• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/cris/mm/fault.c
3  *
4  *  Copyright (C) 2000-2006  Axis Communications AB
5  *
6  *  Authors:  Bjorn Wesen
7  *
8  */
9 
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <asm/uaccess.h>
14 
15 extern int find_fixup_code(struct pt_regs *);
16 extern void die_if_kernel(const char *, struct pt_regs *, long);
17 
18 /* debug of low-level TLB reload */
19 #undef DEBUG
20 
21 #ifdef DEBUG
22 #define D(x) x
23 #else
24 #define D(x)
25 #endif
26 
27 /* debug of higher-level faults */
28 #define DPG(x)
29 
30 /* current active page directory */
31 
32 volatile DEFINE_PER_CPU(pgd_t *,current_pgd);
33 unsigned long cris_signal_return_page;
34 
35 /*
36  * This routine handles page faults.  It determines the address,
37  * and the problem, and then passes it off to one of the appropriate
38  * routines.
39  *
40  * Notice that the address we're given is aligned to the page the fault
41  * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
42  * address.
43  *
44  * error_code:
45  *      bit 0 == 0 means no page found, 1 means protection fault
46  *      bit 1 == 0 means read, 1 means write
47  *
48  * If this routine detects a bad access, it returns 1, otherwise it
49  * returns 0.
50  */
51 
52 asmlinkage void
do_page_fault(unsigned long address,struct pt_regs * regs,int protection,int writeaccess)53 do_page_fault(unsigned long address, struct pt_regs *regs,
54 	      int protection, int writeaccess)
55 {
56 	struct task_struct *tsk;
57 	struct mm_struct *mm;
58 	struct vm_area_struct * vma;
59 	siginfo_t info;
60 	int fault;
61 
62 	D(printk(KERN_DEBUG
63 		 "Page fault for %lX on %X at %lX, prot %d write %d\n",
64 		 address, smp_processor_id(), instruction_pointer(regs),
65 		 protection, writeaccess));
66 
67 	tsk = current;
68 
69 	/*
70 	 * We fault-in kernel-space virtual memory on-demand. The
71 	 * 'reference' page table is init_mm.pgd.
72 	 *
73 	 * NOTE! We MUST NOT take any locks for this case. We may
74 	 * be in an interrupt or a critical region, and should
75 	 * only copy the information from the master page table,
76 	 * nothing more.
77 	 *
78 	 * NOTE2: This is done so that, when updating the vmalloc
79 	 * mappings we don't have to walk all processes pgdirs and
80 	 * add the high mappings all at once. Instead we do it as they
81 	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
82 	 * bit set so sometimes the TLB can use a lingering entry.
83 	 *
84 	 * This verifies that the fault happens in kernel space
85 	 * and that the fault was not a protection error (error_code & 1).
86 	 */
87 
88 	if (address >= VMALLOC_START &&
89 	    !protection &&
90 	    !user_mode(regs))
91 		goto vmalloc_fault;
92 
93 	/* When stack execution is not allowed we store the signal
94 	 * trampolines in the reserved cris_signal_return_page.
95 	 * Handle this in the exact same way as vmalloc (we know
96 	 * that the mapping is there and is valid so no need to
97 	 * call handle_mm_fault).
98 	 */
99 	if (cris_signal_return_page &&
100 	    address == cris_signal_return_page &&
101 	    !protection && user_mode(regs))
102 		goto vmalloc_fault;
103 
104 	/* we can and should enable interrupts at this point */
105 	local_irq_enable();
106 
107 	mm = tsk->mm;
108 	info.si_code = SEGV_MAPERR;
109 
110 	/*
111 	 * If we're in an interrupt or have no user
112 	 * context, we must not take the fault..
113 	 */
114 
115 	if (in_interrupt() || !mm)
116 		goto no_context;
117 
118 	down_read(&mm->mmap_sem);
119 	vma = find_vma(mm, address);
120 	if (!vma)
121 		goto bad_area;
122 	if (vma->vm_start <= address)
123 		goto good_area;
124 	if (!(vma->vm_flags & VM_GROWSDOWN))
125 		goto bad_area;
126 	if (user_mode(regs)) {
127 		/*
128 		 * accessing the stack below usp is always a bug.
129 		 * we get page-aligned addresses so we can only check
130 		 * if we're within a page from usp, but that might be
131 		 * enough to catch brutal errors at least.
132 		 */
133 		if (address + PAGE_SIZE < rdusp())
134 			goto bad_area;
135 	}
136 	if (expand_stack(vma, address))
137 		goto bad_area;
138 
139 	/*
140 	 * Ok, we have a good vm_area for this memory access, so
141 	 * we can handle it..
142 	 */
143 
144  good_area:
145 	info.si_code = SEGV_ACCERR;
146 
147 	/* first do some preliminary protection checks */
148 
149 	if (writeaccess == 2){
150 		if (!(vma->vm_flags & VM_EXEC))
151 			goto bad_area;
152 	} else if (writeaccess == 1) {
153 		if (!(vma->vm_flags & VM_WRITE))
154 			goto bad_area;
155 	} else {
156 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
157 			goto bad_area;
158 	}
159 
160 	/*
161 	 * If for any reason at all we couldn't handle the fault,
162 	 * make sure we exit gracefully rather than endlessly redo
163 	 * the fault.
164 	 */
165 
166 	fault = handle_mm_fault(mm, vma, address, writeaccess & 1);
167 	if (unlikely(fault & VM_FAULT_ERROR)) {
168 		if (fault & VM_FAULT_OOM)
169 			goto out_of_memory;
170 		else if (fault & VM_FAULT_SIGBUS)
171 			goto do_sigbus;
172 		BUG();
173 	}
174 	if (fault & VM_FAULT_MAJOR)
175 		tsk->maj_flt++;
176 	else
177 		tsk->min_flt++;
178 
179 	up_read(&mm->mmap_sem);
180 	return;
181 
182 	/*
183 	 * Something tried to access memory that isn't in our memory map..
184 	 * Fix it, but check if it's kernel or user first..
185 	 */
186 
187  bad_area:
188 	up_read(&mm->mmap_sem);
189 
190  bad_area_nosemaphore:
191 	DPG(show_registers(regs));
192 
193 	/* User mode accesses just cause a SIGSEGV */
194 
195 	if (user_mode(regs)) {
196 		info.si_signo = SIGSEGV;
197 		info.si_errno = 0;
198 		/* info.si_code has been set above */
199 		info.si_addr = (void *)address;
200 		force_sig_info(SIGSEGV, &info, tsk);
201 		printk(KERN_NOTICE "%s (pid %d) segfaults for page "
202 		       "address %08lx at pc %08lx\n",
203 		       tsk->comm, tsk->pid, address, instruction_pointer(regs));
204 		return;
205 	}
206 
207  no_context:
208 
209 	/* Are we prepared to handle this kernel fault?
210 	 *
211 	 * (The kernel has valid exception-points in the source
212 	 *  when it acesses user-memory. When it fails in one
213 	 *  of those points, we find it in a table and do a jump
214 	 *  to some fixup code that loads an appropriate error
215 	 *  code)
216 	 */
217 
218 	if (find_fixup_code(regs))
219 		return;
220 
221 	/*
222 	 * Oops. The kernel tried to access some bad page. We'll have to
223 	 * terminate things with extreme prejudice.
224 	 */
225 
226 	if (!oops_in_progress) {
227 		oops_in_progress = 1;
228 		if ((unsigned long) (address) < PAGE_SIZE)
229 			printk(KERN_ALERT "Unable to handle kernel NULL "
230 				"pointer dereference");
231 		else
232 			printk(KERN_ALERT "Unable to handle kernel access"
233 				" at virtual address %08lx\n", address);
234 
235 		die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
236 		oops_in_progress = 0;
237 	}
238 
239 	do_exit(SIGKILL);
240 
241 	/*
242 	 * We ran out of memory, or some other thing happened to us that made
243 	 * us unable to handle the page fault gracefully.
244 	 */
245 
246  out_of_memory:
247 	up_read(&mm->mmap_sem);
248 	printk("VM: killing process %s\n", tsk->comm);
249 	if (user_mode(regs))
250 		do_exit(SIGKILL);
251 	goto no_context;
252 
253  do_sigbus:
254 	up_read(&mm->mmap_sem);
255 
256 	/*
257 	 * Send a sigbus, regardless of whether we were in kernel
258 	 * or user mode.
259 	 */
260 	info.si_signo = SIGBUS;
261 	info.si_errno = 0;
262 	info.si_code = BUS_ADRERR;
263 	info.si_addr = (void *)address;
264 	force_sig_info(SIGBUS, &info, tsk);
265 
266 	/* Kernel mode? Handle exceptions or die */
267 	if (!user_mode(regs))
268 		goto no_context;
269 	return;
270 
271 vmalloc_fault:
272 	{
273 		/*
274 		 * Synchronize this task's top level page-table
275 		 * with the 'reference' page table.
276 		 *
277 		 * Use current_pgd instead of tsk->active_mm->pgd
278 		 * since the latter might be unavailable if this
279 		 * code is executed in a misfortunately run irq
280 		 * (like inside schedule() between switch_mm and
281 		 *  switch_to...).
282 		 */
283 
284 		int offset = pgd_index(address);
285 		pgd_t *pgd, *pgd_k;
286 		pud_t *pud, *pud_k;
287 		pmd_t *pmd, *pmd_k;
288 		pte_t *pte_k;
289 
290 		pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
291 		pgd_k = init_mm.pgd + offset;
292 
293 		/* Since we're two-level, we don't need to do both
294 		 * set_pgd and set_pmd (they do the same thing). If
295 		 * we go three-level at some point, do the right thing
296 		 * with pgd_present and set_pgd here.
297 		 *
298 		 * Also, since the vmalloc area is global, we don't
299 		 * need to copy individual PTE's, it is enough to
300 		 * copy the pgd pointer into the pte page of the
301 		 * root task. If that is there, we'll find our pte if
302 		 * it exists.
303 		 */
304 
305 		pud = pud_offset(pgd, address);
306 		pud_k = pud_offset(pgd_k, address);
307 		if (!pud_present(*pud_k))
308 			goto no_context;
309 
310 		pmd = pmd_offset(pud, address);
311 		pmd_k = pmd_offset(pud_k, address);
312 
313 		if (!pmd_present(*pmd_k))
314 			goto bad_area_nosemaphore;
315 
316 		set_pmd(pmd, *pmd_k);
317 
318 		/* Make sure the actual PTE exists as well to
319 		 * catch kernel vmalloc-area accesses to non-mapped
320 		 * addresses. If we don't do this, this will just
321 		 * silently loop forever.
322 		 */
323 
324 		pte_k = pte_offset_kernel(pmd_k, address);
325 		if (!pte_present(*pte_k))
326 			goto no_context;
327 
328 		return;
329 	}
330 }
331 
332 /* Find fixup code. */
333 int
find_fixup_code(struct pt_regs * regs)334 find_fixup_code(struct pt_regs *regs)
335 {
336 	const struct exception_table_entry *fixup;
337 
338 	if ((fixup = search_exception_tables(instruction_pointer(regs))) != 0) {
339 		/* Adjust the instruction pointer in the stackframe. */
340 		instruction_pointer(regs) = fixup->fixup;
341 		arch_fixup(regs);
342 		return 1;
343 	}
344 
345 	return 0;
346 }
347