG_OUTER_CACHE
268 
269 extern struct outer_cache_fns outer_cache;
270 
outer_inv_range(unsigned long start,unsigned long end)271 static inline void outer_inv_range(unsigned long start, unsigned long end)
272 {
273 	if (outer_cache.inv_range)
274 		outer_cache.inv_range(start, end);
275 }
outer_clean_range(unsigned long start,unsigned long end)276 static inline void outer_clean_range(unsigned long start, unsigned long end)
277 {
278 	if (outer_cache.clean_range)
279 		outer_cache.clean_range(start, end);
280 }
outer_flush_range(unsigned long start,unsigned long end)281 static inline void outer_flush_range(unsigned long start, unsigned long end)
282 {
283 	if (outer_cache.flush_range)
284 		outer_cache.flush_range(start, end);
285 }
286 
287 #else
288 
outer_inv_range(unsigned long start,unsigned long end)289 static inline void outer_inv_range(unsigned long start, unsigned long end)
290 { }
outer_clean_range(unsigned long start,unsigned long end)291 static inline void outer_clean_range(unsigned long start, unsigned long end)
292 { }
outer_flush_range(unsigned long start,unsigned long end)293 static inline void outer_flush_range(unsigned long start, unsigned long end)
294 { }
295 
296 #endif
297 
298 /*
299  * Copy user data from/to a page which is mapped into a different
300  * processes address space.  Really, we want to allow our "user
301  * space" model to handle this.
302  */
303 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
304 	do {							\
305 		memcpy(dst, src, len);				\
306 		flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
307 	} while (0)
308 
309 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
310 	do {							\
311 		memcpy(dst, src, len);				\
312 	} while (0)
313 
314 /*
315  * Convert calls to our calling convention.
316  */
317 #define flush_cache_all()		__cpuc_flush_kern_all()
318 #ifndef CONFIG_CPU_CACHE_VIPT
flush_cache_mm(struct mm_struct * mm)319 static inline void flush_cache_mm(struct mm_struct *mm)
320 {
321 	if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
322 		__cpuc_flush_user_all();
323 }
324 
325 static inline void
flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)326 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
327 {
328 	if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
329 		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
330 					vma->vm_flags);
331 }
332 
333 static inline void
flush_cache_page(struct vm_area_struct * vma,unsigned long user_addr,unsigned long pfn)334 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
335 {
336 	if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
337 		unsigned long addr = user_addr & PAGE_MASK;
338 		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
339 	}
340 }
341 
342 static inline void
flush_ptrace_access(struct vm_area_struct * vma,struct page * page,unsigned long uaddr,void * kaddr,unsigned long len,int write)343 flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
344 			 unsigned long uaddr, void *kaddr,
345 			 unsigned long len, int write)
346 {
347 	if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
348 		unsigned long addr = (unsigned long)kaddr;
349 		__cpuc_coherent_kern_range(addr, addr + len);
350 	}
351 }
352 #else
353 extern void flush_cache_mm(struct mm_struct *mm);
354 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
355 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
356 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
357 				unsigned long uaddr, void *kaddr,
358 				unsigned long len, int write);
359 #endif
360 
361 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
362 
363 /*
364  * flush_cache_user_range is used when we want to ensure that the
365  * Harvard caches are synchronised for the user space address range.
366  * This is used for the ARM private sys_cacheflush system call.
367  */
368 #define flush_cache_user_range(vma,start,end) \
369 	__cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
370 
371 /*
372  * Perform necessary cache operations to ensure that data previously
373  * stored within this range of addresses can be executed by the CPU.
374  */
375 #define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
376 
377 /*
378  * Perform necessary cache operations to ensure that the TLB will
379  * see data written in the specified area.
380  */
381 #define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
382 
383 /*
384  * flush_dcache_page is used when the kernel has written to the page
385  * cache page at virtual address page->virtual.
386  *
387  * If this page isn't mapped (ie, page_mapping == NULL), or it might
388  * have userspace mappings, then we _must_ always clean + invalidate
389  * the dcache entries associated with the kernel mapping.
390  *
391  * Otherwise we can defer the operation, and clean the cache when we are
392  * about to change to user space.  This is the same method as used on SPARC64.
393  * See update_mmu_cache for the user space part.
394  */
395 extern void flush_dcache_page(struct page *);
396 
397 extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
398 
__flush_icache_all(void)399 static inline void __flush_icache_all(void)
400 {
401 	asm("mcr	p15, 0, %0, c7, c5, 0	@ invalidate I-cache\n"
402 	    :
403 	    : "r" (0));
404 }
405 
406 #define ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)407 static inline void flush_anon_page(struct vm_area_struct *vma,
408 			 struct page *page, unsigned long vmaddr)
409 {
410 	extern void __flush_anon_page(struct vm_area_struct *vma,
411 				struct page *, unsigned long);
412 	if (PageAnon(page))
413 		__flush_anon_page(vma, page, vmaddr);
414 }
415 
416 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
flush_kernel_dcache_page(struct page * page)417 static inline void flush_kernel_dcache_page(struct page *page)
418 {
419 	/* highmem pages are always flushed upon kunmap already */
420 	if ((cache_is_vivt() || cache_is_vipt_aliasing()) && !PageHighMem(page))
421 		__cpuc_flush_dcache_page(page_address(page));
422 }
423 
424 #define flush_dcache_mmap_lock(mapping) \
425 	spin_lock_irq(&(mapping)->tree_lock)
426 #define flush_dcache_mmap_unlock(mapping) \
427 	spin_unlock_irq(&(mapping)->tree_lock)
428 
429 #define flush_icache_user_range(vma,page,addr,len) \
430 	flush_dcache_page(page)
431 
432 /*
433  * We don't appear to need to do anything here.  In fact, if we did, we'd
434  * duplicate cache flushing elsewhere performed by flush_dcache_page().
435  */
436 #define flush_icache_page(vma,page)	do { } while (0)
437 
flush_ioremap_region(unsigned long phys,void __iomem * virt,unsigned offset,size_t size)438 static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt,
439 	unsigned offset, size_t size)
440 {
441 	const void *start = (void __force *)virt + offset;
442 	dmac_inv_range(start, start + size);
443 }
444 
445 /*
446  * flush_cache_vmap() is used when creating mappings (eg, via vmap,
447  * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
448  * caches, since the direct-mappings of these pages may contain cached
449  * data, we need to do a full cache flush to ensure that writebacks
450  * don't corrupt data placed into these pages via the new mappings.
451  */
flush_cache_vmap(unsigned long start,unsigned long end)452 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
453 {
454 	if (!cache_is_vipt_nonaliasing())
455 		flush_cache_all();
456 	else
457 		/*
458 		 * set_pte_at() called from vmap_pte_range() does not
459 		 * have a DSB after cleaning the cache line.
460 		 */
461 		dsb();
462 }
463 
flush_cache_vunmap(unsigned long start,unsigned long end)464 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
465 {
466 	if (!cache_is_vipt_nonaliasing())
467 		flush_cache_all();
468 }
469 
470 #endif
471