• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/cris/arch-v10/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Copyright (C) 1999-2002 Axis Communications AB
6  *
7  */
8 
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/jiffies.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <arch/svinto.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/rtc.h>
23 #include <asm/irq_regs.h>
24 
25 /* define this if you need to use print_timestamp */
26 /* it will make jiffies at 96 hz instead of 100 hz though */
27 #undef USE_CASCADE_TIMERS
28 
29 extern void update_xtime_from_cmos(void);
30 extern int set_rtc_mmss(unsigned long nowtime);
31 extern int setup_irq(int, struct irqaction *);
32 extern int have_rtc;
33 
get_ns_in_jiffie(void)34 unsigned long get_ns_in_jiffie(void)
35 {
36 	unsigned char timer_count, t1;
37 	unsigned short presc_count;
38 	unsigned long ns;
39 	unsigned long flags;
40 
41 	local_irq_save(flags);
42 	timer_count = *R_TIMER0_DATA;
43 	presc_count = *R_TIM_PRESC_STATUS;
44 	/* presc_count might be wrapped */
45 	t1 = *R_TIMER0_DATA;
46 
47 	if (timer_count != t1){
48 		/* it wrapped, read prescaler again...  */
49 		presc_count = *R_TIM_PRESC_STATUS;
50 		timer_count = t1;
51 	}
52 	local_irq_restore(flags);
53 	if (presc_count >= PRESCALE_VALUE/2 ){
54 		presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
55 	} else {
56 		presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
57 	}
58 
59 	ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
60 	     ( (presc_count) * (1000000000/PRESCALE_FREQ));
61 	return ns;
62 }
63 
do_slow_gettimeoffset(void)64 unsigned long do_slow_gettimeoffset(void)
65 {
66 	unsigned long count, t1;
67 	unsigned long usec_count = 0;
68 	unsigned short presc_count;
69 
70 	static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */
71 	static unsigned long jiffies_p = 0;
72 
73 	/*
74 	 * cache volatile jiffies temporarily; we have IRQs turned off.
75 	 */
76 	unsigned long jiffies_t;
77 
78 	/* The timer interrupt comes from Etrax timer 0. In order to get
79 	 * better precision, we check the current value. It might have
80 	 * underflowed already though.
81 	 */
82 
83 #ifndef CONFIG_SVINTO_SIM
84 	/* Not available in the xsim simulator. */
85 	count = *R_TIMER0_DATA;
86 	presc_count = *R_TIM_PRESC_STATUS;
87 	/* presc_count might be wrapped */
88 	t1 = *R_TIMER0_DATA;
89 	if (count != t1){
90 		/* it wrapped, read prescaler again...  */
91 		presc_count = *R_TIM_PRESC_STATUS;
92 		count = t1;
93 	}
94 #else
95 	count = 0;
96 	presc_count = 0;
97 #endif
98 
99  	jiffies_t = jiffies;
100 
101 	/*
102 	 * avoiding timer inconsistencies (they are rare, but they happen)...
103 	 * there are one problem that must be avoided here:
104 	 *  1. the timer counter underflows
105 	 */
106 	if( jiffies_t == jiffies_p ) {
107 		if( count > count_p ) {
108 			/* Timer wrapped, use new count and prescale
109 			 * increase the time corresponding to one jiffie
110 			 */
111 			usec_count = 1000000/HZ;
112 		}
113 	} else
114 		jiffies_p = jiffies_t;
115         count_p = count;
116 	if (presc_count >= PRESCALE_VALUE/2 ){
117 		presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
118 	} else {
119 		presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
120 	}
121 	/* Convert timer value to usec */
122 	usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) +
123 	              (( (presc_count) * (1000000000/PRESCALE_FREQ))/1000);
124 
125 	return usec_count;
126 }
127 
128 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
129  *
130  * 3.10.4 Watchdog timer
131 
132  * When the watchdog timer is started, it generates an NMI if the watchdog
133  * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
134  * stopped after an additional 3.3 ms, the watchdog resets the chip.
135  * The watchdog timer is stopped after reset. The watchdog timer is controlled
136  * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
137  * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
138  * described in the table below:
139  *
140  *   Watchdog    Value written:
141  *   state:      To enable:  To key:      Operation:
142  *   --------    ----------  -------      ----------
143  *   stopped         0         X          No effect.
144  *   stopped         1       key_val      Start watchdog with key = key_val.
145  *   started         0       ~key         Stop watchdog
146  *   started         1       ~key         Restart watchdog with key = ~key.
147  *   started         X       new_key_val  Change key to new_key_val.
148  *
149  * Note: '~' is the bitwise NOT operator.
150  *
151  */
152 
153 /* right now, starting the watchdog is the same as resetting it */
154 #define start_watchdog reset_watchdog
155 
156 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
157 static int watchdog_key = 0;  /* arbitrary number */
158 #endif
159 
160 /* number of pages to consider "out of memory". it is normal that the memory
161  * is used though, so put this really low.
162  */
163 
164 #define WATCHDOG_MIN_FREE_PAGES 8
165 
166 void
reset_watchdog(void)167 reset_watchdog(void)
168 {
169 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
170 	/* only keep watchdog happy as long as we have memory left! */
171 	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
172 		/* reset the watchdog with the inverse of the old key */
173 		watchdog_key ^= 0x7; /* invert key, which is 3 bits */
174 		*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
175 			IO_STATE(R_WATCHDOG, enable, start);
176 	}
177 #endif
178 }
179 
180 /* stop the watchdog - we still need the correct key */
181 
182 void
stop_watchdog(void)183 stop_watchdog(void)
184 {
185 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
186 	watchdog_key ^= 0x7; /* invert key, which is 3 bits */
187 	*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
188 		IO_STATE(R_WATCHDOG, enable, stop);
189 #endif
190 }
191 
192 /* last time the cmos clock got updated */
193 static long last_rtc_update = 0;
194 
195 /*
196  * timer_interrupt() needs to keep up the real-time clock,
197  * as well as call the "do_timer()" routine every clocktick
198  */
199 
200 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
201 
202 extern void cris_do_profile(struct pt_regs *regs);
203 
204 static inline irqreturn_t
timer_interrupt(int irq,void * dev_id)205 timer_interrupt(int irq, void *dev_id)
206 {
207 	struct pt_regs *regs = get_irq_regs();
208 	/* acknowledge the timer irq */
209 
210 #ifdef USE_CASCADE_TIMERS
211 	*R_TIMER_CTRL =
212 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
213 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
214 		IO_STATE( R_TIMER_CTRL, i1, clr) |
215 		IO_STATE( R_TIMER_CTRL, tm1, run) |
216 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
217 		IO_STATE( R_TIMER_CTRL, i0, clr) |
218 		IO_STATE( R_TIMER_CTRL, tm0, run) |
219 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
220 #else
221 	*R_TIMER_CTRL = r_timer_ctrl_shadow |
222 		IO_STATE(R_TIMER_CTRL, i0, clr);
223 #endif
224 
225 	/* reset watchdog otherwise it resets us! */
226 	reset_watchdog();
227 
228 	/* Update statistics. */
229 	update_process_times(user_mode(regs));
230 
231 	/* call the real timer interrupt handler */
232 
233 	do_timer(1);
234 
235         cris_do_profile(regs); /* Save profiling information */
236 
237 	/*
238 	 * If we have an externally synchronized Linux clock, then update
239 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
240 	 * called as close as possible to 500 ms before the new second starts.
241 	 *
242 	 * The division here is not time critical since it will run once in
243 	 * 11 minutes
244 	 */
245 	if (ntp_synced() &&
246 	    xtime.tv_sec > last_rtc_update + 660 &&
247 	    (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
248 	    (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
249 		if (set_rtc_mmss(xtime.tv_sec) == 0)
250 			last_rtc_update = xtime.tv_sec;
251 		else
252 			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
253 	}
254         return IRQ_HANDLED;
255 }
256 
257 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
258  * it needs to be IRQF_DISABLED to make the jiffies update work properly
259  */
260 
261 static struct irqaction irq2  = {
262 	.handler = timer_interrupt,
263 	.flags = IRQF_SHARED | IRQF_DISABLED,
264 	.mask = CPU_MASK_NONE,
265 	.name = "timer",
266 };
267 
268 void __init
time_init(void)269 time_init(void)
270 {
271 	/* probe for the RTC and read it if it exists
272 	 * Before the RTC can be probed the loops_per_usec variable needs
273 	 * to be initialized to make usleep work. A better value for
274 	 * loops_per_usec is calculated by the kernel later once the
275 	 * clock has started.
276 	 */
277 	loops_per_usec = 50;
278 
279 	if(RTC_INIT() < 0) {
280 		/* no RTC, start at 1980 */
281 		xtime.tv_sec = 0;
282 		xtime.tv_nsec = 0;
283 		have_rtc = 0;
284 	} else {
285 		/* get the current time */
286 		have_rtc = 1;
287 		update_xtime_from_cmos();
288 	}
289 
290 	/*
291 	 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
292 	 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
293 	 */
294 	set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
295 
296 	/* Setup the etrax timers
297 	 * Base frequency is 25000 hz, divider 250 -> 100 HZ
298 	 * In normal mode, we use timer0, so timer1 is free. In cascade
299 	 * mode (which we sometimes use for debugging) both timers are used.
300 	 * Remember that linux/timex.h contains #defines that rely on the
301 	 * timer settings below (hz and divide factor) !!!
302 	 */
303 
304 #ifdef USE_CASCADE_TIMERS
305 	*R_TIMER_CTRL =
306 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
307 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
308 		IO_STATE( R_TIMER_CTRL, i1, nop) |
309 		IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
310 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
311 		IO_STATE( R_TIMER_CTRL, i0, nop) |
312 		IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
313 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
314 
315 	*R_TIMER_CTRL = r_timer_ctrl_shadow =
316 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
317 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
318 		IO_STATE( R_TIMER_CTRL, i1, nop) |
319 		IO_STATE( R_TIMER_CTRL, tm1, run) |
320 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
321 		IO_STATE( R_TIMER_CTRL, i0, nop) |
322 		IO_STATE( R_TIMER_CTRL, tm0, run) |
323 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
324 #else
325 	*R_TIMER_CTRL =
326 		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
327 		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
328 		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
329 		IO_STATE(R_TIMER_CTRL, tm1,       stop_ld)  |
330 		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
331 		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
332 		IO_STATE(R_TIMER_CTRL, tm0,       stop_ld)  |
333 		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
334 
335 	*R_TIMER_CTRL = r_timer_ctrl_shadow =
336 		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
337 		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
338 		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
339 		IO_STATE(R_TIMER_CTRL, tm1,       run)      |
340 		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
341 		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
342 		IO_STATE(R_TIMER_CTRL, tm0,       run)      |
343 		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
344 
345 	*R_TIMER_PRESCALE = PRESCALE_VALUE;
346 #endif
347 
348 	*R_IRQ_MASK0_SET =
349 		IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
350 
351 	/* now actually register the timer irq handler that calls timer_interrupt() */
352 
353 	setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
354 
355 	/* enable watchdog if we should use one */
356 
357 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
358 	printk("Enabling watchdog...\n");
359 	start_watchdog();
360 
361 	/* If we use the hardware watchdog, we want to trap it as an NMI
362 	   and dump registers before it resets us.  For this to happen, we
363 	   must set the "m" NMI enable flag (which once set, is unset only
364 	   when an NMI is taken).
365 
366 	   The same goes for the external NMI, but that doesn't have any
367 	   driver or infrastructure support yet.  */
368 	asm ("setf m");
369 
370 	*R_IRQ_MASK0_SET =
371 		IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
372 	*R_VECT_MASK_SET =
373 		IO_STATE(R_VECT_MASK_SET, nmi, set);
374 #endif
375 }
376