• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
47 #include <asm/page.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
54 
55 #ifdef CONFIG_PERFMON
56 /*
57  * perfmon context state
58  */
59 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
60 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
61 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
63 
64 #define PFM_INVALID_ACTIVATION	(~0UL)
65 
66 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
68 
69 /*
70  * depth of message queue
71  */
72 #define PFM_MAX_MSGS		32
73 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74 
75 /*
76  * type of a PMU register (bitmask).
77  * bitmask structure:
78  * 	bit0   : register implemented
79  * 	bit1   : end marker
80  * 	bit2-3 : reserved
81  * 	bit4   : pmc has pmc.pm
82  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
83  * 	bit6-7 : register type
84  * 	bit8-31: reserved
85  */
86 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
87 #define PFM_REG_IMPL		0x1 /* register implemented */
88 #define PFM_REG_END		0x2 /* end marker */
89 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 
95 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 
98 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
99 
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
109 
110 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
114 
115 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
117 
118 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h)		(h)->ctx_task
121 
122 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
123 
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 
130 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR	0	/* requesting code range restriction */
134 #define PFM_DATA_RR	1	/* requestion data range restriction */
135 
136 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
139 
140 #define RDEP(x)	(1UL<<(x))
141 
142 /*
143  * context protection macros
144  * in SMP:
145  * 	- we need to protect against CPU concurrency (spin_lock)
146  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
147  * in UP:
148  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
149  *
150  * spin_lock_irqsave()/spin_unlock_irqrestore():
151  * 	in SMP: local_irq_disable + spin_lock
152  * 	in UP : local_irq_disable
153  *
154  * spin_lock()/spin_lock():
155  * 	in UP : removed automatically
156  * 	in SMP: protect against context accesses from other CPU. interrupts
157  * 	        are not masked. This is useful for the PMU interrupt handler
158  * 	        because we know we will not get PMU concurrency in that code.
159  */
160 #define PROTECT_CTX(c, f) \
161 	do {  \
162 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163 		spin_lock_irqsave(&(c)->ctx_lock, f); \
164 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
165 	} while(0)
166 
167 #define UNPROTECT_CTX(c, f) \
168 	do { \
169 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 	} while(0)
172 
173 #define PROTECT_CTX_NOPRINT(c, f) \
174 	do {  \
175 		spin_lock_irqsave(&(c)->ctx_lock, f); \
176 	} while(0)
177 
178 
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 	do { \
181 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 	} while(0)
183 
184 
185 #define PROTECT_CTX_NOIRQ(c) \
186 	do {  \
187 		spin_lock(&(c)->ctx_lock); \
188 	} while(0)
189 
190 #define UNPROTECT_CTX_NOIRQ(c) \
191 	do { \
192 		spin_unlock(&(c)->ctx_lock); \
193 	} while(0)
194 
195 
196 #ifdef CONFIG_SMP
197 
198 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
201 
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) 	do {} while(0)
204 #define GET_ACTIVATION(t) 	do {} while(0)
205 #define INC_ACTIVATION(t) 	do {} while(0)
206 #endif /* CONFIG_SMP */
207 
208 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
211 
212 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 
215 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216 
217 /*
218  * cmp0 must be the value of pmc0
219  */
220 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
221 
222 #define PFMFS_MAGIC 0xa0b4d889
223 
224 /*
225  * debugging
226  */
227 #define PFM_DEBUGGING 1
228 #ifdef PFM_DEBUGGING
229 #define DPRINT(a) \
230 	do { \
231 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
232 	} while (0)
233 
234 #define DPRINT_ovfl(a) \
235 	do { \
236 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 	} while (0)
238 #endif
239 
240 /*
241  * 64-bit software counter structure
242  *
243  * the next_reset_type is applied to the next call to pfm_reset_regs()
244  */
245 typedef struct {
246 	unsigned long	val;		/* virtual 64bit counter value */
247 	unsigned long	lval;		/* last reset value */
248 	unsigned long	long_reset;	/* reset value on sampling overflow */
249 	unsigned long	short_reset;    /* reset value on overflow */
250 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
251 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
252 	unsigned long	seed;		/* seed for random-number generator */
253 	unsigned long	mask;		/* mask for random-number generator */
254 	unsigned int 	flags;		/* notify/do not notify */
255 	unsigned long	eventid;	/* overflow event identifier */
256 } pfm_counter_t;
257 
258 /*
259  * context flags
260  */
261 typedef struct {
262 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
263 	unsigned int system:1;		/* do system wide monitoring */
264 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
265 	unsigned int is_sampling:1;	/* true if using a custom format */
266 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
267 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
268 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
269 	unsigned int no_msg:1;		/* no message sent on overflow */
270 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
271 	unsigned int reserved:22;
272 } pfm_context_flags_t;
273 
274 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
275 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
277 
278 
279 /*
280  * perfmon context: encapsulates all the state of a monitoring session
281  */
282 
283 typedef struct pfm_context {
284 	spinlock_t		ctx_lock;		/* context protection */
285 
286 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
287 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
288 
289 	struct task_struct 	*ctx_task;		/* task to which context is attached */
290 
291 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
292 
293 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
294 
295 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
296 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
297 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
298 
299 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
300 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
301 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
302 
303 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
304 
305 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
306 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
307 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
308 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
309 
310 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311 
312 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
313 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
314 
315 	u64			ctx_saved_psr_up;	/* only contains psr.up value */
316 
317 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
318 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
319 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
320 
321 	int			ctx_fd;			/* file descriptor used my this context */
322 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
323 
324 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
325 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
326 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
327 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
328 
329 	wait_queue_head_t 	ctx_msgq_wait;
330 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
331 	int			ctx_msgq_head;
332 	int			ctx_msgq_tail;
333 	struct fasync_struct	*ctx_async_queue;
334 
335 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
336 } pfm_context_t;
337 
338 /*
339  * magic number used to verify that structure is really
340  * a perfmon context
341  */
342 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
343 
344 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
345 
346 #ifdef CONFIG_SMP
347 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
349 #else
350 #define SET_LAST_CPU(ctx, v)	do {} while(0)
351 #define GET_LAST_CPU(ctx)	do {} while(0)
352 #endif
353 
354 
355 #define ctx_fl_block		ctx_flags.block
356 #define ctx_fl_system		ctx_flags.system
357 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling	ctx_flags.is_sampling
359 #define ctx_fl_excl_idle	ctx_flags.excl_idle
360 #define ctx_fl_going_zombie	ctx_flags.going_zombie
361 #define ctx_fl_trap_reason	ctx_flags.trap_reason
362 #define ctx_fl_no_msg		ctx_flags.no_msg
363 #define ctx_fl_can_restart	ctx_flags.can_restart
364 
365 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
367 
368 /*
369  * global information about all sessions
370  * mostly used to synchronize between system wide and per-process
371  */
372 typedef struct {
373 	spinlock_t		pfs_lock;		   /* lock the structure */
374 
375 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
376 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
377 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
378 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
379 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380 } pfm_session_t;
381 
382 /*
383  * information about a PMC or PMD.
384  * dep_pmd[]: a bitmask of dependent PMD registers
385  * dep_pmc[]: a bitmask of dependent PMC registers
386  */
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388 typedef struct {
389 	unsigned int		type;
390 	int			pm_pos;
391 	unsigned long		default_value;	/* power-on default value */
392 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
393 	pfm_reg_check_t		read_check;
394 	pfm_reg_check_t		write_check;
395 	unsigned long		dep_pmd[4];
396 	unsigned long		dep_pmc[4];
397 } pfm_reg_desc_t;
398 
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401 
402 /*
403  * This structure is initialized at boot time and contains
404  * a description of the PMU main characteristics.
405  *
406  * If the probe function is defined, detection is based
407  * on its return value:
408  * 	- 0 means recognized PMU
409  * 	- anything else means not supported
410  * When the probe function is not defined, then the pmu_family field
411  * is used and it must match the host CPU family such that:
412  * 	- cpu->family & config->pmu_family != 0
413  */
414 typedef struct {
415 	unsigned long  ovfl_val;	/* overflow value for counters */
416 
417 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
418 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
419 
420 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
421 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
422 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
423 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
424 
425 	char	      *pmu_name;	/* PMU family name */
426 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
427 	unsigned int  flags;		/* pmu specific flags */
428 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
429 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
430 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
431 	int           (*probe)(void);   /* customized probe routine */
432 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
433 } pmu_config_t;
434 /*
435  * PMU specific flags
436  */
437 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
438 
439 /*
440  * debug register related type definitions
441  */
442 typedef struct {
443 	unsigned long ibr_mask:56;
444 	unsigned long ibr_plm:4;
445 	unsigned long ibr_ig:3;
446 	unsigned long ibr_x:1;
447 } ibr_mask_reg_t;
448 
449 typedef struct {
450 	unsigned long dbr_mask:56;
451 	unsigned long dbr_plm:4;
452 	unsigned long dbr_ig:2;
453 	unsigned long dbr_w:1;
454 	unsigned long dbr_r:1;
455 } dbr_mask_reg_t;
456 
457 typedef union {
458 	unsigned long  val;
459 	ibr_mask_reg_t ibr;
460 	dbr_mask_reg_t dbr;
461 } dbreg_t;
462 
463 
464 /*
465  * perfmon command descriptions
466  */
467 typedef struct {
468 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 	char		*cmd_name;
470 	int		cmd_flags;
471 	unsigned int	cmd_narg;
472 	size_t		cmd_argsize;
473 	int		(*cmd_getsize)(void *arg, size_t *sz);
474 } pfm_cmd_desc_t;
475 
476 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
478 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
479 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
480 
481 
482 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 
488 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
489 
490 typedef struct {
491 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
492 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
493 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
494 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
495 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
497 	unsigned long pfm_smpl_handler_calls;
498 	unsigned long pfm_smpl_handler_cycles;
499 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500 } pfm_stats_t;
501 
502 /*
503  * perfmon internal variables
504  */
505 static pfm_stats_t		pfm_stats[NR_CPUS];
506 static pfm_session_t		pfm_sessions;	/* global sessions information */
507 
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
510 
511 static struct proc_dir_entry 	*perfmon_dir;
512 static pfm_uuid_t		pfm_null_uuid = {0,};
513 
514 static spinlock_t		pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
516 
517 static pmu_config_t		*pmu_conf;
518 
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
522 
523 static ctl_table pfm_ctl_table[]={
524 	{
525 		.ctl_name	= CTL_UNNUMBERED,
526 		.procname	= "debug",
527 		.data		= &pfm_sysctl.debug,
528 		.maxlen		= sizeof(int),
529 		.mode		= 0666,
530 		.proc_handler	= &proc_dointvec,
531 	},
532 	{
533 		.ctl_name	= CTL_UNNUMBERED,
534 		.procname	= "debug_ovfl",
535 		.data		= &pfm_sysctl.debug_ovfl,
536 		.maxlen		= sizeof(int),
537 		.mode		= 0666,
538 		.proc_handler	= &proc_dointvec,
539 	},
540 	{
541 		.ctl_name	= CTL_UNNUMBERED,
542 		.procname	= "fastctxsw",
543 		.data		= &pfm_sysctl.fastctxsw,
544 		.maxlen		= sizeof(int),
545 		.mode		= 0600,
546 		.proc_handler	=  &proc_dointvec,
547 	},
548 	{
549 		.ctl_name	= CTL_UNNUMBERED,
550 		.procname	= "expert_mode",
551 		.data		= &pfm_sysctl.expert_mode,
552 		.maxlen		= sizeof(int),
553 		.mode		= 0600,
554 		.proc_handler	= &proc_dointvec,
555 	},
556 	{}
557 };
558 static ctl_table pfm_sysctl_dir[] = {
559 	{
560 		.ctl_name	= CTL_UNNUMBERED,
561 		.procname	= "perfmon",
562 		.mode		= 0555,
563 		.child		= pfm_ctl_table,
564 	},
565  	{}
566 };
567 static ctl_table pfm_sysctl_root[] = {
568 	{
569 		.ctl_name	= CTL_KERN,
570 		.procname	= "kernel",
571 		.mode		= 0555,
572 		.child		= pfm_sysctl_dir,
573 	},
574  	{}
575 };
576 static struct ctl_table_header *pfm_sysctl_header;
577 
578 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
579 
580 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
581 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
582 
583 static inline void
pfm_put_task(struct task_struct * task)584 pfm_put_task(struct task_struct *task)
585 {
586 	if (task != current) put_task_struct(task);
587 }
588 
589 static inline void
pfm_reserve_page(unsigned long a)590 pfm_reserve_page(unsigned long a)
591 {
592 	SetPageReserved(vmalloc_to_page((void *)a));
593 }
594 static inline void
pfm_unreserve_page(unsigned long a)595 pfm_unreserve_page(unsigned long a)
596 {
597 	ClearPageReserved(vmalloc_to_page((void*)a));
598 }
599 
600 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)601 pfm_protect_ctx_ctxsw(pfm_context_t *x)
602 {
603 	spin_lock(&(x)->ctx_lock);
604 	return 0UL;
605 }
606 
607 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)608 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
609 {
610 	spin_unlock(&(x)->ctx_lock);
611 }
612 
613 static inline unsigned int
pfm_do_munmap(struct mm_struct * mm,unsigned long addr,size_t len,int acct)614 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
615 {
616 	return do_munmap(mm, addr, len);
617 }
618 
619 static inline unsigned long
pfm_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,unsigned long exec)620 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
621 {
622 	return get_unmapped_area(file, addr, len, pgoff, flags);
623 }
624 
625 
626 static int
pfmfs_get_sb(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,struct vfsmount * mnt)627 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
628 	     struct vfsmount *mnt)
629 {
630 	return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
631 }
632 
633 static struct file_system_type pfm_fs_type = {
634 	.name     = "pfmfs",
635 	.get_sb   = pfmfs_get_sb,
636 	.kill_sb  = kill_anon_super,
637 };
638 
639 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
640 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
641 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
642 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
643 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
644 
645 
646 /* forward declaration */
647 static const struct file_operations pfm_file_ops;
648 
649 /*
650  * forward declarations
651  */
652 #ifndef CONFIG_SMP
653 static void pfm_lazy_save_regs (struct task_struct *ta);
654 #endif
655 
656 void dump_pmu_state(const char *);
657 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
658 
659 #include "perfmon_itanium.h"
660 #include "perfmon_mckinley.h"
661 #include "perfmon_montecito.h"
662 #include "perfmon_generic.h"
663 
664 static pmu_config_t *pmu_confs[]={
665 	&pmu_conf_mont,
666 	&pmu_conf_mck,
667 	&pmu_conf_ita,
668 	&pmu_conf_gen, /* must be last */
669 	NULL
670 };
671 
672 
673 static int pfm_end_notify_user(pfm_context_t *ctx);
674 
675 static inline void
pfm_clear_psr_pp(void)676 pfm_clear_psr_pp(void)
677 {
678 	ia64_rsm(IA64_PSR_PP);
679 	ia64_srlz_i();
680 }
681 
682 static inline void
pfm_set_psr_pp(void)683 pfm_set_psr_pp(void)
684 {
685 	ia64_ssm(IA64_PSR_PP);
686 	ia64_srlz_i();
687 }
688 
689 static inline void
pfm_clear_psr_up(void)690 pfm_clear_psr_up(void)
691 {
692 	ia64_rsm(IA64_PSR_UP);
693 	ia64_srlz_i();
694 }
695 
696 static inline void
pfm_set_psr_up(void)697 pfm_set_psr_up(void)
698 {
699 	ia64_ssm(IA64_PSR_UP);
700 	ia64_srlz_i();
701 }
702 
703 static inline unsigned long
pfm_get_psr(void)704 pfm_get_psr(void)
705 {
706 	unsigned long tmp;
707 	tmp = ia64_getreg(_IA64_REG_PSR);
708 	ia64_srlz_i();
709 	return tmp;
710 }
711 
712 static inline void
pfm_set_psr_l(unsigned long val)713 pfm_set_psr_l(unsigned long val)
714 {
715 	ia64_setreg(_IA64_REG_PSR_L, val);
716 	ia64_srlz_i();
717 }
718 
719 static inline void
pfm_freeze_pmu(void)720 pfm_freeze_pmu(void)
721 {
722 	ia64_set_pmc(0,1UL);
723 	ia64_srlz_d();
724 }
725 
726 static inline void
pfm_unfreeze_pmu(void)727 pfm_unfreeze_pmu(void)
728 {
729 	ia64_set_pmc(0,0UL);
730 	ia64_srlz_d();
731 }
732 
733 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)734 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
735 {
736 	int i;
737 
738 	for (i=0; i < nibrs; i++) {
739 		ia64_set_ibr(i, ibrs[i]);
740 		ia64_dv_serialize_instruction();
741 	}
742 	ia64_srlz_i();
743 }
744 
745 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)746 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
747 {
748 	int i;
749 
750 	for (i=0; i < ndbrs; i++) {
751 		ia64_set_dbr(i, dbrs[i]);
752 		ia64_dv_serialize_data();
753 	}
754 	ia64_srlz_d();
755 }
756 
757 /*
758  * PMD[i] must be a counter. no check is made
759  */
760 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)761 pfm_read_soft_counter(pfm_context_t *ctx, int i)
762 {
763 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
764 }
765 
766 /*
767  * PMD[i] must be a counter. no check is made
768  */
769 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)770 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
771 {
772 	unsigned long ovfl_val = pmu_conf->ovfl_val;
773 
774 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
775 	/*
776 	 * writing to unimplemented part is ignore, so we do not need to
777 	 * mask off top part
778 	 */
779 	ia64_set_pmd(i, val & ovfl_val);
780 }
781 
782 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)783 pfm_get_new_msg(pfm_context_t *ctx)
784 {
785 	int idx, next;
786 
787 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
788 
789 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
790 	if (next == ctx->ctx_msgq_head) return NULL;
791 
792  	idx = 	ctx->ctx_msgq_tail;
793 	ctx->ctx_msgq_tail = next;
794 
795 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
796 
797 	return ctx->ctx_msgq+idx;
798 }
799 
800 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)801 pfm_get_next_msg(pfm_context_t *ctx)
802 {
803 	pfm_msg_t *msg;
804 
805 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
806 
807 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
808 
809 	/*
810 	 * get oldest message
811 	 */
812 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
813 
814 	/*
815 	 * and move forward
816 	 */
817 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
818 
819 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
820 
821 	return msg;
822 }
823 
824 static void
pfm_reset_msgq(pfm_context_t * ctx)825 pfm_reset_msgq(pfm_context_t *ctx)
826 {
827 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
828 	DPRINT(("ctx=%p msgq reset\n", ctx));
829 }
830 
831 static void *
pfm_rvmalloc(unsigned long size)832 pfm_rvmalloc(unsigned long size)
833 {
834 	void *mem;
835 	unsigned long addr;
836 
837 	size = PAGE_ALIGN(size);
838 	mem  = vmalloc(size);
839 	if (mem) {
840 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
841 		memset(mem, 0, size);
842 		addr = (unsigned long)mem;
843 		while (size > 0) {
844 			pfm_reserve_page(addr);
845 			addr+=PAGE_SIZE;
846 			size-=PAGE_SIZE;
847 		}
848 	}
849 	return mem;
850 }
851 
852 static void
pfm_rvfree(void * mem,unsigned long size)853 pfm_rvfree(void *mem, unsigned long size)
854 {
855 	unsigned long addr;
856 
857 	if (mem) {
858 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
859 		addr = (unsigned long) mem;
860 		while ((long) size > 0) {
861 			pfm_unreserve_page(addr);
862 			addr+=PAGE_SIZE;
863 			size-=PAGE_SIZE;
864 		}
865 		vfree(mem);
866 	}
867 	return;
868 }
869 
870 static pfm_context_t *
pfm_context_alloc(int ctx_flags)871 pfm_context_alloc(int ctx_flags)
872 {
873 	pfm_context_t *ctx;
874 
875 	/*
876 	 * allocate context descriptor
877 	 * must be able to free with interrupts disabled
878 	 */
879 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
880 	if (ctx) {
881 		DPRINT(("alloc ctx @%p\n", ctx));
882 
883 		/*
884 		 * init context protection lock
885 		 */
886 		spin_lock_init(&ctx->ctx_lock);
887 
888 		/*
889 		 * context is unloaded
890 		 */
891 		ctx->ctx_state = PFM_CTX_UNLOADED;
892 
893 		/*
894 		 * initialization of context's flags
895 		 */
896 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
897 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
898 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
899 		/*
900 		 * will move to set properties
901 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
902 		 */
903 
904 		/*
905 		 * init restart semaphore to locked
906 		 */
907 		init_completion(&ctx->ctx_restart_done);
908 
909 		/*
910 		 * activation is used in SMP only
911 		 */
912 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
913 		SET_LAST_CPU(ctx, -1);
914 
915 		/*
916 		 * initialize notification message queue
917 		 */
918 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
919 		init_waitqueue_head(&ctx->ctx_msgq_wait);
920 		init_waitqueue_head(&ctx->ctx_zombieq);
921 
922 	}
923 	return ctx;
924 }
925 
926 static void
pfm_context_free(pfm_context_t * ctx)927 pfm_context_free(pfm_context_t *ctx)
928 {
929 	if (ctx) {
930 		DPRINT(("free ctx @%p\n", ctx));
931 		kfree(ctx);
932 	}
933 }
934 
935 static void
pfm_mask_monitoring(struct task_struct * task)936 pfm_mask_monitoring(struct task_struct *task)
937 {
938 	pfm_context_t *ctx = PFM_GET_CTX(task);
939 	unsigned long mask, val, ovfl_mask;
940 	int i;
941 
942 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
943 
944 	ovfl_mask = pmu_conf->ovfl_val;
945 	/*
946 	 * monitoring can only be masked as a result of a valid
947 	 * counter overflow. In UP, it means that the PMU still
948 	 * has an owner. Note that the owner can be different
949 	 * from the current task. However the PMU state belongs
950 	 * to the owner.
951 	 * In SMP, a valid overflow only happens when task is
952 	 * current. Therefore if we come here, we know that
953 	 * the PMU state belongs to the current task, therefore
954 	 * we can access the live registers.
955 	 *
956 	 * So in both cases, the live register contains the owner's
957 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
958 	 *
959 	 * As a consequence to this call, the ctx->th_pmds[] array
960 	 * contains stale information which must be ignored
961 	 * when context is reloaded AND monitoring is active (see
962 	 * pfm_restart).
963 	 */
964 	mask = ctx->ctx_used_pmds[0];
965 	for (i = 0; mask; i++, mask>>=1) {
966 		/* skip non used pmds */
967 		if ((mask & 0x1) == 0) continue;
968 		val = ia64_get_pmd(i);
969 
970 		if (PMD_IS_COUNTING(i)) {
971 			/*
972 		 	 * we rebuild the full 64 bit value of the counter
973 		 	 */
974 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
975 		} else {
976 			ctx->ctx_pmds[i].val = val;
977 		}
978 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
979 			i,
980 			ctx->ctx_pmds[i].val,
981 			val & ovfl_mask));
982 	}
983 	/*
984 	 * mask monitoring by setting the privilege level to 0
985 	 * we cannot use psr.pp/psr.up for this, it is controlled by
986 	 * the user
987 	 *
988 	 * if task is current, modify actual registers, otherwise modify
989 	 * thread save state, i.e., what will be restored in pfm_load_regs()
990 	 */
991 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
992 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
993 		if ((mask & 0x1) == 0UL) continue;
994 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
995 		ctx->th_pmcs[i] &= ~0xfUL;
996 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
997 	}
998 	/*
999 	 * make all of this visible
1000 	 */
1001 	ia64_srlz_d();
1002 }
1003 
1004 /*
1005  * must always be done with task == current
1006  *
1007  * context must be in MASKED state when calling
1008  */
1009 static void
pfm_restore_monitoring(struct task_struct * task)1010 pfm_restore_monitoring(struct task_struct *task)
1011 {
1012 	pfm_context_t *ctx = PFM_GET_CTX(task);
1013 	unsigned long mask, ovfl_mask;
1014 	unsigned long psr, val;
1015 	int i, is_system;
1016 
1017 	is_system = ctx->ctx_fl_system;
1018 	ovfl_mask = pmu_conf->ovfl_val;
1019 
1020 	if (task != current) {
1021 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1022 		return;
1023 	}
1024 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1025 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1026 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1027 		return;
1028 	}
1029 	psr = pfm_get_psr();
1030 	/*
1031 	 * monitoring is masked via the PMC.
1032 	 * As we restore their value, we do not want each counter to
1033 	 * restart right away. We stop monitoring using the PSR,
1034 	 * restore the PMC (and PMD) and then re-establish the psr
1035 	 * as it was. Note that there can be no pending overflow at
1036 	 * this point, because monitoring was MASKED.
1037 	 *
1038 	 * system-wide session are pinned and self-monitoring
1039 	 */
1040 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1041 		/* disable dcr pp */
1042 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1043 		pfm_clear_psr_pp();
1044 	} else {
1045 		pfm_clear_psr_up();
1046 	}
1047 	/*
1048 	 * first, we restore the PMD
1049 	 */
1050 	mask = ctx->ctx_used_pmds[0];
1051 	for (i = 0; mask; i++, mask>>=1) {
1052 		/* skip non used pmds */
1053 		if ((mask & 0x1) == 0) continue;
1054 
1055 		if (PMD_IS_COUNTING(i)) {
1056 			/*
1057 			 * we split the 64bit value according to
1058 			 * counter width
1059 			 */
1060 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1061 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1062 		} else {
1063 			val = ctx->ctx_pmds[i].val;
1064 		}
1065 		ia64_set_pmd(i, val);
1066 
1067 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1068 			i,
1069 			ctx->ctx_pmds[i].val,
1070 			val));
1071 	}
1072 	/*
1073 	 * restore the PMCs
1074 	 */
1075 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1076 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1077 		if ((mask & 0x1) == 0UL) continue;
1078 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1079 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1080 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1081 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1082 	}
1083 	ia64_srlz_d();
1084 
1085 	/*
1086 	 * must restore DBR/IBR because could be modified while masked
1087 	 * XXX: need to optimize
1088 	 */
1089 	if (ctx->ctx_fl_using_dbreg) {
1090 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1091 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1092 	}
1093 
1094 	/*
1095 	 * now restore PSR
1096 	 */
1097 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1098 		/* enable dcr pp */
1099 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1100 		ia64_srlz_i();
1101 	}
1102 	pfm_set_psr_l(psr);
1103 }
1104 
1105 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1106 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1107 {
1108 	int i;
1109 
1110 	ia64_srlz_d();
1111 
1112 	for (i=0; mask; i++, mask>>=1) {
1113 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1114 	}
1115 }
1116 
1117 /*
1118  * reload from thread state (used for ctxw only)
1119  */
1120 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1121 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1122 {
1123 	int i;
1124 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1125 
1126 	for (i=0; mask; i++, mask>>=1) {
1127 		if ((mask & 0x1) == 0) continue;
1128 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1129 		ia64_set_pmd(i, val);
1130 	}
1131 	ia64_srlz_d();
1132 }
1133 
1134 /*
1135  * propagate PMD from context to thread-state
1136  */
1137 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1138 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1139 {
1140 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1141 	unsigned long mask = ctx->ctx_all_pmds[0];
1142 	unsigned long val;
1143 	int i;
1144 
1145 	DPRINT(("mask=0x%lx\n", mask));
1146 
1147 	for (i=0; mask; i++, mask>>=1) {
1148 
1149 		val = ctx->ctx_pmds[i].val;
1150 
1151 		/*
1152 		 * We break up the 64 bit value into 2 pieces
1153 		 * the lower bits go to the machine state in the
1154 		 * thread (will be reloaded on ctxsw in).
1155 		 * The upper part stays in the soft-counter.
1156 		 */
1157 		if (PMD_IS_COUNTING(i)) {
1158 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1159 			 val &= ovfl_val;
1160 		}
1161 		ctx->th_pmds[i] = val;
1162 
1163 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1164 			i,
1165 			ctx->th_pmds[i],
1166 			ctx->ctx_pmds[i].val));
1167 	}
1168 }
1169 
1170 /*
1171  * propagate PMC from context to thread-state
1172  */
1173 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1174 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1175 {
1176 	unsigned long mask = ctx->ctx_all_pmcs[0];
1177 	int i;
1178 
1179 	DPRINT(("mask=0x%lx\n", mask));
1180 
1181 	for (i=0; mask; i++, mask>>=1) {
1182 		/* masking 0 with ovfl_val yields 0 */
1183 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1184 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1185 	}
1186 }
1187 
1188 
1189 
1190 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1191 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1192 {
1193 	int i;
1194 
1195 	for (i=0; mask; i++, mask>>=1) {
1196 		if ((mask & 0x1) == 0) continue;
1197 		ia64_set_pmc(i, pmcs[i]);
1198 	}
1199 	ia64_srlz_d();
1200 }
1201 
1202 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1203 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1204 {
1205 	return memcmp(a, b, sizeof(pfm_uuid_t));
1206 }
1207 
1208 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1209 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1210 {
1211 	int ret = 0;
1212 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1213 	return ret;
1214 }
1215 
1216 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1217 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1218 {
1219 	int ret = 0;
1220 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1221 	return ret;
1222 }
1223 
1224 
1225 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1226 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1227 		     int cpu, void *arg)
1228 {
1229 	int ret = 0;
1230 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1231 	return ret;
1232 }
1233 
1234 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1235 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1236 		     int cpu, void *arg)
1237 {
1238 	int ret = 0;
1239 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1240 	return ret;
1241 }
1242 
1243 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1244 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1245 {
1246 	int ret = 0;
1247 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1248 	return ret;
1249 }
1250 
1251 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1252 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1253 {
1254 	int ret = 0;
1255 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1256 	return ret;
1257 }
1258 
1259 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1260 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261 {
1262 	struct list_head * pos;
1263 	pfm_buffer_fmt_t * entry;
1264 
1265 	list_for_each(pos, &pfm_buffer_fmt_list) {
1266 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1267 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1268 			return entry;
1269 	}
1270 	return NULL;
1271 }
1272 
1273 /*
1274  * find a buffer format based on its uuid
1275  */
1276 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1277 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1278 {
1279 	pfm_buffer_fmt_t * fmt;
1280 	spin_lock(&pfm_buffer_fmt_lock);
1281 	fmt = __pfm_find_buffer_fmt(uuid);
1282 	spin_unlock(&pfm_buffer_fmt_lock);
1283 	return fmt;
1284 }
1285 
1286 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1287 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1288 {
1289 	int ret = 0;
1290 
1291 	/* some sanity checks */
1292 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1293 
1294 	/* we need at least a handler */
1295 	if (fmt->fmt_handler == NULL) return -EINVAL;
1296 
1297 	/*
1298 	 * XXX: need check validity of fmt_arg_size
1299 	 */
1300 
1301 	spin_lock(&pfm_buffer_fmt_lock);
1302 
1303 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1304 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1305 		ret = -EBUSY;
1306 		goto out;
1307 	}
1308 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1309 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1310 
1311 out:
1312 	spin_unlock(&pfm_buffer_fmt_lock);
1313  	return ret;
1314 }
1315 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1316 
1317 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1318 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1319 {
1320 	pfm_buffer_fmt_t *fmt;
1321 	int ret = 0;
1322 
1323 	spin_lock(&pfm_buffer_fmt_lock);
1324 
1325 	fmt = __pfm_find_buffer_fmt(uuid);
1326 	if (!fmt) {
1327 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1328 		ret = -EINVAL;
1329 		goto out;
1330 	}
1331 	list_del_init(&fmt->fmt_list);
1332 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1333 
1334 out:
1335 	spin_unlock(&pfm_buffer_fmt_lock);
1336 	return ret;
1337 
1338 }
1339 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1340 
1341 extern void update_pal_halt_status(int);
1342 
1343 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1344 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1345 {
1346 	unsigned long flags;
1347 	/*
1348 	 * validity checks on cpu_mask have been done upstream
1349 	 */
1350 	LOCK_PFS(flags);
1351 
1352 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1353 		pfm_sessions.pfs_sys_sessions,
1354 		pfm_sessions.pfs_task_sessions,
1355 		pfm_sessions.pfs_sys_use_dbregs,
1356 		is_syswide,
1357 		cpu));
1358 
1359 	if (is_syswide) {
1360 		/*
1361 		 * cannot mix system wide and per-task sessions
1362 		 */
1363 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1364 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1365 			  	pfm_sessions.pfs_task_sessions));
1366 			goto abort;
1367 		}
1368 
1369 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1370 
1371 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1372 
1373 		pfm_sessions.pfs_sys_session[cpu] = task;
1374 
1375 		pfm_sessions.pfs_sys_sessions++ ;
1376 
1377 	} else {
1378 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1379 		pfm_sessions.pfs_task_sessions++;
1380 	}
1381 
1382 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1383 		pfm_sessions.pfs_sys_sessions,
1384 		pfm_sessions.pfs_task_sessions,
1385 		pfm_sessions.pfs_sys_use_dbregs,
1386 		is_syswide,
1387 		cpu));
1388 
1389 	/*
1390 	 * disable default_idle() to go to PAL_HALT
1391 	 */
1392 	update_pal_halt_status(0);
1393 
1394 	UNLOCK_PFS(flags);
1395 
1396 	return 0;
1397 
1398 error_conflict:
1399 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1400   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1401 		cpu));
1402 abort:
1403 	UNLOCK_PFS(flags);
1404 
1405 	return -EBUSY;
1406 
1407 }
1408 
1409 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1410 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1411 {
1412 	unsigned long flags;
1413 	/*
1414 	 * validity checks on cpu_mask have been done upstream
1415 	 */
1416 	LOCK_PFS(flags);
1417 
1418 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1419 		pfm_sessions.pfs_sys_sessions,
1420 		pfm_sessions.pfs_task_sessions,
1421 		pfm_sessions.pfs_sys_use_dbregs,
1422 		is_syswide,
1423 		cpu));
1424 
1425 
1426 	if (is_syswide) {
1427 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1428 		/*
1429 		 * would not work with perfmon+more than one bit in cpu_mask
1430 		 */
1431 		if (ctx && ctx->ctx_fl_using_dbreg) {
1432 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1433 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1434 			} else {
1435 				pfm_sessions.pfs_sys_use_dbregs--;
1436 			}
1437 		}
1438 		pfm_sessions.pfs_sys_sessions--;
1439 	} else {
1440 		pfm_sessions.pfs_task_sessions--;
1441 	}
1442 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1443 		pfm_sessions.pfs_sys_sessions,
1444 		pfm_sessions.pfs_task_sessions,
1445 		pfm_sessions.pfs_sys_use_dbregs,
1446 		is_syswide,
1447 		cpu));
1448 
1449 	/*
1450 	 * if possible, enable default_idle() to go into PAL_HALT
1451 	 */
1452 	if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1453 		update_pal_halt_status(1);
1454 
1455 	UNLOCK_PFS(flags);
1456 
1457 	return 0;
1458 }
1459 
1460 /*
1461  * removes virtual mapping of the sampling buffer.
1462  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1463  * a PROTECT_CTX() section.
1464  */
1465 static int
pfm_remove_smpl_mapping(struct task_struct * task,void * vaddr,unsigned long size)1466 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1467 {
1468 	int r;
1469 
1470 	/* sanity checks */
1471 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1472 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1473 		return -EINVAL;
1474 	}
1475 
1476 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1477 
1478 	/*
1479 	 * does the actual unmapping
1480 	 */
1481 	down_write(&task->mm->mmap_sem);
1482 
1483 	DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1484 
1485 	r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1486 
1487 	up_write(&task->mm->mmap_sem);
1488 	if (r !=0) {
1489 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1490 	}
1491 
1492 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * free actual physical storage used by sampling buffer
1499  */
1500 #if 0
1501 static int
1502 pfm_free_smpl_buffer(pfm_context_t *ctx)
1503 {
1504 	pfm_buffer_fmt_t *fmt;
1505 
1506 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1507 
1508 	/*
1509 	 * we won't use the buffer format anymore
1510 	 */
1511 	fmt = ctx->ctx_buf_fmt;
1512 
1513 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1514 		ctx->ctx_smpl_hdr,
1515 		ctx->ctx_smpl_size,
1516 		ctx->ctx_smpl_vaddr));
1517 
1518 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1519 
1520 	/*
1521 	 * free the buffer
1522 	 */
1523 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1524 
1525 	ctx->ctx_smpl_hdr  = NULL;
1526 	ctx->ctx_smpl_size = 0UL;
1527 
1528 	return 0;
1529 
1530 invalid_free:
1531 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1532 	return -EINVAL;
1533 }
1534 #endif
1535 
1536 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1537 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1538 {
1539 	if (fmt == NULL) return;
1540 
1541 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1542 
1543 }
1544 
1545 /*
1546  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1547  * no real gain from having the whole whorehouse mounted. So we don't need
1548  * any operations on the root directory. However, we need a non-trivial
1549  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1550  */
1551 static struct vfsmount *pfmfs_mnt;
1552 
1553 static int __init
init_pfm_fs(void)1554 init_pfm_fs(void)
1555 {
1556 	int err = register_filesystem(&pfm_fs_type);
1557 	if (!err) {
1558 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1559 		err = PTR_ERR(pfmfs_mnt);
1560 		if (IS_ERR(pfmfs_mnt))
1561 			unregister_filesystem(&pfm_fs_type);
1562 		else
1563 			err = 0;
1564 	}
1565 	return err;
1566 }
1567 
1568 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1569 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1570 {
1571 	pfm_context_t *ctx;
1572 	pfm_msg_t *msg;
1573 	ssize_t ret;
1574 	unsigned long flags;
1575   	DECLARE_WAITQUEUE(wait, current);
1576 	if (PFM_IS_FILE(filp) == 0) {
1577 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1578 		return -EINVAL;
1579 	}
1580 
1581 	ctx = (pfm_context_t *)filp->private_data;
1582 	if (ctx == NULL) {
1583 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1584 		return -EINVAL;
1585 	}
1586 
1587 	/*
1588 	 * check even when there is no message
1589 	 */
1590 	if (size < sizeof(pfm_msg_t)) {
1591 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1592 		return -EINVAL;
1593 	}
1594 
1595 	PROTECT_CTX(ctx, flags);
1596 
1597   	/*
1598 	 * put ourselves on the wait queue
1599 	 */
1600   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1601 
1602 
1603   	for(;;) {
1604 		/*
1605 		 * check wait queue
1606 		 */
1607 
1608   		set_current_state(TASK_INTERRUPTIBLE);
1609 
1610 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1611 
1612 		ret = 0;
1613 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1614 
1615 		UNPROTECT_CTX(ctx, flags);
1616 
1617 		/*
1618 		 * check non-blocking read
1619 		 */
1620       		ret = -EAGAIN;
1621 		if(filp->f_flags & O_NONBLOCK) break;
1622 
1623 		/*
1624 		 * check pending signals
1625 		 */
1626 		if(signal_pending(current)) {
1627 			ret = -EINTR;
1628 			break;
1629 		}
1630       		/*
1631 		 * no message, so wait
1632 		 */
1633       		schedule();
1634 
1635 		PROTECT_CTX(ctx, flags);
1636 	}
1637 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1638   	set_current_state(TASK_RUNNING);
1639 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1640 
1641 	if (ret < 0) goto abort;
1642 
1643 	ret = -EINVAL;
1644 	msg = pfm_get_next_msg(ctx);
1645 	if (msg == NULL) {
1646 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1647 		goto abort_locked;
1648 	}
1649 
1650 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1651 
1652 	ret = -EFAULT;
1653   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1654 
1655 abort_locked:
1656 	UNPROTECT_CTX(ctx, flags);
1657 abort:
1658 	return ret;
1659 }
1660 
1661 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1662 pfm_write(struct file *file, const char __user *ubuf,
1663 			  size_t size, loff_t *ppos)
1664 {
1665 	DPRINT(("pfm_write called\n"));
1666 	return -EINVAL;
1667 }
1668 
1669 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1670 pfm_poll(struct file *filp, poll_table * wait)
1671 {
1672 	pfm_context_t *ctx;
1673 	unsigned long flags;
1674 	unsigned int mask = 0;
1675 
1676 	if (PFM_IS_FILE(filp) == 0) {
1677 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1678 		return 0;
1679 	}
1680 
1681 	ctx = (pfm_context_t *)filp->private_data;
1682 	if (ctx == NULL) {
1683 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1684 		return 0;
1685 	}
1686 
1687 
1688 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1689 
1690 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1691 
1692 	PROTECT_CTX(ctx, flags);
1693 
1694 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1695 		mask =  POLLIN | POLLRDNORM;
1696 
1697 	UNPROTECT_CTX(ctx, flags);
1698 
1699 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1700 
1701 	return mask;
1702 }
1703 
1704 static int
pfm_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)1705 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1706 {
1707 	DPRINT(("pfm_ioctl called\n"));
1708 	return -EINVAL;
1709 }
1710 
1711 /*
1712  * interrupt cannot be masked when coming here
1713  */
1714 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1715 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1716 {
1717 	int ret;
1718 
1719 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1720 
1721 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1722 		task_pid_nr(current),
1723 		fd,
1724 		on,
1725 		ctx->ctx_async_queue, ret));
1726 
1727 	return ret;
1728 }
1729 
1730 static int
pfm_fasync(int fd,struct file * filp,int on)1731 pfm_fasync(int fd, struct file *filp, int on)
1732 {
1733 	pfm_context_t *ctx;
1734 	int ret;
1735 
1736 	if (PFM_IS_FILE(filp) == 0) {
1737 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1738 		return -EBADF;
1739 	}
1740 
1741 	ctx = (pfm_context_t *)filp->private_data;
1742 	if (ctx == NULL) {
1743 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1744 		return -EBADF;
1745 	}
1746 	/*
1747 	 * we cannot mask interrupts during this call because this may
1748 	 * may go to sleep if memory is not readily avalaible.
1749 	 *
1750 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1751 	 * done in caller. Serialization of this function is ensured by caller.
1752 	 */
1753 	ret = pfm_do_fasync(fd, filp, ctx, on);
1754 
1755 
1756 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1757 		fd,
1758 		on,
1759 		ctx->ctx_async_queue, ret));
1760 
1761 	return ret;
1762 }
1763 
1764 #ifdef CONFIG_SMP
1765 /*
1766  * this function is exclusively called from pfm_close().
1767  * The context is not protected at that time, nor are interrupts
1768  * on the remote CPU. That's necessary to avoid deadlocks.
1769  */
1770 static void
pfm_syswide_force_stop(void * info)1771 pfm_syswide_force_stop(void *info)
1772 {
1773 	pfm_context_t   *ctx = (pfm_context_t *)info;
1774 	struct pt_regs *regs = task_pt_regs(current);
1775 	struct task_struct *owner;
1776 	unsigned long flags;
1777 	int ret;
1778 
1779 	if (ctx->ctx_cpu != smp_processor_id()) {
1780 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1781 			ctx->ctx_cpu,
1782 			smp_processor_id());
1783 		return;
1784 	}
1785 	owner = GET_PMU_OWNER();
1786 	if (owner != ctx->ctx_task) {
1787 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1788 			smp_processor_id(),
1789 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1790 		return;
1791 	}
1792 	if (GET_PMU_CTX() != ctx) {
1793 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1794 			smp_processor_id(),
1795 			GET_PMU_CTX(), ctx);
1796 		return;
1797 	}
1798 
1799 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1800 	/*
1801 	 * the context is already protected in pfm_close(), we simply
1802 	 * need to mask interrupts to avoid a PMU interrupt race on
1803 	 * this CPU
1804 	 */
1805 	local_irq_save(flags);
1806 
1807 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1808 	if (ret) {
1809 		DPRINT(("context_unload returned %d\n", ret));
1810 	}
1811 
1812 	/*
1813 	 * unmask interrupts, PMU interrupts are now spurious here
1814 	 */
1815 	local_irq_restore(flags);
1816 }
1817 
1818 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1819 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1820 {
1821 	int ret;
1822 
1823 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1824 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1825 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1826 }
1827 #endif /* CONFIG_SMP */
1828 
1829 /*
1830  * called for each close(). Partially free resources.
1831  * When caller is self-monitoring, the context is unloaded.
1832  */
1833 static int
pfm_flush(struct file * filp,fl_owner_t id)1834 pfm_flush(struct file *filp, fl_owner_t id)
1835 {
1836 	pfm_context_t *ctx;
1837 	struct task_struct *task;
1838 	struct pt_regs *regs;
1839 	unsigned long flags;
1840 	unsigned long smpl_buf_size = 0UL;
1841 	void *smpl_buf_vaddr = NULL;
1842 	int state, is_system;
1843 
1844 	if (PFM_IS_FILE(filp) == 0) {
1845 		DPRINT(("bad magic for\n"));
1846 		return -EBADF;
1847 	}
1848 
1849 	ctx = (pfm_context_t *)filp->private_data;
1850 	if (ctx == NULL) {
1851 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1852 		return -EBADF;
1853 	}
1854 
1855 	/*
1856 	 * remove our file from the async queue, if we use this mode.
1857 	 * This can be done without the context being protected. We come
1858 	 * here when the context has become unreachable by other tasks.
1859 	 *
1860 	 * We may still have active monitoring at this point and we may
1861 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1862 	 * operates with interrupts disabled and it cleans up the
1863 	 * queue. If the PMU handler is called prior to entering
1864 	 * fasync_helper() then it will send a signal. If it is
1865 	 * invoked after, it will find an empty queue and no
1866 	 * signal will be sent. In both case, we are safe
1867 	 */
1868 	PROTECT_CTX(ctx, flags);
1869 
1870 	state     = ctx->ctx_state;
1871 	is_system = ctx->ctx_fl_system;
1872 
1873 	task = PFM_CTX_TASK(ctx);
1874 	regs = task_pt_regs(task);
1875 
1876 	DPRINT(("ctx_state=%d is_current=%d\n",
1877 		state,
1878 		task == current ? 1 : 0));
1879 
1880 	/*
1881 	 * if state == UNLOADED, then task is NULL
1882 	 */
1883 
1884 	/*
1885 	 * we must stop and unload because we are losing access to the context.
1886 	 */
1887 	if (task == current) {
1888 #ifdef CONFIG_SMP
1889 		/*
1890 		 * the task IS the owner but it migrated to another CPU: that's bad
1891 		 * but we must handle this cleanly. Unfortunately, the kernel does
1892 		 * not provide a mechanism to block migration (while the context is loaded).
1893 		 *
1894 		 * We need to release the resource on the ORIGINAL cpu.
1895 		 */
1896 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1897 
1898 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1899 			/*
1900 			 * keep context protected but unmask interrupt for IPI
1901 			 */
1902 			local_irq_restore(flags);
1903 
1904 			pfm_syswide_cleanup_other_cpu(ctx);
1905 
1906 			/*
1907 			 * restore interrupt masking
1908 			 */
1909 			local_irq_save(flags);
1910 
1911 			/*
1912 			 * context is unloaded at this point
1913 			 */
1914 		} else
1915 #endif /* CONFIG_SMP */
1916 		{
1917 
1918 			DPRINT(("forcing unload\n"));
1919 			/*
1920 		 	* stop and unload, returning with state UNLOADED
1921 		 	* and session unreserved.
1922 		 	*/
1923 			pfm_context_unload(ctx, NULL, 0, regs);
1924 
1925 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1926 		}
1927 	}
1928 
1929 	/*
1930 	 * remove virtual mapping, if any, for the calling task.
1931 	 * cannot reset ctx field until last user is calling close().
1932 	 *
1933 	 * ctx_smpl_vaddr must never be cleared because it is needed
1934 	 * by every task with access to the context
1935 	 *
1936 	 * When called from do_exit(), the mm context is gone already, therefore
1937 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1938 	 * do anything here
1939 	 */
1940 	if (ctx->ctx_smpl_vaddr && current->mm) {
1941 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1942 		smpl_buf_size  = ctx->ctx_smpl_size;
1943 	}
1944 
1945 	UNPROTECT_CTX(ctx, flags);
1946 
1947 	/*
1948 	 * if there was a mapping, then we systematically remove it
1949 	 * at this point. Cannot be done inside critical section
1950 	 * because some VM function reenables interrupts.
1951 	 *
1952 	 */
1953 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1954 
1955 	return 0;
1956 }
1957 /*
1958  * called either on explicit close() or from exit_files().
1959  * Only the LAST user of the file gets to this point, i.e., it is
1960  * called only ONCE.
1961  *
1962  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1963  * (fput()),i.e, last task to access the file. Nobody else can access the
1964  * file at this point.
1965  *
1966  * When called from exit_files(), the VMA has been freed because exit_mm()
1967  * is executed before exit_files().
1968  *
1969  * When called from exit_files(), the current task is not yet ZOMBIE but we
1970  * flush the PMU state to the context.
1971  */
1972 static int
pfm_close(struct inode * inode,struct file * filp)1973 pfm_close(struct inode *inode, struct file *filp)
1974 {
1975 	pfm_context_t *ctx;
1976 	struct task_struct *task;
1977 	struct pt_regs *regs;
1978   	DECLARE_WAITQUEUE(wait, current);
1979 	unsigned long flags;
1980 	unsigned long smpl_buf_size = 0UL;
1981 	void *smpl_buf_addr = NULL;
1982 	int free_possible = 1;
1983 	int state, is_system;
1984 
1985 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1986 
1987 	if (PFM_IS_FILE(filp) == 0) {
1988 		DPRINT(("bad magic\n"));
1989 		return -EBADF;
1990 	}
1991 
1992 	ctx = (pfm_context_t *)filp->private_data;
1993 	if (ctx == NULL) {
1994 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1995 		return -EBADF;
1996 	}
1997 
1998 	PROTECT_CTX(ctx, flags);
1999 
2000 	state     = ctx->ctx_state;
2001 	is_system = ctx->ctx_fl_system;
2002 
2003 	task = PFM_CTX_TASK(ctx);
2004 	regs = task_pt_regs(task);
2005 
2006 	DPRINT(("ctx_state=%d is_current=%d\n",
2007 		state,
2008 		task == current ? 1 : 0));
2009 
2010 	/*
2011 	 * if task == current, then pfm_flush() unloaded the context
2012 	 */
2013 	if (state == PFM_CTX_UNLOADED) goto doit;
2014 
2015 	/*
2016 	 * context is loaded/masked and task != current, we need to
2017 	 * either force an unload or go zombie
2018 	 */
2019 
2020 	/*
2021 	 * The task is currently blocked or will block after an overflow.
2022 	 * we must force it to wakeup to get out of the
2023 	 * MASKED state and transition to the unloaded state by itself.
2024 	 *
2025 	 * This situation is only possible for per-task mode
2026 	 */
2027 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2028 
2029 		/*
2030 		 * set a "partial" zombie state to be checked
2031 		 * upon return from down() in pfm_handle_work().
2032 		 *
2033 		 * We cannot use the ZOMBIE state, because it is checked
2034 		 * by pfm_load_regs() which is called upon wakeup from down().
2035 		 * In such case, it would free the context and then we would
2036 		 * return to pfm_handle_work() which would access the
2037 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2038 		 * but visible to pfm_handle_work().
2039 		 *
2040 		 * For some window of time, we have a zombie context with
2041 		 * ctx_state = MASKED  and not ZOMBIE
2042 		 */
2043 		ctx->ctx_fl_going_zombie = 1;
2044 
2045 		/*
2046 		 * force task to wake up from MASKED state
2047 		 */
2048 		complete(&ctx->ctx_restart_done);
2049 
2050 		DPRINT(("waking up ctx_state=%d\n", state));
2051 
2052 		/*
2053 		 * put ourself to sleep waiting for the other
2054 		 * task to report completion
2055 		 *
2056 		 * the context is protected by mutex, therefore there
2057 		 * is no risk of being notified of completion before
2058 		 * begin actually on the waitq.
2059 		 */
2060   		set_current_state(TASK_INTERRUPTIBLE);
2061   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2062 
2063 		UNPROTECT_CTX(ctx, flags);
2064 
2065 		/*
2066 		 * XXX: check for signals :
2067 		 * 	- ok for explicit close
2068 		 * 	- not ok when coming from exit_files()
2069 		 */
2070       		schedule();
2071 
2072 
2073 		PROTECT_CTX(ctx, flags);
2074 
2075 
2076 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2077   		set_current_state(TASK_RUNNING);
2078 
2079 		/*
2080 		 * context is unloaded at this point
2081 		 */
2082 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2083 	}
2084 	else if (task != current) {
2085 #ifdef CONFIG_SMP
2086 		/*
2087 	 	 * switch context to zombie state
2088 	 	 */
2089 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2090 
2091 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2092 		/*
2093 		 * cannot free the context on the spot. deferred until
2094 		 * the task notices the ZOMBIE state
2095 		 */
2096 		free_possible = 0;
2097 #else
2098 		pfm_context_unload(ctx, NULL, 0, regs);
2099 #endif
2100 	}
2101 
2102 doit:
2103 	/* reload state, may have changed during  opening of critical section */
2104 	state = ctx->ctx_state;
2105 
2106 	/*
2107 	 * the context is still attached to a task (possibly current)
2108 	 * we cannot destroy it right now
2109 	 */
2110 
2111 	/*
2112 	 * we must free the sampling buffer right here because
2113 	 * we cannot rely on it being cleaned up later by the
2114 	 * monitored task. It is not possible to free vmalloc'ed
2115 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2116 	 * now. should there be subsequent PMU overflow originally
2117 	 * meant for sampling, the will be converted to spurious
2118 	 * and that's fine because the monitoring tools is gone anyway.
2119 	 */
2120 	if (ctx->ctx_smpl_hdr) {
2121 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2122 		smpl_buf_size = ctx->ctx_smpl_size;
2123 		/* no more sampling */
2124 		ctx->ctx_smpl_hdr = NULL;
2125 		ctx->ctx_fl_is_sampling = 0;
2126 	}
2127 
2128 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2129 		state,
2130 		free_possible,
2131 		smpl_buf_addr,
2132 		smpl_buf_size));
2133 
2134 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2135 
2136 	/*
2137 	 * UNLOADED that the session has already been unreserved.
2138 	 */
2139 	if (state == PFM_CTX_ZOMBIE) {
2140 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2141 	}
2142 
2143 	/*
2144 	 * disconnect file descriptor from context must be done
2145 	 * before we unlock.
2146 	 */
2147 	filp->private_data = NULL;
2148 
2149 	/*
2150 	 * if we free on the spot, the context is now completely unreachable
2151 	 * from the callers side. The monitored task side is also cut, so we
2152 	 * can freely cut.
2153 	 *
2154 	 * If we have a deferred free, only the caller side is disconnected.
2155 	 */
2156 	UNPROTECT_CTX(ctx, flags);
2157 
2158 	/*
2159 	 * All memory free operations (especially for vmalloc'ed memory)
2160 	 * MUST be done with interrupts ENABLED.
2161 	 */
2162 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2163 
2164 	/*
2165 	 * return the memory used by the context
2166 	 */
2167 	if (free_possible) pfm_context_free(ctx);
2168 
2169 	return 0;
2170 }
2171 
2172 static int
pfm_no_open(struct inode * irrelevant,struct file * dontcare)2173 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2174 {
2175 	DPRINT(("pfm_no_open called\n"));
2176 	return -ENXIO;
2177 }
2178 
2179 
2180 
2181 static const struct file_operations pfm_file_ops = {
2182 	.llseek   = no_llseek,
2183 	.read     = pfm_read,
2184 	.write    = pfm_write,
2185 	.poll     = pfm_poll,
2186 	.ioctl    = pfm_ioctl,
2187 	.open     = pfm_no_open,	/* special open code to disallow open via /proc */
2188 	.fasync   = pfm_fasync,
2189 	.release  = pfm_close,
2190 	.flush	  = pfm_flush
2191 };
2192 
2193 static int
pfmfs_delete_dentry(struct dentry * dentry)2194 pfmfs_delete_dentry(struct dentry *dentry)
2195 {
2196 	return 1;
2197 }
2198 
2199 static struct dentry_operations pfmfs_dentry_operations = {
2200 	.d_delete = pfmfs_delete_dentry,
2201 };
2202 
2203 
2204 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2205 pfm_alloc_file(pfm_context_t *ctx)
2206 {
2207 	struct file *file;
2208 	struct inode *inode;
2209 	struct dentry *dentry;
2210 	char name[32];
2211 	struct qstr this;
2212 
2213 	/*
2214 	 * allocate a new inode
2215 	 */
2216 	inode = new_inode(pfmfs_mnt->mnt_sb);
2217 	if (!inode)
2218 		return ERR_PTR(-ENOMEM);
2219 
2220 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2221 
2222 	inode->i_mode = S_IFCHR|S_IRUGO;
2223 	inode->i_uid  = current_fsuid();
2224 	inode->i_gid  = current_fsgid();
2225 
2226 	sprintf(name, "[%lu]", inode->i_ino);
2227 	this.name = name;
2228 	this.len  = strlen(name);
2229 	this.hash = inode->i_ino;
2230 
2231 	/*
2232 	 * allocate a new dcache entry
2233 	 */
2234 	dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2235 	if (!dentry) {
2236 		iput(inode);
2237 		return ERR_PTR(-ENOMEM);
2238 	}
2239 
2240 	dentry->d_op = &pfmfs_dentry_operations;
2241 	d_add(dentry, inode);
2242 
2243 	file = alloc_file(pfmfs_mnt, dentry, FMODE_READ, &pfm_file_ops);
2244 	if (!file) {
2245 		dput(dentry);
2246 		return ERR_PTR(-ENFILE);
2247 	}
2248 
2249 	file->f_flags = O_RDONLY;
2250 	file->private_data = ctx;
2251 
2252 	return file;
2253 }
2254 
2255 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2256 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2257 {
2258 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2259 
2260 	while (size > 0) {
2261 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2262 
2263 
2264 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2265 			return -ENOMEM;
2266 
2267 		addr  += PAGE_SIZE;
2268 		buf   += PAGE_SIZE;
2269 		size  -= PAGE_SIZE;
2270 	}
2271 	return 0;
2272 }
2273 
2274 /*
2275  * allocate a sampling buffer and remaps it into the user address space of the task
2276  */
2277 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2278 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2279 {
2280 	struct mm_struct *mm = task->mm;
2281 	struct vm_area_struct *vma = NULL;
2282 	unsigned long size;
2283 	void *smpl_buf;
2284 
2285 
2286 	/*
2287 	 * the fixed header + requested size and align to page boundary
2288 	 */
2289 	size = PAGE_ALIGN(rsize);
2290 
2291 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2292 
2293 	/*
2294 	 * check requested size to avoid Denial-of-service attacks
2295 	 * XXX: may have to refine this test
2296 	 * Check against address space limit.
2297 	 *
2298 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2299 	 * 	return -ENOMEM;
2300 	 */
2301 	if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2302 		return -ENOMEM;
2303 
2304 	/*
2305 	 * We do the easy to undo allocations first.
2306  	 *
2307 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2308 	 */
2309 	smpl_buf = pfm_rvmalloc(size);
2310 	if (smpl_buf == NULL) {
2311 		DPRINT(("Can't allocate sampling buffer\n"));
2312 		return -ENOMEM;
2313 	}
2314 
2315 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2316 
2317 	/* allocate vma */
2318 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2319 	if (!vma) {
2320 		DPRINT(("Cannot allocate vma\n"));
2321 		goto error_kmem;
2322 	}
2323 
2324 	/*
2325 	 * partially initialize the vma for the sampling buffer
2326 	 */
2327 	vma->vm_mm	     = mm;
2328 	vma->vm_file	     = filp;
2329 	vma->vm_flags	     = VM_READ| VM_MAYREAD |VM_RESERVED;
2330 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2331 
2332 	/*
2333 	 * Now we have everything we need and we can initialize
2334 	 * and connect all the data structures
2335 	 */
2336 
2337 	ctx->ctx_smpl_hdr   = smpl_buf;
2338 	ctx->ctx_smpl_size  = size; /* aligned size */
2339 
2340 	/*
2341 	 * Let's do the difficult operations next.
2342 	 *
2343 	 * now we atomically find some area in the address space and
2344 	 * remap the buffer in it.
2345 	 */
2346 	down_write(&task->mm->mmap_sem);
2347 
2348 	/* find some free area in address space, must have mmap sem held */
2349 	vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2350 	if (vma->vm_start == 0UL) {
2351 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2352 		up_write(&task->mm->mmap_sem);
2353 		goto error;
2354 	}
2355 	vma->vm_end = vma->vm_start + size;
2356 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2357 
2358 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2359 
2360 	/* can only be applied to current task, need to have the mm semaphore held when called */
2361 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2362 		DPRINT(("Can't remap buffer\n"));
2363 		up_write(&task->mm->mmap_sem);
2364 		goto error;
2365 	}
2366 
2367 	get_file(filp);
2368 
2369 	/*
2370 	 * now insert the vma in the vm list for the process, must be
2371 	 * done with mmap lock held
2372 	 */
2373 	insert_vm_struct(mm, vma);
2374 
2375 	mm->total_vm  += size >> PAGE_SHIFT;
2376 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2377 							vma_pages(vma));
2378 	up_write(&task->mm->mmap_sem);
2379 
2380 	/*
2381 	 * keep track of user level virtual address
2382 	 */
2383 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2384 	*(unsigned long *)user_vaddr = vma->vm_start;
2385 
2386 	return 0;
2387 
2388 error:
2389 	kmem_cache_free(vm_area_cachep, vma);
2390 error_kmem:
2391 	pfm_rvfree(smpl_buf, size);
2392 
2393 	return -ENOMEM;
2394 }
2395 
2396 /*
2397  * XXX: do something better here
2398  */
2399 static int
pfm_bad_permissions(struct task_struct * task)2400 pfm_bad_permissions(struct task_struct *task)
2401 {
2402 	const struct cred *tcred;
2403 	uid_t uid = current_uid();
2404 	gid_t gid = current_gid();
2405 	int ret;
2406 
2407 	rcu_read_lock();
2408 	tcred = __task_cred(task);
2409 
2410 	/* inspired by ptrace_attach() */
2411 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2412 		uid,
2413 		gid,
2414 		tcred->euid,
2415 		tcred->suid,
2416 		tcred->uid,
2417 		tcred->egid,
2418 		tcred->sgid));
2419 
2420 	ret = ((uid != tcred->euid)
2421 	       || (uid != tcred->suid)
2422 	       || (uid != tcred->uid)
2423 	       || (gid != tcred->egid)
2424 	       || (gid != tcred->sgid)
2425 	       || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2426 
2427 	rcu_read_unlock();
2428 	return ret;
2429 }
2430 
2431 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2432 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2433 {
2434 	int ctx_flags;
2435 
2436 	/* valid signal */
2437 
2438 	ctx_flags = pfx->ctx_flags;
2439 
2440 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2441 
2442 		/*
2443 		 * cannot block in this mode
2444 		 */
2445 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2446 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2447 			return -EINVAL;
2448 		}
2449 	} else {
2450 	}
2451 	/* probably more to add here */
2452 
2453 	return 0;
2454 }
2455 
2456 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2457 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2458 		     unsigned int cpu, pfarg_context_t *arg)
2459 {
2460 	pfm_buffer_fmt_t *fmt = NULL;
2461 	unsigned long size = 0UL;
2462 	void *uaddr = NULL;
2463 	void *fmt_arg = NULL;
2464 	int ret = 0;
2465 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2466 
2467 	/* invoke and lock buffer format, if found */
2468 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2469 	if (fmt == NULL) {
2470 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2471 		return -EINVAL;
2472 	}
2473 
2474 	/*
2475 	 * buffer argument MUST be contiguous to pfarg_context_t
2476 	 */
2477 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2478 
2479 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2480 
2481 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2482 
2483 	if (ret) goto error;
2484 
2485 	/* link buffer format and context */
2486 	ctx->ctx_buf_fmt = fmt;
2487 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2488 
2489 	/*
2490 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2491 	 */
2492 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2493 	if (ret) goto error;
2494 
2495 	if (size) {
2496 		/*
2497 		 * buffer is always remapped into the caller's address space
2498 		 */
2499 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2500 		if (ret) goto error;
2501 
2502 		/* keep track of user address of buffer */
2503 		arg->ctx_smpl_vaddr = uaddr;
2504 	}
2505 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2506 
2507 error:
2508 	return ret;
2509 }
2510 
2511 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2512 pfm_reset_pmu_state(pfm_context_t *ctx)
2513 {
2514 	int i;
2515 
2516 	/*
2517 	 * install reset values for PMC.
2518 	 */
2519 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2520 		if (PMC_IS_IMPL(i) == 0) continue;
2521 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2522 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2523 	}
2524 	/*
2525 	 * PMD registers are set to 0UL when the context in memset()
2526 	 */
2527 
2528 	/*
2529 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2530 	 * when they are not actively used by the task. In UP, the incoming process
2531 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2532 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2533 	 * process because they may change what is being measured.
2534 	 * Therefore, we must systematically reinstall the entire
2535 	 * PMC state. In SMP, the same thing is possible on the
2536 	 * same CPU but also on between 2 CPUs.
2537 	 *
2538 	 * The problem with PMD is information leaking especially
2539 	 * to user level when psr.sp=0
2540 	 *
2541 	 * There is unfortunately no easy way to avoid this problem
2542 	 * on either UP or SMP. This definitively slows down the
2543 	 * pfm_load_regs() function.
2544 	 */
2545 
2546 	 /*
2547 	  * bitmask of all PMCs accessible to this context
2548 	  *
2549 	  * PMC0 is treated differently.
2550 	  */
2551 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2552 
2553 	/*
2554 	 * bitmask of all PMDs that are accessible to this context
2555 	 */
2556 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2557 
2558 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2559 
2560 	/*
2561 	 * useful in case of re-enable after disable
2562 	 */
2563 	ctx->ctx_used_ibrs[0] = 0UL;
2564 	ctx->ctx_used_dbrs[0] = 0UL;
2565 }
2566 
2567 static int
pfm_ctx_getsize(void * arg,size_t * sz)2568 pfm_ctx_getsize(void *arg, size_t *sz)
2569 {
2570 	pfarg_context_t *req = (pfarg_context_t *)arg;
2571 	pfm_buffer_fmt_t *fmt;
2572 
2573 	*sz = 0;
2574 
2575 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2576 
2577 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2578 	if (fmt == NULL) {
2579 		DPRINT(("cannot find buffer format\n"));
2580 		return -EINVAL;
2581 	}
2582 	/* get just enough to copy in user parameters */
2583 	*sz = fmt->fmt_arg_size;
2584 	DPRINT(("arg_size=%lu\n", *sz));
2585 
2586 	return 0;
2587 }
2588 
2589 
2590 
2591 /*
2592  * cannot attach if :
2593  * 	- kernel task
2594  * 	- task not owned by caller
2595  * 	- task incompatible with context mode
2596  */
2597 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2598 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2599 {
2600 	/*
2601 	 * no kernel task or task not owner by caller
2602 	 */
2603 	if (task->mm == NULL) {
2604 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2605 		return -EPERM;
2606 	}
2607 	if (pfm_bad_permissions(task)) {
2608 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2609 		return -EPERM;
2610 	}
2611 	/*
2612 	 * cannot block in self-monitoring mode
2613 	 */
2614 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2615 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2616 		return -EINVAL;
2617 	}
2618 
2619 	if (task->exit_state == EXIT_ZOMBIE) {
2620 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2621 		return -EBUSY;
2622 	}
2623 
2624 	/*
2625 	 * always ok for self
2626 	 */
2627 	if (task == current) return 0;
2628 
2629 	if (!task_is_stopped_or_traced(task)) {
2630 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2631 		return -EBUSY;
2632 	}
2633 	/*
2634 	 * make sure the task is off any CPU
2635 	 */
2636 	wait_task_inactive(task, 0);
2637 
2638 	/* more to come... */
2639 
2640 	return 0;
2641 }
2642 
2643 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2644 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2645 {
2646 	struct task_struct *p = current;
2647 	int ret;
2648 
2649 	/* XXX: need to add more checks here */
2650 	if (pid < 2) return -EPERM;
2651 
2652 	if (pid != task_pid_vnr(current)) {
2653 
2654 		read_lock(&tasklist_lock);
2655 
2656 		p = find_task_by_vpid(pid);
2657 
2658 		/* make sure task cannot go away while we operate on it */
2659 		if (p) get_task_struct(p);
2660 
2661 		read_unlock(&tasklist_lock);
2662 
2663 		if (p == NULL) return -ESRCH;
2664 	}
2665 
2666 	ret = pfm_task_incompatible(ctx, p);
2667 	if (ret == 0) {
2668 		*task = p;
2669 	} else if (p != current) {
2670 		pfm_put_task(p);
2671 	}
2672 	return ret;
2673 }
2674 
2675 
2676 
2677 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2678 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2679 {
2680 	pfarg_context_t *req = (pfarg_context_t *)arg;
2681 	struct file *filp;
2682 	struct path path;
2683 	int ctx_flags;
2684 	int fd;
2685 	int ret;
2686 
2687 	/* let's check the arguments first */
2688 	ret = pfarg_is_sane(current, req);
2689 	if (ret < 0)
2690 		return ret;
2691 
2692 	ctx_flags = req->ctx_flags;
2693 
2694 	ret = -ENOMEM;
2695 
2696 	fd = get_unused_fd();
2697 	if (fd < 0)
2698 		return fd;
2699 
2700 	ctx = pfm_context_alloc(ctx_flags);
2701 	if (!ctx)
2702 		goto error;
2703 
2704 	filp = pfm_alloc_file(ctx);
2705 	if (IS_ERR(filp)) {
2706 		ret = PTR_ERR(filp);
2707 		goto error_file;
2708 	}
2709 
2710 	req->ctx_fd = ctx->ctx_fd = fd;
2711 
2712 	/*
2713 	 * does the user want to sample?
2714 	 */
2715 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2716 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2717 		if (ret)
2718 			goto buffer_error;
2719 	}
2720 
2721 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2722 		ctx,
2723 		ctx_flags,
2724 		ctx->ctx_fl_system,
2725 		ctx->ctx_fl_block,
2726 		ctx->ctx_fl_excl_idle,
2727 		ctx->ctx_fl_no_msg,
2728 		ctx->ctx_fd));
2729 
2730 	/*
2731 	 * initialize soft PMU state
2732 	 */
2733 	pfm_reset_pmu_state(ctx);
2734 
2735 	fd_install(fd, filp);
2736 
2737 	return 0;
2738 
2739 buffer_error:
2740 	path = filp->f_path;
2741 	put_filp(filp);
2742 	path_put(&path);
2743 
2744 	if (ctx->ctx_buf_fmt) {
2745 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2746 	}
2747 error_file:
2748 	pfm_context_free(ctx);
2749 
2750 error:
2751 	put_unused_fd(fd);
2752 	return ret;
2753 }
2754 
2755 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2756 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2757 {
2758 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2759 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2760 	extern unsigned long carta_random32 (unsigned long seed);
2761 
2762 	if (reg->flags & PFM_REGFL_RANDOM) {
2763 		new_seed = carta_random32(old_seed);
2764 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2765 		if ((mask >> 32) != 0)
2766 			/* construct a full 64-bit random value: */
2767 			new_seed |= carta_random32(old_seed >> 32) << 32;
2768 		reg->seed = new_seed;
2769 	}
2770 	reg->lval = val;
2771 	return val;
2772 }
2773 
2774 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2775 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2776 {
2777 	unsigned long mask = ovfl_regs[0];
2778 	unsigned long reset_others = 0UL;
2779 	unsigned long val;
2780 	int i;
2781 
2782 	/*
2783 	 * now restore reset value on sampling overflowed counters
2784 	 */
2785 	mask >>= PMU_FIRST_COUNTER;
2786 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2787 
2788 		if ((mask & 0x1UL) == 0UL) continue;
2789 
2790 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2791 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2792 
2793 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2794 	}
2795 
2796 	/*
2797 	 * Now take care of resetting the other registers
2798 	 */
2799 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2800 
2801 		if ((reset_others & 0x1) == 0) continue;
2802 
2803 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2804 
2805 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2806 			  is_long_reset ? "long" : "short", i, val));
2807 	}
2808 }
2809 
2810 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2811 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2812 {
2813 	unsigned long mask = ovfl_regs[0];
2814 	unsigned long reset_others = 0UL;
2815 	unsigned long val;
2816 	int i;
2817 
2818 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2819 
2820 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2821 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2822 		return;
2823 	}
2824 
2825 	/*
2826 	 * now restore reset value on sampling overflowed counters
2827 	 */
2828 	mask >>= PMU_FIRST_COUNTER;
2829 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2830 
2831 		if ((mask & 0x1UL) == 0UL) continue;
2832 
2833 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2834 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2835 
2836 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2837 
2838 		pfm_write_soft_counter(ctx, i, val);
2839 	}
2840 
2841 	/*
2842 	 * Now take care of resetting the other registers
2843 	 */
2844 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2845 
2846 		if ((reset_others & 0x1) == 0) continue;
2847 
2848 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2849 
2850 		if (PMD_IS_COUNTING(i)) {
2851 			pfm_write_soft_counter(ctx, i, val);
2852 		} else {
2853 			ia64_set_pmd(i, val);
2854 		}
2855 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2856 			  is_long_reset ? "long" : "short", i, val));
2857 	}
2858 	ia64_srlz_d();
2859 }
2860 
2861 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2862 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2863 {
2864 	struct task_struct *task;
2865 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2866 	unsigned long value, pmc_pm;
2867 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2868 	unsigned int cnum, reg_flags, flags, pmc_type;
2869 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2870 	int is_monitor, is_counting, state;
2871 	int ret = -EINVAL;
2872 	pfm_reg_check_t	wr_func;
2873 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2874 
2875 	state     = ctx->ctx_state;
2876 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2877 	is_system = ctx->ctx_fl_system;
2878 	task      = ctx->ctx_task;
2879 	impl_pmds = pmu_conf->impl_pmds[0];
2880 
2881 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2882 
2883 	if (is_loaded) {
2884 		/*
2885 		 * In system wide and when the context is loaded, access can only happen
2886 		 * when the caller is running on the CPU being monitored by the session.
2887 		 * It does not have to be the owner (ctx_task) of the context per se.
2888 		 */
2889 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2890 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2891 			return -EBUSY;
2892 		}
2893 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2894 	}
2895 	expert_mode = pfm_sysctl.expert_mode;
2896 
2897 	for (i = 0; i < count; i++, req++) {
2898 
2899 		cnum       = req->reg_num;
2900 		reg_flags  = req->reg_flags;
2901 		value      = req->reg_value;
2902 		smpl_pmds  = req->reg_smpl_pmds[0];
2903 		reset_pmds = req->reg_reset_pmds[0];
2904 		flags      = 0;
2905 
2906 
2907 		if (cnum >= PMU_MAX_PMCS) {
2908 			DPRINT(("pmc%u is invalid\n", cnum));
2909 			goto error;
2910 		}
2911 
2912 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2913 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2914 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2915 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2916 
2917 		/*
2918 		 * we reject all non implemented PMC as well
2919 		 * as attempts to modify PMC[0-3] which are used
2920 		 * as status registers by the PMU
2921 		 */
2922 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2923 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2924 			goto error;
2925 		}
2926 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2927 		/*
2928 		 * If the PMC is a monitor, then if the value is not the default:
2929 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2930 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2931 		 */
2932 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2933 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2934 				cnum,
2935 				pmc_pm,
2936 				is_system));
2937 			goto error;
2938 		}
2939 
2940 		if (is_counting) {
2941 			/*
2942 		 	 * enforce generation of overflow interrupt. Necessary on all
2943 		 	 * CPUs.
2944 		 	 */
2945 			value |= 1 << PMU_PMC_OI;
2946 
2947 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2948 				flags |= PFM_REGFL_OVFL_NOTIFY;
2949 			}
2950 
2951 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2952 
2953 			/* verify validity of smpl_pmds */
2954 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2955 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2956 				goto error;
2957 			}
2958 
2959 			/* verify validity of reset_pmds */
2960 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2961 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2962 				goto error;
2963 			}
2964 		} else {
2965 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2966 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2967 				goto error;
2968 			}
2969 			/* eventid on non-counting monitors are ignored */
2970 		}
2971 
2972 		/*
2973 		 * execute write checker, if any
2974 		 */
2975 		if (likely(expert_mode == 0 && wr_func)) {
2976 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2977 			if (ret) goto error;
2978 			ret = -EINVAL;
2979 		}
2980 
2981 		/*
2982 		 * no error on this register
2983 		 */
2984 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2985 
2986 		/*
2987 		 * Now we commit the changes to the software state
2988 		 */
2989 
2990 		/*
2991 		 * update overflow information
2992 		 */
2993 		if (is_counting) {
2994 			/*
2995 		 	 * full flag update each time a register is programmed
2996 		 	 */
2997 			ctx->ctx_pmds[cnum].flags = flags;
2998 
2999 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3000 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
3001 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
3002 
3003 			/*
3004 			 * Mark all PMDS to be accessed as used.
3005 			 *
3006 			 * We do not keep track of PMC because we have to
3007 			 * systematically restore ALL of them.
3008 			 *
3009 			 * We do not update the used_monitors mask, because
3010 			 * if we have not programmed them, then will be in
3011 			 * a quiescent state, therefore we will not need to
3012 			 * mask/restore then when context is MASKED.
3013 			 */
3014 			CTX_USED_PMD(ctx, reset_pmds);
3015 			CTX_USED_PMD(ctx, smpl_pmds);
3016 			/*
3017 		 	 * make sure we do not try to reset on
3018 		 	 * restart because we have established new values
3019 		 	 */
3020 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3021 		}
3022 		/*
3023 		 * Needed in case the user does not initialize the equivalent
3024 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3025 		 * possible leak here.
3026 		 */
3027 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3028 
3029 		/*
3030 		 * keep track of the monitor PMC that we are using.
3031 		 * we save the value of the pmc in ctx_pmcs[] and if
3032 		 * the monitoring is not stopped for the context we also
3033 		 * place it in the saved state area so that it will be
3034 		 * picked up later by the context switch code.
3035 		 *
3036 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3037 		 *
3038 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3039 		 * monitoring needs to be stopped.
3040 		 */
3041 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3042 
3043 		/*
3044 		 * update context state
3045 		 */
3046 		ctx->ctx_pmcs[cnum] = value;
3047 
3048 		if (is_loaded) {
3049 			/*
3050 			 * write thread state
3051 			 */
3052 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3053 
3054 			/*
3055 			 * write hardware register if we can
3056 			 */
3057 			if (can_access_pmu) {
3058 				ia64_set_pmc(cnum, value);
3059 			}
3060 #ifdef CONFIG_SMP
3061 			else {
3062 				/*
3063 				 * per-task SMP only here
3064 				 *
3065 			 	 * we are guaranteed that the task is not running on the other CPU,
3066 			 	 * we indicate that this PMD will need to be reloaded if the task
3067 			 	 * is rescheduled on the CPU it ran last on.
3068 			 	 */
3069 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3070 			}
3071 #endif
3072 		}
3073 
3074 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3075 			  cnum,
3076 			  value,
3077 			  is_loaded,
3078 			  can_access_pmu,
3079 			  flags,
3080 			  ctx->ctx_all_pmcs[0],
3081 			  ctx->ctx_used_pmds[0],
3082 			  ctx->ctx_pmds[cnum].eventid,
3083 			  smpl_pmds,
3084 			  reset_pmds,
3085 			  ctx->ctx_reload_pmcs[0],
3086 			  ctx->ctx_used_monitors[0],
3087 			  ctx->ctx_ovfl_regs[0]));
3088 	}
3089 
3090 	/*
3091 	 * make sure the changes are visible
3092 	 */
3093 	if (can_access_pmu) ia64_srlz_d();
3094 
3095 	return 0;
3096 error:
3097 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3098 	return ret;
3099 }
3100 
3101 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3102 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3103 {
3104 	struct task_struct *task;
3105 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3106 	unsigned long value, hw_value, ovfl_mask;
3107 	unsigned int cnum;
3108 	int i, can_access_pmu = 0, state;
3109 	int is_counting, is_loaded, is_system, expert_mode;
3110 	int ret = -EINVAL;
3111 	pfm_reg_check_t wr_func;
3112 
3113 
3114 	state     = ctx->ctx_state;
3115 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3116 	is_system = ctx->ctx_fl_system;
3117 	ovfl_mask = pmu_conf->ovfl_val;
3118 	task      = ctx->ctx_task;
3119 
3120 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3121 
3122 	/*
3123 	 * on both UP and SMP, we can only write to the PMC when the task is
3124 	 * the owner of the local PMU.
3125 	 */
3126 	if (likely(is_loaded)) {
3127 		/*
3128 		 * In system wide and when the context is loaded, access can only happen
3129 		 * when the caller is running on the CPU being monitored by the session.
3130 		 * It does not have to be the owner (ctx_task) of the context per se.
3131 		 */
3132 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3133 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3134 			return -EBUSY;
3135 		}
3136 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3137 	}
3138 	expert_mode = pfm_sysctl.expert_mode;
3139 
3140 	for (i = 0; i < count; i++, req++) {
3141 
3142 		cnum  = req->reg_num;
3143 		value = req->reg_value;
3144 
3145 		if (!PMD_IS_IMPL(cnum)) {
3146 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3147 			goto abort_mission;
3148 		}
3149 		is_counting = PMD_IS_COUNTING(cnum);
3150 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3151 
3152 		/*
3153 		 * execute write checker, if any
3154 		 */
3155 		if (unlikely(expert_mode == 0 && wr_func)) {
3156 			unsigned long v = value;
3157 
3158 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3159 			if (ret) goto abort_mission;
3160 
3161 			value = v;
3162 			ret   = -EINVAL;
3163 		}
3164 
3165 		/*
3166 		 * no error on this register
3167 		 */
3168 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3169 
3170 		/*
3171 		 * now commit changes to software state
3172 		 */
3173 		hw_value = value;
3174 
3175 		/*
3176 		 * update virtualized (64bits) counter
3177 		 */
3178 		if (is_counting) {
3179 			/*
3180 			 * write context state
3181 			 */
3182 			ctx->ctx_pmds[cnum].lval = value;
3183 
3184 			/*
3185 			 * when context is load we use the split value
3186 			 */
3187 			if (is_loaded) {
3188 				hw_value = value &  ovfl_mask;
3189 				value    = value & ~ovfl_mask;
3190 			}
3191 		}
3192 		/*
3193 		 * update reset values (not just for counters)
3194 		 */
3195 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3196 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3197 
3198 		/*
3199 		 * update randomization parameters (not just for counters)
3200 		 */
3201 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3202 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3203 
3204 		/*
3205 		 * update context value
3206 		 */
3207 		ctx->ctx_pmds[cnum].val  = value;
3208 
3209 		/*
3210 		 * Keep track of what we use
3211 		 *
3212 		 * We do not keep track of PMC because we have to
3213 		 * systematically restore ALL of them.
3214 		 */
3215 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3216 
3217 		/*
3218 		 * mark this PMD register used as well
3219 		 */
3220 		CTX_USED_PMD(ctx, RDEP(cnum));
3221 
3222 		/*
3223 		 * make sure we do not try to reset on
3224 		 * restart because we have established new values
3225 		 */
3226 		if (is_counting && state == PFM_CTX_MASKED) {
3227 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3228 		}
3229 
3230 		if (is_loaded) {
3231 			/*
3232 		 	 * write thread state
3233 		 	 */
3234 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3235 
3236 			/*
3237 			 * write hardware register if we can
3238 			 */
3239 			if (can_access_pmu) {
3240 				ia64_set_pmd(cnum, hw_value);
3241 			} else {
3242 #ifdef CONFIG_SMP
3243 				/*
3244 			 	 * we are guaranteed that the task is not running on the other CPU,
3245 			 	 * we indicate that this PMD will need to be reloaded if the task
3246 			 	 * is rescheduled on the CPU it ran last on.
3247 			 	 */
3248 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3249 #endif
3250 			}
3251 		}
3252 
3253 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3254 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3255 			cnum,
3256 			value,
3257 			is_loaded,
3258 			can_access_pmu,
3259 			hw_value,
3260 			ctx->ctx_pmds[cnum].val,
3261 			ctx->ctx_pmds[cnum].short_reset,
3262 			ctx->ctx_pmds[cnum].long_reset,
3263 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3264 			ctx->ctx_pmds[cnum].seed,
3265 			ctx->ctx_pmds[cnum].mask,
3266 			ctx->ctx_used_pmds[0],
3267 			ctx->ctx_pmds[cnum].reset_pmds[0],
3268 			ctx->ctx_reload_pmds[0],
3269 			ctx->ctx_all_pmds[0],
3270 			ctx->ctx_ovfl_regs[0]));
3271 	}
3272 
3273 	/*
3274 	 * make changes visible
3275 	 */
3276 	if (can_access_pmu) ia64_srlz_d();
3277 
3278 	return 0;
3279 
3280 abort_mission:
3281 	/*
3282 	 * for now, we have only one possibility for error
3283 	 */
3284 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3285 	return ret;
3286 }
3287 
3288 /*
3289  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3290  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3291  * interrupt is delivered during the call, it will be kept pending until we leave, making
3292  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3293  * guaranteed to return consistent data to the user, it may simply be old. It is not
3294  * trivial to treat the overflow while inside the call because you may end up in
3295  * some module sampling buffer code causing deadlocks.
3296  */
3297 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3298 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3299 {
3300 	struct task_struct *task;
3301 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3302 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3303 	unsigned int cnum, reg_flags = 0;
3304 	int i, can_access_pmu = 0, state;
3305 	int is_loaded, is_system, is_counting, expert_mode;
3306 	int ret = -EINVAL;
3307 	pfm_reg_check_t rd_func;
3308 
3309 	/*
3310 	 * access is possible when loaded only for
3311 	 * self-monitoring tasks or in UP mode
3312 	 */
3313 
3314 	state     = ctx->ctx_state;
3315 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3316 	is_system = ctx->ctx_fl_system;
3317 	ovfl_mask = pmu_conf->ovfl_val;
3318 	task      = ctx->ctx_task;
3319 
3320 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3321 
3322 	if (likely(is_loaded)) {
3323 		/*
3324 		 * In system wide and when the context is loaded, access can only happen
3325 		 * when the caller is running on the CPU being monitored by the session.
3326 		 * It does not have to be the owner (ctx_task) of the context per se.
3327 		 */
3328 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3329 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3330 			return -EBUSY;
3331 		}
3332 		/*
3333 		 * this can be true when not self-monitoring only in UP
3334 		 */
3335 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3336 
3337 		if (can_access_pmu) ia64_srlz_d();
3338 	}
3339 	expert_mode = pfm_sysctl.expert_mode;
3340 
3341 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3342 		is_loaded,
3343 		can_access_pmu,
3344 		state));
3345 
3346 	/*
3347 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3348 	 * the task is the owner of the local PMU.
3349 	 */
3350 
3351 	for (i = 0; i < count; i++, req++) {
3352 
3353 		cnum        = req->reg_num;
3354 		reg_flags   = req->reg_flags;
3355 
3356 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3357 		/*
3358 		 * we can only read the register that we use. That includes
3359 		 * the one we explicitly initialize AND the one we want included
3360 		 * in the sampling buffer (smpl_regs).
3361 		 *
3362 		 * Having this restriction allows optimization in the ctxsw routine
3363 		 * without compromising security (leaks)
3364 		 */
3365 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3366 
3367 		sval        = ctx->ctx_pmds[cnum].val;
3368 		lval        = ctx->ctx_pmds[cnum].lval;
3369 		is_counting = PMD_IS_COUNTING(cnum);
3370 
3371 		/*
3372 		 * If the task is not the current one, then we check if the
3373 		 * PMU state is still in the local live register due to lazy ctxsw.
3374 		 * If true, then we read directly from the registers.
3375 		 */
3376 		if (can_access_pmu){
3377 			val = ia64_get_pmd(cnum);
3378 		} else {
3379 			/*
3380 			 * context has been saved
3381 			 * if context is zombie, then task does not exist anymore.
3382 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3383 			 */
3384 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3385 		}
3386 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3387 
3388 		if (is_counting) {
3389 			/*
3390 			 * XXX: need to check for overflow when loaded
3391 			 */
3392 			val &= ovfl_mask;
3393 			val += sval;
3394 		}
3395 
3396 		/*
3397 		 * execute read checker, if any
3398 		 */
3399 		if (unlikely(expert_mode == 0 && rd_func)) {
3400 			unsigned long v = val;
3401 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3402 			if (ret) goto error;
3403 			val = v;
3404 			ret = -EINVAL;
3405 		}
3406 
3407 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3408 
3409 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3410 
3411 		/*
3412 		 * update register return value, abort all if problem during copy.
3413 		 * we only modify the reg_flags field. no check mode is fine because
3414 		 * access has been verified upfront in sys_perfmonctl().
3415 		 */
3416 		req->reg_value            = val;
3417 		req->reg_flags            = reg_flags;
3418 		req->reg_last_reset_val   = lval;
3419 	}
3420 
3421 	return 0;
3422 
3423 error:
3424 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3425 	return ret;
3426 }
3427 
3428 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3429 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3430 {
3431 	pfm_context_t *ctx;
3432 
3433 	if (req == NULL) return -EINVAL;
3434 
3435  	ctx = GET_PMU_CTX();
3436 
3437 	if (ctx == NULL) return -EINVAL;
3438 
3439 	/*
3440 	 * for now limit to current task, which is enough when calling
3441 	 * from overflow handler
3442 	 */
3443 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3444 
3445 	return pfm_write_pmcs(ctx, req, nreq, regs);
3446 }
3447 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3448 
3449 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3450 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3451 {
3452 	pfm_context_t *ctx;
3453 
3454 	if (req == NULL) return -EINVAL;
3455 
3456  	ctx = GET_PMU_CTX();
3457 
3458 	if (ctx == NULL) return -EINVAL;
3459 
3460 	/*
3461 	 * for now limit to current task, which is enough when calling
3462 	 * from overflow handler
3463 	 */
3464 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3465 
3466 	return pfm_read_pmds(ctx, req, nreq, regs);
3467 }
3468 EXPORT_SYMBOL(pfm_mod_read_pmds);
3469 
3470 /*
3471  * Only call this function when a process it trying to
3472  * write the debug registers (reading is always allowed)
3473  */
3474 int
pfm_use_debug_registers(struct task_struct * task)3475 pfm_use_debug_registers(struct task_struct *task)
3476 {
3477 	pfm_context_t *ctx = task->thread.pfm_context;
3478 	unsigned long flags;
3479 	int ret = 0;
3480 
3481 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3482 
3483 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3484 
3485 	/*
3486 	 * do it only once
3487 	 */
3488 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3489 
3490 	/*
3491 	 * Even on SMP, we do not need to use an atomic here because
3492 	 * the only way in is via ptrace() and this is possible only when the
3493 	 * process is stopped. Even in the case where the ctxsw out is not totally
3494 	 * completed by the time we come here, there is no way the 'stopped' process
3495 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3496 	 * So this is always safe.
3497 	 */
3498 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3499 
3500 	LOCK_PFS(flags);
3501 
3502 	/*
3503 	 * We cannot allow setting breakpoints when system wide monitoring
3504 	 * sessions are using the debug registers.
3505 	 */
3506 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3507 		ret = -1;
3508 	else
3509 		pfm_sessions.pfs_ptrace_use_dbregs++;
3510 
3511 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3512 		  pfm_sessions.pfs_ptrace_use_dbregs,
3513 		  pfm_sessions.pfs_sys_use_dbregs,
3514 		  task_pid_nr(task), ret));
3515 
3516 	UNLOCK_PFS(flags);
3517 
3518 	return ret;
3519 }
3520 
3521 /*
3522  * This function is called for every task that exits with the
3523  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3524  * able to use the debug registers for debugging purposes via
3525  * ptrace(). Therefore we know it was not using them for
3526  * perfmormance monitoring, so we only decrement the number
3527  * of "ptraced" debug register users to keep the count up to date
3528  */
3529 int
pfm_release_debug_registers(struct task_struct * task)3530 pfm_release_debug_registers(struct task_struct *task)
3531 {
3532 	unsigned long flags;
3533 	int ret;
3534 
3535 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3536 
3537 	LOCK_PFS(flags);
3538 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3539 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3540 		ret = -1;
3541 	}  else {
3542 		pfm_sessions.pfs_ptrace_use_dbregs--;
3543 		ret = 0;
3544 	}
3545 	UNLOCK_PFS(flags);
3546 
3547 	return ret;
3548 }
3549 
3550 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3551 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3552 {
3553 	struct task_struct *task;
3554 	pfm_buffer_fmt_t *fmt;
3555 	pfm_ovfl_ctrl_t rst_ctrl;
3556 	int state, is_system;
3557 	int ret = 0;
3558 
3559 	state     = ctx->ctx_state;
3560 	fmt       = ctx->ctx_buf_fmt;
3561 	is_system = ctx->ctx_fl_system;
3562 	task      = PFM_CTX_TASK(ctx);
3563 
3564 	switch(state) {
3565 		case PFM_CTX_MASKED:
3566 			break;
3567 		case PFM_CTX_LOADED:
3568 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3569 			/* fall through */
3570 		case PFM_CTX_UNLOADED:
3571 		case PFM_CTX_ZOMBIE:
3572 			DPRINT(("invalid state=%d\n", state));
3573 			return -EBUSY;
3574 		default:
3575 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3576 			return -EINVAL;
3577 	}
3578 
3579 	/*
3580  	 * In system wide and when the context is loaded, access can only happen
3581  	 * when the caller is running on the CPU being monitored by the session.
3582  	 * It does not have to be the owner (ctx_task) of the context per se.
3583  	 */
3584 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3585 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3586 		return -EBUSY;
3587 	}
3588 
3589 	/* sanity check */
3590 	if (unlikely(task == NULL)) {
3591 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3592 		return -EINVAL;
3593 	}
3594 
3595 	if (task == current || is_system) {
3596 
3597 		fmt = ctx->ctx_buf_fmt;
3598 
3599 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3600 			task_pid_nr(task),
3601 			ctx->ctx_ovfl_regs[0]));
3602 
3603 		if (CTX_HAS_SMPL(ctx)) {
3604 
3605 			prefetch(ctx->ctx_smpl_hdr);
3606 
3607 			rst_ctrl.bits.mask_monitoring = 0;
3608 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3609 
3610 			if (state == PFM_CTX_LOADED)
3611 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3612 			else
3613 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3614 		} else {
3615 			rst_ctrl.bits.mask_monitoring = 0;
3616 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3617 		}
3618 
3619 		if (ret == 0) {
3620 			if (rst_ctrl.bits.reset_ovfl_pmds)
3621 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3622 
3623 			if (rst_ctrl.bits.mask_monitoring == 0) {
3624 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3625 
3626 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3627 			} else {
3628 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3629 
3630 				// cannot use pfm_stop_monitoring(task, regs);
3631 			}
3632 		}
3633 		/*
3634 		 * clear overflowed PMD mask to remove any stale information
3635 		 */
3636 		ctx->ctx_ovfl_regs[0] = 0UL;
3637 
3638 		/*
3639 		 * back to LOADED state
3640 		 */
3641 		ctx->ctx_state = PFM_CTX_LOADED;
3642 
3643 		/*
3644 		 * XXX: not really useful for self monitoring
3645 		 */
3646 		ctx->ctx_fl_can_restart = 0;
3647 
3648 		return 0;
3649 	}
3650 
3651 	/*
3652 	 * restart another task
3653 	 */
3654 
3655 	/*
3656 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3657 	 * one is seen by the task.
3658 	 */
3659 	if (state == PFM_CTX_MASKED) {
3660 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3661 		/*
3662 		 * will prevent subsequent restart before this one is
3663 		 * seen by other task
3664 		 */
3665 		ctx->ctx_fl_can_restart = 0;
3666 	}
3667 
3668 	/*
3669 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3670 	 * the task is blocked or on its way to block. That's the normal
3671 	 * restart path. If the monitoring is not masked, then the task
3672 	 * can be actively monitoring and we cannot directly intervene.
3673 	 * Therefore we use the trap mechanism to catch the task and
3674 	 * force it to reset the buffer/reset PMDs.
3675 	 *
3676 	 * if non-blocking, then we ensure that the task will go into
3677 	 * pfm_handle_work() before returning to user mode.
3678 	 *
3679 	 * We cannot explicitly reset another task, it MUST always
3680 	 * be done by the task itself. This works for system wide because
3681 	 * the tool that is controlling the session is logically doing
3682 	 * "self-monitoring".
3683 	 */
3684 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3685 		DPRINT(("unblocking [%d] \n", task_pid_nr(task)));
3686 		complete(&ctx->ctx_restart_done);
3687 	} else {
3688 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3689 
3690 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3691 
3692 		PFM_SET_WORK_PENDING(task, 1);
3693 
3694 		set_notify_resume(task);
3695 
3696 		/*
3697 		 * XXX: send reschedule if task runs on another CPU
3698 		 */
3699 	}
3700 	return 0;
3701 }
3702 
3703 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3704 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705 {
3706 	unsigned int m = *(unsigned int *)arg;
3707 
3708 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3709 
3710 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3711 
3712 	if (m == 0) {
3713 		memset(pfm_stats, 0, sizeof(pfm_stats));
3714 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3715 	}
3716 	return 0;
3717 }
3718 
3719 /*
3720  * arg can be NULL and count can be zero for this function
3721  */
3722 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3723 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3724 {
3725 	struct thread_struct *thread = NULL;
3726 	struct task_struct *task;
3727 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3728 	unsigned long flags;
3729 	dbreg_t dbreg;
3730 	unsigned int rnum;
3731 	int first_time;
3732 	int ret = 0, state;
3733 	int i, can_access_pmu = 0;
3734 	int is_system, is_loaded;
3735 
3736 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3737 
3738 	state     = ctx->ctx_state;
3739 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3740 	is_system = ctx->ctx_fl_system;
3741 	task      = ctx->ctx_task;
3742 
3743 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3744 
3745 	/*
3746 	 * on both UP and SMP, we can only write to the PMC when the task is
3747 	 * the owner of the local PMU.
3748 	 */
3749 	if (is_loaded) {
3750 		thread = &task->thread;
3751 		/*
3752 		 * In system wide and when the context is loaded, access can only happen
3753 		 * when the caller is running on the CPU being monitored by the session.
3754 		 * It does not have to be the owner (ctx_task) of the context per se.
3755 		 */
3756 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3757 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3758 			return -EBUSY;
3759 		}
3760 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3761 	}
3762 
3763 	/*
3764 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3765 	 * ensuring that no real breakpoint can be installed via this call.
3766 	 *
3767 	 * IMPORTANT: regs can be NULL in this function
3768 	 */
3769 
3770 	first_time = ctx->ctx_fl_using_dbreg == 0;
3771 
3772 	/*
3773 	 * don't bother if we are loaded and task is being debugged
3774 	 */
3775 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3776 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3777 		return -EBUSY;
3778 	}
3779 
3780 	/*
3781 	 * check for debug registers in system wide mode
3782 	 *
3783 	 * If though a check is done in pfm_context_load(),
3784 	 * we must repeat it here, in case the registers are
3785 	 * written after the context is loaded
3786 	 */
3787 	if (is_loaded) {
3788 		LOCK_PFS(flags);
3789 
3790 		if (first_time && is_system) {
3791 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3792 				ret = -EBUSY;
3793 			else
3794 				pfm_sessions.pfs_sys_use_dbregs++;
3795 		}
3796 		UNLOCK_PFS(flags);
3797 	}
3798 
3799 	if (ret != 0) return ret;
3800 
3801 	/*
3802 	 * mark ourself as user of the debug registers for
3803 	 * perfmon purposes.
3804 	 */
3805 	ctx->ctx_fl_using_dbreg = 1;
3806 
3807 	/*
3808  	 * clear hardware registers to make sure we don't
3809  	 * pick up stale state.
3810 	 *
3811 	 * for a system wide session, we do not use
3812 	 * thread.dbr, thread.ibr because this process
3813 	 * never leaves the current CPU and the state
3814 	 * is shared by all processes running on it
3815  	 */
3816 	if (first_time && can_access_pmu) {
3817 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3818 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3819 			ia64_set_ibr(i, 0UL);
3820 			ia64_dv_serialize_instruction();
3821 		}
3822 		ia64_srlz_i();
3823 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3824 			ia64_set_dbr(i, 0UL);
3825 			ia64_dv_serialize_data();
3826 		}
3827 		ia64_srlz_d();
3828 	}
3829 
3830 	/*
3831 	 * Now install the values into the registers
3832 	 */
3833 	for (i = 0; i < count; i++, req++) {
3834 
3835 		rnum      = req->dbreg_num;
3836 		dbreg.val = req->dbreg_value;
3837 
3838 		ret = -EINVAL;
3839 
3840 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3841 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3842 				  rnum, dbreg.val, mode, i, count));
3843 
3844 			goto abort_mission;
3845 		}
3846 
3847 		/*
3848 		 * make sure we do not install enabled breakpoint
3849 		 */
3850 		if (rnum & 0x1) {
3851 			if (mode == PFM_CODE_RR)
3852 				dbreg.ibr.ibr_x = 0;
3853 			else
3854 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3855 		}
3856 
3857 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3858 
3859 		/*
3860 		 * Debug registers, just like PMC, can only be modified
3861 		 * by a kernel call. Moreover, perfmon() access to those
3862 		 * registers are centralized in this routine. The hardware
3863 		 * does not modify the value of these registers, therefore,
3864 		 * if we save them as they are written, we can avoid having
3865 		 * to save them on context switch out. This is made possible
3866 		 * by the fact that when perfmon uses debug registers, ptrace()
3867 		 * won't be able to modify them concurrently.
3868 		 */
3869 		if (mode == PFM_CODE_RR) {
3870 			CTX_USED_IBR(ctx, rnum);
3871 
3872 			if (can_access_pmu) {
3873 				ia64_set_ibr(rnum, dbreg.val);
3874 				ia64_dv_serialize_instruction();
3875 			}
3876 
3877 			ctx->ctx_ibrs[rnum] = dbreg.val;
3878 
3879 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3880 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3881 		} else {
3882 			CTX_USED_DBR(ctx, rnum);
3883 
3884 			if (can_access_pmu) {
3885 				ia64_set_dbr(rnum, dbreg.val);
3886 				ia64_dv_serialize_data();
3887 			}
3888 			ctx->ctx_dbrs[rnum] = dbreg.val;
3889 
3890 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3891 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3892 		}
3893 	}
3894 
3895 	return 0;
3896 
3897 abort_mission:
3898 	/*
3899 	 * in case it was our first attempt, we undo the global modifications
3900 	 */
3901 	if (first_time) {
3902 		LOCK_PFS(flags);
3903 		if (ctx->ctx_fl_system) {
3904 			pfm_sessions.pfs_sys_use_dbregs--;
3905 		}
3906 		UNLOCK_PFS(flags);
3907 		ctx->ctx_fl_using_dbreg = 0;
3908 	}
3909 	/*
3910 	 * install error return flag
3911 	 */
3912 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3913 
3914 	return ret;
3915 }
3916 
3917 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3918 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3919 {
3920 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3921 }
3922 
3923 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3924 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3925 {
3926 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3927 }
3928 
3929 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3930 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3931 {
3932 	pfm_context_t *ctx;
3933 
3934 	if (req == NULL) return -EINVAL;
3935 
3936  	ctx = GET_PMU_CTX();
3937 
3938 	if (ctx == NULL) return -EINVAL;
3939 
3940 	/*
3941 	 * for now limit to current task, which is enough when calling
3942 	 * from overflow handler
3943 	 */
3944 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3945 
3946 	return pfm_write_ibrs(ctx, req, nreq, regs);
3947 }
3948 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3949 
3950 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3951 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3952 {
3953 	pfm_context_t *ctx;
3954 
3955 	if (req == NULL) return -EINVAL;
3956 
3957  	ctx = GET_PMU_CTX();
3958 
3959 	if (ctx == NULL) return -EINVAL;
3960 
3961 	/*
3962 	 * for now limit to current task, which is enough when calling
3963 	 * from overflow handler
3964 	 */
3965 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3966 
3967 	return pfm_write_dbrs(ctx, req, nreq, regs);
3968 }
3969 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3970 
3971 
3972 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3973 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3974 {
3975 	pfarg_features_t *req = (pfarg_features_t *)arg;
3976 
3977 	req->ft_version = PFM_VERSION;
3978 	return 0;
3979 }
3980 
3981 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3982 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3983 {
3984 	struct pt_regs *tregs;
3985 	struct task_struct *task = PFM_CTX_TASK(ctx);
3986 	int state, is_system;
3987 
3988 	state     = ctx->ctx_state;
3989 	is_system = ctx->ctx_fl_system;
3990 
3991 	/*
3992 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3993 	 */
3994 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3995 
3996 	/*
3997  	 * In system wide and when the context is loaded, access can only happen
3998  	 * when the caller is running on the CPU being monitored by the session.
3999  	 * It does not have to be the owner (ctx_task) of the context per se.
4000  	 */
4001 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4002 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4003 		return -EBUSY;
4004 	}
4005 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4006 		task_pid_nr(PFM_CTX_TASK(ctx)),
4007 		state,
4008 		is_system));
4009 	/*
4010 	 * in system mode, we need to update the PMU directly
4011 	 * and the user level state of the caller, which may not
4012 	 * necessarily be the creator of the context.
4013 	 */
4014 	if (is_system) {
4015 		/*
4016 		 * Update local PMU first
4017 		 *
4018 		 * disable dcr pp
4019 		 */
4020 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4021 		ia64_srlz_i();
4022 
4023 		/*
4024 		 * update local cpuinfo
4025 		 */
4026 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4027 
4028 		/*
4029 		 * stop monitoring, does srlz.i
4030 		 */
4031 		pfm_clear_psr_pp();
4032 
4033 		/*
4034 		 * stop monitoring in the caller
4035 		 */
4036 		ia64_psr(regs)->pp = 0;
4037 
4038 		return 0;
4039 	}
4040 	/*
4041 	 * per-task mode
4042 	 */
4043 
4044 	if (task == current) {
4045 		/* stop monitoring  at kernel level */
4046 		pfm_clear_psr_up();
4047 
4048 		/*
4049 	 	 * stop monitoring at the user level
4050 	 	 */
4051 		ia64_psr(regs)->up = 0;
4052 	} else {
4053 		tregs = task_pt_regs(task);
4054 
4055 		/*
4056 	 	 * stop monitoring at the user level
4057 	 	 */
4058 		ia64_psr(tregs)->up = 0;
4059 
4060 		/*
4061 		 * monitoring disabled in kernel at next reschedule
4062 		 */
4063 		ctx->ctx_saved_psr_up = 0;
4064 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4065 	}
4066 	return 0;
4067 }
4068 
4069 
4070 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4071 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4072 {
4073 	struct pt_regs *tregs;
4074 	int state, is_system;
4075 
4076 	state     = ctx->ctx_state;
4077 	is_system = ctx->ctx_fl_system;
4078 
4079 	if (state != PFM_CTX_LOADED) return -EINVAL;
4080 
4081 	/*
4082  	 * In system wide and when the context is loaded, access can only happen
4083  	 * when the caller is running on the CPU being monitored by the session.
4084  	 * It does not have to be the owner (ctx_task) of the context per se.
4085  	 */
4086 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4087 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4088 		return -EBUSY;
4089 	}
4090 
4091 	/*
4092 	 * in system mode, we need to update the PMU directly
4093 	 * and the user level state of the caller, which may not
4094 	 * necessarily be the creator of the context.
4095 	 */
4096 	if (is_system) {
4097 
4098 		/*
4099 		 * set user level psr.pp for the caller
4100 		 */
4101 		ia64_psr(regs)->pp = 1;
4102 
4103 		/*
4104 		 * now update the local PMU and cpuinfo
4105 		 */
4106 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4107 
4108 		/*
4109 		 * start monitoring at kernel level
4110 		 */
4111 		pfm_set_psr_pp();
4112 
4113 		/* enable dcr pp */
4114 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4115 		ia64_srlz_i();
4116 
4117 		return 0;
4118 	}
4119 
4120 	/*
4121 	 * per-process mode
4122 	 */
4123 
4124 	if (ctx->ctx_task == current) {
4125 
4126 		/* start monitoring at kernel level */
4127 		pfm_set_psr_up();
4128 
4129 		/*
4130 		 * activate monitoring at user level
4131 		 */
4132 		ia64_psr(regs)->up = 1;
4133 
4134 	} else {
4135 		tregs = task_pt_regs(ctx->ctx_task);
4136 
4137 		/*
4138 		 * start monitoring at the kernel level the next
4139 		 * time the task is scheduled
4140 		 */
4141 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4142 
4143 		/*
4144 		 * activate monitoring at user level
4145 		 */
4146 		ia64_psr(tregs)->up = 1;
4147 	}
4148 	return 0;
4149 }
4150 
4151 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4152 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4153 {
4154 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4155 	unsigned int cnum;
4156 	int i;
4157 	int ret = -EINVAL;
4158 
4159 	for (i = 0; i < count; i++, req++) {
4160 
4161 		cnum = req->reg_num;
4162 
4163 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4164 
4165 		req->reg_value = PMC_DFL_VAL(cnum);
4166 
4167 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4168 
4169 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4170 	}
4171 	return 0;
4172 
4173 abort_mission:
4174 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4175 	return ret;
4176 }
4177 
4178 static int
pfm_check_task_exist(pfm_context_t * ctx)4179 pfm_check_task_exist(pfm_context_t *ctx)
4180 {
4181 	struct task_struct *g, *t;
4182 	int ret = -ESRCH;
4183 
4184 	read_lock(&tasklist_lock);
4185 
4186 	do_each_thread (g, t) {
4187 		if (t->thread.pfm_context == ctx) {
4188 			ret = 0;
4189 			goto out;
4190 		}
4191 	} while_each_thread (g, t);
4192 out:
4193 	read_unlock(&tasklist_lock);
4194 
4195 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4196 
4197 	return ret;
4198 }
4199 
4200 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4201 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4202 {
4203 	struct task_struct *task;
4204 	struct thread_struct *thread;
4205 	struct pfm_context_t *old;
4206 	unsigned long flags;
4207 #ifndef CONFIG_SMP
4208 	struct task_struct *owner_task = NULL;
4209 #endif
4210 	pfarg_load_t *req = (pfarg_load_t *)arg;
4211 	unsigned long *pmcs_source, *pmds_source;
4212 	int the_cpu;
4213 	int ret = 0;
4214 	int state, is_system, set_dbregs = 0;
4215 
4216 	state     = ctx->ctx_state;
4217 	is_system = ctx->ctx_fl_system;
4218 	/*
4219 	 * can only load from unloaded or terminated state
4220 	 */
4221 	if (state != PFM_CTX_UNLOADED) {
4222 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4223 			req->load_pid,
4224 			ctx->ctx_state));
4225 		return -EBUSY;
4226 	}
4227 
4228 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4229 
4230 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4231 		DPRINT(("cannot use blocking mode on self\n"));
4232 		return -EINVAL;
4233 	}
4234 
4235 	ret = pfm_get_task(ctx, req->load_pid, &task);
4236 	if (ret) {
4237 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4238 		return ret;
4239 	}
4240 
4241 	ret = -EINVAL;
4242 
4243 	/*
4244 	 * system wide is self monitoring only
4245 	 */
4246 	if (is_system && task != current) {
4247 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4248 			req->load_pid));
4249 		goto error;
4250 	}
4251 
4252 	thread = &task->thread;
4253 
4254 	ret = 0;
4255 	/*
4256 	 * cannot load a context which is using range restrictions,
4257 	 * into a task that is being debugged.
4258 	 */
4259 	if (ctx->ctx_fl_using_dbreg) {
4260 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4261 			ret = -EBUSY;
4262 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4263 			goto error;
4264 		}
4265 		LOCK_PFS(flags);
4266 
4267 		if (is_system) {
4268 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4269 				DPRINT(("cannot load [%d] dbregs in use\n",
4270 							task_pid_nr(task)));
4271 				ret = -EBUSY;
4272 			} else {
4273 				pfm_sessions.pfs_sys_use_dbregs++;
4274 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4275 				set_dbregs = 1;
4276 			}
4277 		}
4278 
4279 		UNLOCK_PFS(flags);
4280 
4281 		if (ret) goto error;
4282 	}
4283 
4284 	/*
4285 	 * SMP system-wide monitoring implies self-monitoring.
4286 	 *
4287 	 * The programming model expects the task to
4288 	 * be pinned on a CPU throughout the session.
4289 	 * Here we take note of the current CPU at the
4290 	 * time the context is loaded. No call from
4291 	 * another CPU will be allowed.
4292 	 *
4293 	 * The pinning via shed_setaffinity()
4294 	 * must be done by the calling task prior
4295 	 * to this call.
4296 	 *
4297 	 * systemwide: keep track of CPU this session is supposed to run on
4298 	 */
4299 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4300 
4301 	ret = -EBUSY;
4302 	/*
4303 	 * now reserve the session
4304 	 */
4305 	ret = pfm_reserve_session(current, is_system, the_cpu);
4306 	if (ret) goto error;
4307 
4308 	/*
4309 	 * task is necessarily stopped at this point.
4310 	 *
4311 	 * If the previous context was zombie, then it got removed in
4312 	 * pfm_save_regs(). Therefore we should not see it here.
4313 	 * If we see a context, then this is an active context
4314 	 *
4315 	 * XXX: needs to be atomic
4316 	 */
4317 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4318 		thread->pfm_context, ctx));
4319 
4320 	ret = -EBUSY;
4321 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4322 	if (old != NULL) {
4323 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4324 		goto error_unres;
4325 	}
4326 
4327 	pfm_reset_msgq(ctx);
4328 
4329 	ctx->ctx_state = PFM_CTX_LOADED;
4330 
4331 	/*
4332 	 * link context to task
4333 	 */
4334 	ctx->ctx_task = task;
4335 
4336 	if (is_system) {
4337 		/*
4338 		 * we load as stopped
4339 		 */
4340 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4341 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4342 
4343 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4344 	} else {
4345 		thread->flags |= IA64_THREAD_PM_VALID;
4346 	}
4347 
4348 	/*
4349 	 * propagate into thread-state
4350 	 */
4351 	pfm_copy_pmds(task, ctx);
4352 	pfm_copy_pmcs(task, ctx);
4353 
4354 	pmcs_source = ctx->th_pmcs;
4355 	pmds_source = ctx->th_pmds;
4356 
4357 	/*
4358 	 * always the case for system-wide
4359 	 */
4360 	if (task == current) {
4361 
4362 		if (is_system == 0) {
4363 
4364 			/* allow user level control */
4365 			ia64_psr(regs)->sp = 0;
4366 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4367 
4368 			SET_LAST_CPU(ctx, smp_processor_id());
4369 			INC_ACTIVATION();
4370 			SET_ACTIVATION(ctx);
4371 #ifndef CONFIG_SMP
4372 			/*
4373 			 * push the other task out, if any
4374 			 */
4375 			owner_task = GET_PMU_OWNER();
4376 			if (owner_task) pfm_lazy_save_regs(owner_task);
4377 #endif
4378 		}
4379 		/*
4380 		 * load all PMD from ctx to PMU (as opposed to thread state)
4381 		 * restore all PMC from ctx to PMU
4382 		 */
4383 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4384 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4385 
4386 		ctx->ctx_reload_pmcs[0] = 0UL;
4387 		ctx->ctx_reload_pmds[0] = 0UL;
4388 
4389 		/*
4390 		 * guaranteed safe by earlier check against DBG_VALID
4391 		 */
4392 		if (ctx->ctx_fl_using_dbreg) {
4393 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4394 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4395 		}
4396 		/*
4397 		 * set new ownership
4398 		 */
4399 		SET_PMU_OWNER(task, ctx);
4400 
4401 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4402 	} else {
4403 		/*
4404 		 * when not current, task MUST be stopped, so this is safe
4405 		 */
4406 		regs = task_pt_regs(task);
4407 
4408 		/* force a full reload */
4409 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4410 		SET_LAST_CPU(ctx, -1);
4411 
4412 		/* initial saved psr (stopped) */
4413 		ctx->ctx_saved_psr_up = 0UL;
4414 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4415 	}
4416 
4417 	ret = 0;
4418 
4419 error_unres:
4420 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4421 error:
4422 	/*
4423 	 * we must undo the dbregs setting (for system-wide)
4424 	 */
4425 	if (ret && set_dbregs) {
4426 		LOCK_PFS(flags);
4427 		pfm_sessions.pfs_sys_use_dbregs--;
4428 		UNLOCK_PFS(flags);
4429 	}
4430 	/*
4431 	 * release task, there is now a link with the context
4432 	 */
4433 	if (is_system == 0 && task != current) {
4434 		pfm_put_task(task);
4435 
4436 		if (ret == 0) {
4437 			ret = pfm_check_task_exist(ctx);
4438 			if (ret) {
4439 				ctx->ctx_state = PFM_CTX_UNLOADED;
4440 				ctx->ctx_task  = NULL;
4441 			}
4442 		}
4443 	}
4444 	return ret;
4445 }
4446 
4447 /*
4448  * in this function, we do not need to increase the use count
4449  * for the task via get_task_struct(), because we hold the
4450  * context lock. If the task were to disappear while having
4451  * a context attached, it would go through pfm_exit_thread()
4452  * which also grabs the context lock  and would therefore be blocked
4453  * until we are here.
4454  */
4455 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4456 
4457 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4458 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4459 {
4460 	struct task_struct *task = PFM_CTX_TASK(ctx);
4461 	struct pt_regs *tregs;
4462 	int prev_state, is_system;
4463 	int ret;
4464 
4465 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4466 
4467 	prev_state = ctx->ctx_state;
4468 	is_system  = ctx->ctx_fl_system;
4469 
4470 	/*
4471 	 * unload only when necessary
4472 	 */
4473 	if (prev_state == PFM_CTX_UNLOADED) {
4474 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4475 		return 0;
4476 	}
4477 
4478 	/*
4479 	 * clear psr and dcr bits
4480 	 */
4481 	ret = pfm_stop(ctx, NULL, 0, regs);
4482 	if (ret) return ret;
4483 
4484 	ctx->ctx_state = PFM_CTX_UNLOADED;
4485 
4486 	/*
4487 	 * in system mode, we need to update the PMU directly
4488 	 * and the user level state of the caller, which may not
4489 	 * necessarily be the creator of the context.
4490 	 */
4491 	if (is_system) {
4492 
4493 		/*
4494 		 * Update cpuinfo
4495 		 *
4496 		 * local PMU is taken care of in pfm_stop()
4497 		 */
4498 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4499 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4500 
4501 		/*
4502 		 * save PMDs in context
4503 		 * release ownership
4504 		 */
4505 		pfm_flush_pmds(current, ctx);
4506 
4507 		/*
4508 		 * at this point we are done with the PMU
4509 		 * so we can unreserve the resource.
4510 		 */
4511 		if (prev_state != PFM_CTX_ZOMBIE)
4512 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4513 
4514 		/*
4515 		 * disconnect context from task
4516 		 */
4517 		task->thread.pfm_context = NULL;
4518 		/*
4519 		 * disconnect task from context
4520 		 */
4521 		ctx->ctx_task = NULL;
4522 
4523 		/*
4524 		 * There is nothing more to cleanup here.
4525 		 */
4526 		return 0;
4527 	}
4528 
4529 	/*
4530 	 * per-task mode
4531 	 */
4532 	tregs = task == current ? regs : task_pt_regs(task);
4533 
4534 	if (task == current) {
4535 		/*
4536 		 * cancel user level control
4537 		 */
4538 		ia64_psr(regs)->sp = 1;
4539 
4540 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4541 	}
4542 	/*
4543 	 * save PMDs to context
4544 	 * release ownership
4545 	 */
4546 	pfm_flush_pmds(task, ctx);
4547 
4548 	/*
4549 	 * at this point we are done with the PMU
4550 	 * so we can unreserve the resource.
4551 	 *
4552 	 * when state was ZOMBIE, we have already unreserved.
4553 	 */
4554 	if (prev_state != PFM_CTX_ZOMBIE)
4555 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4556 
4557 	/*
4558 	 * reset activation counter and psr
4559 	 */
4560 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4561 	SET_LAST_CPU(ctx, -1);
4562 
4563 	/*
4564 	 * PMU state will not be restored
4565 	 */
4566 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4567 
4568 	/*
4569 	 * break links between context and task
4570 	 */
4571 	task->thread.pfm_context  = NULL;
4572 	ctx->ctx_task             = NULL;
4573 
4574 	PFM_SET_WORK_PENDING(task, 0);
4575 
4576 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4577 	ctx->ctx_fl_can_restart  = 0;
4578 	ctx->ctx_fl_going_zombie = 0;
4579 
4580 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4581 
4582 	return 0;
4583 }
4584 
4585 
4586 /*
4587  * called only from exit_thread(): task == current
4588  * we come here only if current has a context attached (loaded or masked)
4589  */
4590 void
pfm_exit_thread(struct task_struct * task)4591 pfm_exit_thread(struct task_struct *task)
4592 {
4593 	pfm_context_t *ctx;
4594 	unsigned long flags;
4595 	struct pt_regs *regs = task_pt_regs(task);
4596 	int ret, state;
4597 	int free_ok = 0;
4598 
4599 	ctx = PFM_GET_CTX(task);
4600 
4601 	PROTECT_CTX(ctx, flags);
4602 
4603 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4604 
4605 	state = ctx->ctx_state;
4606 	switch(state) {
4607 		case PFM_CTX_UNLOADED:
4608 			/*
4609 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4610 			 * be in unloaded state
4611 	 		 */
4612 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4613 			break;
4614 		case PFM_CTX_LOADED:
4615 		case PFM_CTX_MASKED:
4616 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4617 			if (ret) {
4618 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4619 			}
4620 			DPRINT(("ctx unloaded for current state was %d\n", state));
4621 
4622 			pfm_end_notify_user(ctx);
4623 			break;
4624 		case PFM_CTX_ZOMBIE:
4625 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4626 			if (ret) {
4627 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4628 			}
4629 			free_ok = 1;
4630 			break;
4631 		default:
4632 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4633 			break;
4634 	}
4635 	UNPROTECT_CTX(ctx, flags);
4636 
4637 	{ u64 psr = pfm_get_psr();
4638 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4639 	  BUG_ON(GET_PMU_OWNER());
4640 	  BUG_ON(ia64_psr(regs)->up);
4641 	  BUG_ON(ia64_psr(regs)->pp);
4642 	}
4643 
4644 	/*
4645 	 * All memory free operations (especially for vmalloc'ed memory)
4646 	 * MUST be done with interrupts ENABLED.
4647 	 */
4648 	if (free_ok) pfm_context_free(ctx);
4649 }
4650 
4651 /*
4652  * functions MUST be listed in the increasing order of their index (see permfon.h)
4653  */
4654 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4655 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4656 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4657 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4658 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4659 
4660 static pfm_cmd_desc_t pfm_cmd_tab[]={
4661 /* 0  */PFM_CMD_NONE,
4662 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4665 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4666 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4667 /* 6  */PFM_CMD_NONE,
4668 /* 7  */PFM_CMD_NONE,
4669 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4670 /* 9  */PFM_CMD_NONE,
4671 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4672 /* 11 */PFM_CMD_NONE,
4673 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4674 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4675 /* 14 */PFM_CMD_NONE,
4676 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4677 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4678 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4679 /* 18 */PFM_CMD_NONE,
4680 /* 19 */PFM_CMD_NONE,
4681 /* 20 */PFM_CMD_NONE,
4682 /* 21 */PFM_CMD_NONE,
4683 /* 22 */PFM_CMD_NONE,
4684 /* 23 */PFM_CMD_NONE,
4685 /* 24 */PFM_CMD_NONE,
4686 /* 25 */PFM_CMD_NONE,
4687 /* 26 */PFM_CMD_NONE,
4688 /* 27 */PFM_CMD_NONE,
4689 /* 28 */PFM_CMD_NONE,
4690 /* 29 */PFM_CMD_NONE,
4691 /* 30 */PFM_CMD_NONE,
4692 /* 31 */PFM_CMD_NONE,
4693 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4694 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4695 };
4696 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4697 
4698 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4699 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4700 {
4701 	struct task_struct *task;
4702 	int state, old_state;
4703 
4704 recheck:
4705 	state = ctx->ctx_state;
4706 	task  = ctx->ctx_task;
4707 
4708 	if (task == NULL) {
4709 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4710 		return 0;
4711 	}
4712 
4713 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4714 		ctx->ctx_fd,
4715 		state,
4716 		task_pid_nr(task),
4717 		task->state, PFM_CMD_STOPPED(cmd)));
4718 
4719 	/*
4720 	 * self-monitoring always ok.
4721 	 *
4722 	 * for system-wide the caller can either be the creator of the
4723 	 * context (to one to which the context is attached to) OR
4724 	 * a task running on the same CPU as the session.
4725 	 */
4726 	if (task == current || ctx->ctx_fl_system) return 0;
4727 
4728 	/*
4729 	 * we are monitoring another thread
4730 	 */
4731 	switch(state) {
4732 		case PFM_CTX_UNLOADED:
4733 			/*
4734 			 * if context is UNLOADED we are safe to go
4735 			 */
4736 			return 0;
4737 		case PFM_CTX_ZOMBIE:
4738 			/*
4739 			 * no command can operate on a zombie context
4740 			 */
4741 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4742 			return -EINVAL;
4743 		case PFM_CTX_MASKED:
4744 			/*
4745 			 * PMU state has been saved to software even though
4746 			 * the thread may still be running.
4747 			 */
4748 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4749 	}
4750 
4751 	/*
4752 	 * context is LOADED or MASKED. Some commands may need to have
4753 	 * the task stopped.
4754 	 *
4755 	 * We could lift this restriction for UP but it would mean that
4756 	 * the user has no guarantee the task would not run between
4757 	 * two successive calls to perfmonctl(). That's probably OK.
4758 	 * If this user wants to ensure the task does not run, then
4759 	 * the task must be stopped.
4760 	 */
4761 	if (PFM_CMD_STOPPED(cmd)) {
4762 		if (!task_is_stopped_or_traced(task)) {
4763 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4764 			return -EBUSY;
4765 		}
4766 		/*
4767 		 * task is now stopped, wait for ctxsw out
4768 		 *
4769 		 * This is an interesting point in the code.
4770 		 * We need to unprotect the context because
4771 		 * the pfm_save_regs() routines needs to grab
4772 		 * the same lock. There are danger in doing
4773 		 * this because it leaves a window open for
4774 		 * another task to get access to the context
4775 		 * and possibly change its state. The one thing
4776 		 * that is not possible is for the context to disappear
4777 		 * because we are protected by the VFS layer, i.e.,
4778 		 * get_fd()/put_fd().
4779 		 */
4780 		old_state = state;
4781 
4782 		UNPROTECT_CTX(ctx, flags);
4783 
4784 		wait_task_inactive(task, 0);
4785 
4786 		PROTECT_CTX(ctx, flags);
4787 
4788 		/*
4789 		 * we must recheck to verify if state has changed
4790 		 */
4791 		if (ctx->ctx_state != old_state) {
4792 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4793 			goto recheck;
4794 		}
4795 	}
4796 	return 0;
4797 }
4798 
4799 /*
4800  * system-call entry point (must return long)
4801  */
4802 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4803 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4804 {
4805 	struct file *file = NULL;
4806 	pfm_context_t *ctx = NULL;
4807 	unsigned long flags = 0UL;
4808 	void *args_k = NULL;
4809 	long ret; /* will expand int return types */
4810 	size_t base_sz, sz, xtra_sz = 0;
4811 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4812 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4813 	int (*getsize)(void *arg, size_t *sz);
4814 #define PFM_MAX_ARGSIZE	4096
4815 
4816 	/*
4817 	 * reject any call if perfmon was disabled at initialization
4818 	 */
4819 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4820 
4821 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4822 		DPRINT(("invalid cmd=%d\n", cmd));
4823 		return -EINVAL;
4824 	}
4825 
4826 	func      = pfm_cmd_tab[cmd].cmd_func;
4827 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4828 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4829 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4830 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4831 
4832 	if (unlikely(func == NULL)) {
4833 		DPRINT(("invalid cmd=%d\n", cmd));
4834 		return -EINVAL;
4835 	}
4836 
4837 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4838 		PFM_CMD_NAME(cmd),
4839 		cmd,
4840 		narg,
4841 		base_sz,
4842 		count));
4843 
4844 	/*
4845 	 * check if number of arguments matches what the command expects
4846 	 */
4847 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4848 		return -EINVAL;
4849 
4850 restart_args:
4851 	sz = xtra_sz + base_sz*count;
4852 	/*
4853 	 * limit abuse to min page size
4854 	 */
4855 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4856 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4857 		return -E2BIG;
4858 	}
4859 
4860 	/*
4861 	 * allocate default-sized argument buffer
4862 	 */
4863 	if (likely(count && args_k == NULL)) {
4864 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4865 		if (args_k == NULL) return -ENOMEM;
4866 	}
4867 
4868 	ret = -EFAULT;
4869 
4870 	/*
4871 	 * copy arguments
4872 	 *
4873 	 * assume sz = 0 for command without parameters
4874 	 */
4875 	if (sz && copy_from_user(args_k, arg, sz)) {
4876 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4877 		goto error_args;
4878 	}
4879 
4880 	/*
4881 	 * check if command supports extra parameters
4882 	 */
4883 	if (completed_args == 0 && getsize) {
4884 		/*
4885 		 * get extra parameters size (based on main argument)
4886 		 */
4887 		ret = (*getsize)(args_k, &xtra_sz);
4888 		if (ret) goto error_args;
4889 
4890 		completed_args = 1;
4891 
4892 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4893 
4894 		/* retry if necessary */
4895 		if (likely(xtra_sz)) goto restart_args;
4896 	}
4897 
4898 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4899 
4900 	ret = -EBADF;
4901 
4902 	file = fget(fd);
4903 	if (unlikely(file == NULL)) {
4904 		DPRINT(("invalid fd %d\n", fd));
4905 		goto error_args;
4906 	}
4907 	if (unlikely(PFM_IS_FILE(file) == 0)) {
4908 		DPRINT(("fd %d not related to perfmon\n", fd));
4909 		goto error_args;
4910 	}
4911 
4912 	ctx = (pfm_context_t *)file->private_data;
4913 	if (unlikely(ctx == NULL)) {
4914 		DPRINT(("no context for fd %d\n", fd));
4915 		goto error_args;
4916 	}
4917 	prefetch(&ctx->ctx_state);
4918 
4919 	PROTECT_CTX(ctx, flags);
4920 
4921 	/*
4922 	 * check task is stopped
4923 	 */
4924 	ret = pfm_check_task_state(ctx, cmd, flags);
4925 	if (unlikely(ret)) goto abort_locked;
4926 
4927 skip_fd:
4928 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4929 
4930 	call_made = 1;
4931 
4932 abort_locked:
4933 	if (likely(ctx)) {
4934 		DPRINT(("context unlocked\n"));
4935 		UNPROTECT_CTX(ctx, flags);
4936 	}
4937 
4938 	/* copy argument back to user, if needed */
4939 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4940 
4941 error_args:
4942 	if (file)
4943 		fput(file);
4944 
4945 	kfree(args_k);
4946 
4947 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4948 
4949 	return ret;
4950 }
4951 
4952 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4953 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4954 {
4955 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4956 	pfm_ovfl_ctrl_t rst_ctrl;
4957 	int state;
4958 	int ret = 0;
4959 
4960 	state = ctx->ctx_state;
4961 	/*
4962 	 * Unlock sampling buffer and reset index atomically
4963 	 * XXX: not really needed when blocking
4964 	 */
4965 	if (CTX_HAS_SMPL(ctx)) {
4966 
4967 		rst_ctrl.bits.mask_monitoring = 0;
4968 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4969 
4970 		if (state == PFM_CTX_LOADED)
4971 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972 		else
4973 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4974 	} else {
4975 		rst_ctrl.bits.mask_monitoring = 0;
4976 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4977 	}
4978 
4979 	if (ret == 0) {
4980 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4981 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4982 		}
4983 		if (rst_ctrl.bits.mask_monitoring == 0) {
4984 			DPRINT(("resuming monitoring\n"));
4985 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4986 		} else {
4987 			DPRINT(("stopping monitoring\n"));
4988 			//pfm_stop_monitoring(current, regs);
4989 		}
4990 		ctx->ctx_state = PFM_CTX_LOADED;
4991 	}
4992 }
4993 
4994 /*
4995  * context MUST BE LOCKED when calling
4996  * can only be called for current
4997  */
4998 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4999 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5000 {
5001 	int ret;
5002 
5003 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
5004 
5005 	ret = pfm_context_unload(ctx, NULL, 0, regs);
5006 	if (ret) {
5007 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
5008 	}
5009 
5010 	/*
5011 	 * and wakeup controlling task, indicating we are now disconnected
5012 	 */
5013 	wake_up_interruptible(&ctx->ctx_zombieq);
5014 
5015 	/*
5016 	 * given that context is still locked, the controlling
5017 	 * task will only get access when we return from
5018 	 * pfm_handle_work().
5019 	 */
5020 }
5021 
5022 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5023 
5024  /*
5025   * pfm_handle_work() can be called with interrupts enabled
5026   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5027   * call may sleep, therefore we must re-enable interrupts
5028   * to avoid deadlocks. It is safe to do so because this function
5029   * is called ONLY when returning to user level (pUStk=1), in which case
5030   * there is no risk of kernel stack overflow due to deep
5031   * interrupt nesting.
5032   */
5033 void
pfm_handle_work(void)5034 pfm_handle_work(void)
5035 {
5036 	pfm_context_t *ctx;
5037 	struct pt_regs *regs;
5038 	unsigned long flags, dummy_flags;
5039 	unsigned long ovfl_regs;
5040 	unsigned int reason;
5041 	int ret;
5042 
5043 	ctx = PFM_GET_CTX(current);
5044 	if (ctx == NULL) {
5045 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5046 			task_pid_nr(current));
5047 		return;
5048 	}
5049 
5050 	PROTECT_CTX(ctx, flags);
5051 
5052 	PFM_SET_WORK_PENDING(current, 0);
5053 
5054 	regs = task_pt_regs(current);
5055 
5056 	/*
5057 	 * extract reason for being here and clear
5058 	 */
5059 	reason = ctx->ctx_fl_trap_reason;
5060 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5061 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5062 
5063 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5064 
5065 	/*
5066 	 * must be done before we check for simple-reset mode
5067 	 */
5068 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5069 		goto do_zombie;
5070 
5071 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5072 	if (reason == PFM_TRAP_REASON_RESET)
5073 		goto skip_blocking;
5074 
5075 	/*
5076 	 * restore interrupt mask to what it was on entry.
5077 	 * Could be enabled/diasbled.
5078 	 */
5079 	UNPROTECT_CTX(ctx, flags);
5080 
5081 	/*
5082 	 * force interrupt enable because of down_interruptible()
5083 	 */
5084 	local_irq_enable();
5085 
5086 	DPRINT(("before block sleeping\n"));
5087 
5088 	/*
5089 	 * may go through without blocking on SMP systems
5090 	 * if restart has been received already by the time we call down()
5091 	 */
5092 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5093 
5094 	DPRINT(("after block sleeping ret=%d\n", ret));
5095 
5096 	/*
5097 	 * lock context and mask interrupts again
5098 	 * We save flags into a dummy because we may have
5099 	 * altered interrupts mask compared to entry in this
5100 	 * function.
5101 	 */
5102 	PROTECT_CTX(ctx, dummy_flags);
5103 
5104 	/*
5105 	 * we need to read the ovfl_regs only after wake-up
5106 	 * because we may have had pfm_write_pmds() in between
5107 	 * and that can changed PMD values and therefore
5108 	 * ovfl_regs is reset for these new PMD values.
5109 	 */
5110 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5111 
5112 	if (ctx->ctx_fl_going_zombie) {
5113 do_zombie:
5114 		DPRINT(("context is zombie, bailing out\n"));
5115 		pfm_context_force_terminate(ctx, regs);
5116 		goto nothing_to_do;
5117 	}
5118 	/*
5119 	 * in case of interruption of down() we don't restart anything
5120 	 */
5121 	if (ret < 0)
5122 		goto nothing_to_do;
5123 
5124 skip_blocking:
5125 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5126 	ctx->ctx_ovfl_regs[0] = 0UL;
5127 
5128 nothing_to_do:
5129 	/*
5130 	 * restore flags as they were upon entry
5131 	 */
5132 	UNPROTECT_CTX(ctx, flags);
5133 }
5134 
5135 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5136 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5137 {
5138 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5139 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5140 		return 0;
5141 	}
5142 
5143 	DPRINT(("waking up somebody\n"));
5144 
5145 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5146 
5147 	/*
5148 	 * safe, we are not in intr handler, nor in ctxsw when
5149 	 * we come here
5150 	 */
5151 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5152 
5153 	return 0;
5154 }
5155 
5156 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5157 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5158 {
5159 	pfm_msg_t *msg = NULL;
5160 
5161 	if (ctx->ctx_fl_no_msg == 0) {
5162 		msg = pfm_get_new_msg(ctx);
5163 		if (msg == NULL) {
5164 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5165 			return -1;
5166 		}
5167 
5168 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5169 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5170 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5171 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5172 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5173 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5174 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5175 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5176 	}
5177 
5178 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5179 		msg,
5180 		ctx->ctx_fl_no_msg,
5181 		ctx->ctx_fd,
5182 		ovfl_pmds));
5183 
5184 	return pfm_notify_user(ctx, msg);
5185 }
5186 
5187 static int
pfm_end_notify_user(pfm_context_t * ctx)5188 pfm_end_notify_user(pfm_context_t *ctx)
5189 {
5190 	pfm_msg_t *msg;
5191 
5192 	msg = pfm_get_new_msg(ctx);
5193 	if (msg == NULL) {
5194 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5195 		return -1;
5196 	}
5197 	/* no leak */
5198 	memset(msg, 0, sizeof(*msg));
5199 
5200 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5201 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5202 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5203 
5204 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5205 		msg,
5206 		ctx->ctx_fl_no_msg,
5207 		ctx->ctx_fd));
5208 
5209 	return pfm_notify_user(ctx, msg);
5210 }
5211 
5212 /*
5213  * main overflow processing routine.
5214  * it can be called from the interrupt path or explicitly during the context switch code
5215  */
5216 static void
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,u64 pmc0,struct pt_regs * regs)5217 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5218 {
5219 	pfm_ovfl_arg_t *ovfl_arg;
5220 	unsigned long mask;
5221 	unsigned long old_val, ovfl_val, new_val;
5222 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5223 	unsigned long tstamp;
5224 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5225 	unsigned int i, has_smpl;
5226 	int must_notify = 0;
5227 
5228 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5229 
5230 	/*
5231 	 * sanity test. Should never happen
5232 	 */
5233 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5234 
5235 	tstamp   = ia64_get_itc();
5236 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5237 	ovfl_val = pmu_conf->ovfl_val;
5238 	has_smpl = CTX_HAS_SMPL(ctx);
5239 
5240 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5241 		     "used_pmds=0x%lx\n",
5242 			pmc0,
5243 			task ? task_pid_nr(task): -1,
5244 			(regs ? regs->cr_iip : 0),
5245 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5246 			ctx->ctx_used_pmds[0]));
5247 
5248 
5249 	/*
5250 	 * first we update the virtual counters
5251 	 * assume there was a prior ia64_srlz_d() issued
5252 	 */
5253 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5254 
5255 		/* skip pmd which did not overflow */
5256 		if ((mask & 0x1) == 0) continue;
5257 
5258 		/*
5259 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5260 		 * may have happened before the PMU was frozen. The residual count is not
5261 		 * taken into consideration here but will be with any read of the pmd via
5262 		 * pfm_read_pmds().
5263 		 */
5264 		old_val              = new_val = ctx->ctx_pmds[i].val;
5265 		new_val             += 1 + ovfl_val;
5266 		ctx->ctx_pmds[i].val = new_val;
5267 
5268 		/*
5269 		 * check for overflow condition
5270 		 */
5271 		if (likely(old_val > new_val)) {
5272 			ovfl_pmds |= 1UL << i;
5273 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5274 		}
5275 
5276 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5277 			i,
5278 			new_val,
5279 			old_val,
5280 			ia64_get_pmd(i) & ovfl_val,
5281 			ovfl_pmds,
5282 			ovfl_notify));
5283 	}
5284 
5285 	/*
5286 	 * there was no 64-bit overflow, nothing else to do
5287 	 */
5288 	if (ovfl_pmds == 0UL) return;
5289 
5290 	/*
5291 	 * reset all control bits
5292 	 */
5293 	ovfl_ctrl.val = 0;
5294 	reset_pmds    = 0UL;
5295 
5296 	/*
5297 	 * if a sampling format module exists, then we "cache" the overflow by
5298 	 * calling the module's handler() routine.
5299 	 */
5300 	if (has_smpl) {
5301 		unsigned long start_cycles, end_cycles;
5302 		unsigned long pmd_mask;
5303 		int j, k, ret = 0;
5304 		int this_cpu = smp_processor_id();
5305 
5306 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5307 		ovfl_arg = &ctx->ctx_ovfl_arg;
5308 
5309 		prefetch(ctx->ctx_smpl_hdr);
5310 
5311 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5312 
5313 			mask = 1UL << i;
5314 
5315 			if ((pmd_mask & 0x1) == 0) continue;
5316 
5317 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5318 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5319 			ovfl_arg->active_set    = 0;
5320 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5321 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5322 
5323 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5324 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5325 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5326 
5327 			/*
5328 		 	 * copy values of pmds of interest. Sampling format may copy them
5329 		 	 * into sampling buffer.
5330 		 	 */
5331 			if (smpl_pmds) {
5332 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5333 					if ((smpl_pmds & 0x1) == 0) continue;
5334 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5335 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5336 				}
5337 			}
5338 
5339 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5340 
5341 			start_cycles = ia64_get_itc();
5342 
5343 			/*
5344 		 	 * call custom buffer format record (handler) routine
5345 		 	 */
5346 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5347 
5348 			end_cycles = ia64_get_itc();
5349 
5350 			/*
5351 			 * For those controls, we take the union because they have
5352 			 * an all or nothing behavior.
5353 			 */
5354 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5355 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5356 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5357 			/*
5358 			 * build the bitmask of pmds to reset now
5359 			 */
5360 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5361 
5362 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5363 		}
5364 		/*
5365 		 * when the module cannot handle the rest of the overflows, we abort right here
5366 		 */
5367 		if (ret && pmd_mask) {
5368 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5369 				pmd_mask<<PMU_FIRST_COUNTER));
5370 		}
5371 		/*
5372 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5373 		 */
5374 		ovfl_pmds &= ~reset_pmds;
5375 	} else {
5376 		/*
5377 		 * when no sampling module is used, then the default
5378 		 * is to notify on overflow if requested by user
5379 		 */
5380 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5381 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5382 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5383 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5384 		/*
5385 		 * if needed, we reset all overflowed pmds
5386 		 */
5387 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5388 	}
5389 
5390 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5391 
5392 	/*
5393 	 * reset the requested PMD registers using the short reset values
5394 	 */
5395 	if (reset_pmds) {
5396 		unsigned long bm = reset_pmds;
5397 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5398 	}
5399 
5400 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5401 		/*
5402 		 * keep track of what to reset when unblocking
5403 		 */
5404 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5405 
5406 		/*
5407 		 * check for blocking context
5408 		 */
5409 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5410 
5411 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5412 
5413 			/*
5414 			 * set the perfmon specific checking pending work for the task
5415 			 */
5416 			PFM_SET_WORK_PENDING(task, 1);
5417 
5418 			/*
5419 			 * when coming from ctxsw, current still points to the
5420 			 * previous task, therefore we must work with task and not current.
5421 			 */
5422 			set_notify_resume(task);
5423 		}
5424 		/*
5425 		 * defer until state is changed (shorten spin window). the context is locked
5426 		 * anyway, so the signal receiver would come spin for nothing.
5427 		 */
5428 		must_notify = 1;
5429 	}
5430 
5431 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5432 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5433 			PFM_GET_WORK_PENDING(task),
5434 			ctx->ctx_fl_trap_reason,
5435 			ovfl_pmds,
5436 			ovfl_notify,
5437 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5438 	/*
5439 	 * in case monitoring must be stopped, we toggle the psr bits
5440 	 */
5441 	if (ovfl_ctrl.bits.mask_monitoring) {
5442 		pfm_mask_monitoring(task);
5443 		ctx->ctx_state = PFM_CTX_MASKED;
5444 		ctx->ctx_fl_can_restart = 1;
5445 	}
5446 
5447 	/*
5448 	 * send notification now
5449 	 */
5450 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5451 
5452 	return;
5453 
5454 sanity_check:
5455 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5456 			smp_processor_id(),
5457 			task ? task_pid_nr(task) : -1,
5458 			pmc0);
5459 	return;
5460 
5461 stop_monitoring:
5462 	/*
5463 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5464 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5465 	 * come here as zombie only if the task is the current task. In which case, we
5466 	 * can access the PMU  hardware directly.
5467 	 *
5468 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5469 	 *
5470 	 * In case the context was zombified it could not be reclaimed at the time
5471 	 * the monitoring program exited. At this point, the PMU reservation has been
5472 	 * returned, the sampiing buffer has been freed. We must convert this call
5473 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5474 	 * by stopping monitoring for this task. We can only come here for a per-task
5475 	 * context. All we need to do is to stop monitoring using the psr bits which
5476 	 * are always task private. By re-enabling secure montioring, we ensure that
5477 	 * the monitored task will not be able to re-activate monitoring.
5478 	 * The task will eventually be context switched out, at which point the context
5479 	 * will be reclaimed (that includes releasing ownership of the PMU).
5480 	 *
5481 	 * So there might be a window of time where the number of per-task session is zero
5482 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5483 	 * context. This is safe because if a per-task session comes in, it will push this one
5484 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5485 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5486 	 * also push our zombie context out.
5487 	 *
5488 	 * Overall pretty hairy stuff....
5489 	 */
5490 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5491 	pfm_clear_psr_up();
5492 	ia64_psr(regs)->up = 0;
5493 	ia64_psr(regs)->sp = 1;
5494 	return;
5495 }
5496 
5497 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5498 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5499 {
5500 	struct task_struct *task;
5501 	pfm_context_t *ctx;
5502 	unsigned long flags;
5503 	u64 pmc0;
5504 	int this_cpu = smp_processor_id();
5505 	int retval = 0;
5506 
5507 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5508 
5509 	/*
5510 	 * srlz.d done before arriving here
5511 	 */
5512 	pmc0 = ia64_get_pmc(0);
5513 
5514 	task = GET_PMU_OWNER();
5515 	ctx  = GET_PMU_CTX();
5516 
5517 	/*
5518 	 * if we have some pending bits set
5519 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5520 	 */
5521 	if (PMC0_HAS_OVFL(pmc0) && task) {
5522 		/*
5523 		 * we assume that pmc0.fr is always set here
5524 		 */
5525 
5526 		/* sanity check */
5527 		if (!ctx) goto report_spurious1;
5528 
5529 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5530 			goto report_spurious2;
5531 
5532 		PROTECT_CTX_NOPRINT(ctx, flags);
5533 
5534 		pfm_overflow_handler(task, ctx, pmc0, regs);
5535 
5536 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5537 
5538 	} else {
5539 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5540 		retval = -1;
5541 	}
5542 	/*
5543 	 * keep it unfrozen at all times
5544 	 */
5545 	pfm_unfreeze_pmu();
5546 
5547 	return retval;
5548 
5549 report_spurious1:
5550 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5551 		this_cpu, task_pid_nr(task));
5552 	pfm_unfreeze_pmu();
5553 	return -1;
5554 report_spurious2:
5555 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5556 		this_cpu,
5557 		task_pid_nr(task));
5558 	pfm_unfreeze_pmu();
5559 	return -1;
5560 }
5561 
5562 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5563 pfm_interrupt_handler(int irq, void *arg)
5564 {
5565 	unsigned long start_cycles, total_cycles;
5566 	unsigned long min, max;
5567 	int this_cpu;
5568 	int ret;
5569 	struct pt_regs *regs = get_irq_regs();
5570 
5571 	this_cpu = get_cpu();
5572 	if (likely(!pfm_alt_intr_handler)) {
5573 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5574 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5575 
5576 		start_cycles = ia64_get_itc();
5577 
5578 		ret = pfm_do_interrupt_handler(arg, regs);
5579 
5580 		total_cycles = ia64_get_itc();
5581 
5582 		/*
5583 		 * don't measure spurious interrupts
5584 		 */
5585 		if (likely(ret == 0)) {
5586 			total_cycles -= start_cycles;
5587 
5588 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5589 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5590 
5591 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5592 		}
5593 	}
5594 	else {
5595 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5596 	}
5597 
5598 	put_cpu_no_resched();
5599 	return IRQ_HANDLED;
5600 }
5601 
5602 /*
5603  * /proc/perfmon interface, for debug only
5604  */
5605 
5606 #define PFM_PROC_SHOW_HEADER	((void *)NR_CPUS+1)
5607 
5608 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5609 pfm_proc_start(struct seq_file *m, loff_t *pos)
5610 {
5611 	if (*pos == 0) {
5612 		return PFM_PROC_SHOW_HEADER;
5613 	}
5614 
5615 	while (*pos <= NR_CPUS) {
5616 		if (cpu_online(*pos - 1)) {
5617 			return (void *)*pos;
5618 		}
5619 		++*pos;
5620 	}
5621 	return NULL;
5622 }
5623 
5624 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5625 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5626 {
5627 	++*pos;
5628 	return pfm_proc_start(m, pos);
5629 }
5630 
5631 static void
pfm_proc_stop(struct seq_file * m,void * v)5632 pfm_proc_stop(struct seq_file *m, void *v)
5633 {
5634 }
5635 
5636 static void
pfm_proc_show_header(struct seq_file * m)5637 pfm_proc_show_header(struct seq_file *m)
5638 {
5639 	struct list_head * pos;
5640 	pfm_buffer_fmt_t * entry;
5641 	unsigned long flags;
5642 
5643  	seq_printf(m,
5644 		"perfmon version           : %u.%u\n"
5645 		"model                     : %s\n"
5646 		"fastctxsw                 : %s\n"
5647 		"expert mode               : %s\n"
5648 		"ovfl_mask                 : 0x%lx\n"
5649 		"PMU flags                 : 0x%x\n",
5650 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5651 		pmu_conf->pmu_name,
5652 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5653 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5654 		pmu_conf->ovfl_val,
5655 		pmu_conf->flags);
5656 
5657   	LOCK_PFS(flags);
5658 
5659  	seq_printf(m,
5660  		"proc_sessions             : %u\n"
5661  		"sys_sessions              : %u\n"
5662  		"sys_use_dbregs            : %u\n"
5663  		"ptrace_use_dbregs         : %u\n",
5664  		pfm_sessions.pfs_task_sessions,
5665  		pfm_sessions.pfs_sys_sessions,
5666  		pfm_sessions.pfs_sys_use_dbregs,
5667  		pfm_sessions.pfs_ptrace_use_dbregs);
5668 
5669   	UNLOCK_PFS(flags);
5670 
5671 	spin_lock(&pfm_buffer_fmt_lock);
5672 
5673 	list_for_each(pos, &pfm_buffer_fmt_list) {
5674 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5675 		seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5676 			entry->fmt_uuid[0],
5677 			entry->fmt_uuid[1],
5678 			entry->fmt_uuid[2],
5679 			entry->fmt_uuid[3],
5680 			entry->fmt_uuid[4],
5681 			entry->fmt_uuid[5],
5682 			entry->fmt_uuid[6],
5683 			entry->fmt_uuid[7],
5684 			entry->fmt_uuid[8],
5685 			entry->fmt_uuid[9],
5686 			entry->fmt_uuid[10],
5687 			entry->fmt_uuid[11],
5688 			entry->fmt_uuid[12],
5689 			entry->fmt_uuid[13],
5690 			entry->fmt_uuid[14],
5691 			entry->fmt_uuid[15],
5692 			entry->fmt_name);
5693 	}
5694 	spin_unlock(&pfm_buffer_fmt_lock);
5695 
5696 }
5697 
5698 static int
pfm_proc_show(struct seq_file * m,void * v)5699 pfm_proc_show(struct seq_file *m, void *v)
5700 {
5701 	unsigned long psr;
5702 	unsigned int i;
5703 	int cpu;
5704 
5705 	if (v == PFM_PROC_SHOW_HEADER) {
5706 		pfm_proc_show_header(m);
5707 		return 0;
5708 	}
5709 
5710 	/* show info for CPU (v - 1) */
5711 
5712 	cpu = (long)v - 1;
5713 	seq_printf(m,
5714 		"CPU%-2d overflow intrs      : %lu\n"
5715 		"CPU%-2d overflow cycles     : %lu\n"
5716 		"CPU%-2d overflow min        : %lu\n"
5717 		"CPU%-2d overflow max        : %lu\n"
5718 		"CPU%-2d smpl handler calls  : %lu\n"
5719 		"CPU%-2d smpl handler cycles : %lu\n"
5720 		"CPU%-2d spurious intrs      : %lu\n"
5721 		"CPU%-2d replay   intrs      : %lu\n"
5722 		"CPU%-2d syst_wide           : %d\n"
5723 		"CPU%-2d dcr_pp              : %d\n"
5724 		"CPU%-2d exclude idle        : %d\n"
5725 		"CPU%-2d owner               : %d\n"
5726 		"CPU%-2d context             : %p\n"
5727 		"CPU%-2d activations         : %lu\n",
5728 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5729 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5730 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5731 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5732 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5733 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5734 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5735 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5736 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5737 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5738 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5739 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5740 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5741 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5742 
5743 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5744 
5745 		psr = pfm_get_psr();
5746 
5747 		ia64_srlz_d();
5748 
5749 		seq_printf(m,
5750 			"CPU%-2d psr                 : 0x%lx\n"
5751 			"CPU%-2d pmc0                : 0x%lx\n",
5752 			cpu, psr,
5753 			cpu, ia64_get_pmc(0));
5754 
5755 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5756 			if (PMC_IS_COUNTING(i) == 0) continue;
5757    			seq_printf(m,
5758 				"CPU%-2d pmc%u                : 0x%lx\n"
5759    				"CPU%-2d pmd%u                : 0x%lx\n",
5760 				cpu, i, ia64_get_pmc(i),
5761 				cpu, i, ia64_get_pmd(i));
5762   		}
5763 	}
5764 	return 0;
5765 }
5766 
5767 const struct seq_operations pfm_seq_ops = {
5768 	.start =	pfm_proc_start,
5769  	.next =		pfm_proc_next,
5770  	.stop =		pfm_proc_stop,
5771  	.show =		pfm_proc_show
5772 };
5773 
5774 static int
pfm_proc_open(struct inode * inode,struct file * file)5775 pfm_proc_open(struct inode *inode, struct file *file)
5776 {
5777 	return seq_open(file, &pfm_seq_ops);
5778 }
5779 
5780 
5781 /*
5782  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5783  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5784  * is active or inactive based on mode. We must rely on the value in
5785  * local_cpu_data->pfm_syst_info
5786  */
5787 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5788 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5789 {
5790 	struct pt_regs *regs;
5791 	unsigned long dcr;
5792 	unsigned long dcr_pp;
5793 
5794 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5795 
5796 	/*
5797 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5798 	 * on every CPU, so we can rely on the pid to identify the idle task.
5799 	 */
5800 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5801 		regs = task_pt_regs(task);
5802 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5803 		return;
5804 	}
5805 	/*
5806 	 * if monitoring has started
5807 	 */
5808 	if (dcr_pp) {
5809 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5810 		/*
5811 		 * context switching in?
5812 		 */
5813 		if (is_ctxswin) {
5814 			/* mask monitoring for the idle task */
5815 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5816 			pfm_clear_psr_pp();
5817 			ia64_srlz_i();
5818 			return;
5819 		}
5820 		/*
5821 		 * context switching out
5822 		 * restore monitoring for next task
5823 		 *
5824 		 * Due to inlining this odd if-then-else construction generates
5825 		 * better code.
5826 		 */
5827 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5828 		pfm_set_psr_pp();
5829 		ia64_srlz_i();
5830 	}
5831 }
5832 
5833 #ifdef CONFIG_SMP
5834 
5835 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5836 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5837 {
5838 	struct task_struct *task = ctx->ctx_task;
5839 
5840 	ia64_psr(regs)->up = 0;
5841 	ia64_psr(regs)->sp = 1;
5842 
5843 	if (GET_PMU_OWNER() == task) {
5844 		DPRINT(("cleared ownership for [%d]\n",
5845 					task_pid_nr(ctx->ctx_task)));
5846 		SET_PMU_OWNER(NULL, NULL);
5847 	}
5848 
5849 	/*
5850 	 * disconnect the task from the context and vice-versa
5851 	 */
5852 	PFM_SET_WORK_PENDING(task, 0);
5853 
5854 	task->thread.pfm_context  = NULL;
5855 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5856 
5857 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5858 }
5859 
5860 
5861 /*
5862  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5863  */
5864 void
pfm_save_regs(struct task_struct * task)5865 pfm_save_regs(struct task_struct *task)
5866 {
5867 	pfm_context_t *ctx;
5868 	unsigned long flags;
5869 	u64 psr;
5870 
5871 
5872 	ctx = PFM_GET_CTX(task);
5873 	if (ctx == NULL) return;
5874 
5875 	/*
5876  	 * we always come here with interrupts ALREADY disabled by
5877  	 * the scheduler. So we simply need to protect against concurrent
5878 	 * access, not CPU concurrency.
5879 	 */
5880 	flags = pfm_protect_ctx_ctxsw(ctx);
5881 
5882 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5883 		struct pt_regs *regs = task_pt_regs(task);
5884 
5885 		pfm_clear_psr_up();
5886 
5887 		pfm_force_cleanup(ctx, regs);
5888 
5889 		BUG_ON(ctx->ctx_smpl_hdr);
5890 
5891 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5892 
5893 		pfm_context_free(ctx);
5894 		return;
5895 	}
5896 
5897 	/*
5898 	 * save current PSR: needed because we modify it
5899 	 */
5900 	ia64_srlz_d();
5901 	psr = pfm_get_psr();
5902 
5903 	BUG_ON(psr & (IA64_PSR_I));
5904 
5905 	/*
5906 	 * stop monitoring:
5907 	 * This is the last instruction which may generate an overflow
5908 	 *
5909 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5910 	 * It will be restored from ipsr when going back to user level
5911 	 */
5912 	pfm_clear_psr_up();
5913 
5914 	/*
5915 	 * keep a copy of psr.up (for reload)
5916 	 */
5917 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5918 
5919 	/*
5920 	 * release ownership of this PMU.
5921 	 * PM interrupts are masked, so nothing
5922 	 * can happen.
5923 	 */
5924 	SET_PMU_OWNER(NULL, NULL);
5925 
5926 	/*
5927 	 * we systematically save the PMD as we have no
5928 	 * guarantee we will be schedule at that same
5929 	 * CPU again.
5930 	 */
5931 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5932 
5933 	/*
5934 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5935 	 * we will need it on the restore path to check
5936 	 * for pending overflow.
5937 	 */
5938 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5939 
5940 	/*
5941 	 * unfreeze PMU if had pending overflows
5942 	 */
5943 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5944 
5945 	/*
5946 	 * finally, allow context access.
5947 	 * interrupts will still be masked after this call.
5948 	 */
5949 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5950 }
5951 
5952 #else /* !CONFIG_SMP */
5953 void
pfm_save_regs(struct task_struct * task)5954 pfm_save_regs(struct task_struct *task)
5955 {
5956 	pfm_context_t *ctx;
5957 	u64 psr;
5958 
5959 	ctx = PFM_GET_CTX(task);
5960 	if (ctx == NULL) return;
5961 
5962 	/*
5963 	 * save current PSR: needed because we modify it
5964 	 */
5965 	psr = pfm_get_psr();
5966 
5967 	BUG_ON(psr & (IA64_PSR_I));
5968 
5969 	/*
5970 	 * stop monitoring:
5971 	 * This is the last instruction which may generate an overflow
5972 	 *
5973 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5974 	 * It will be restored from ipsr when going back to user level
5975 	 */
5976 	pfm_clear_psr_up();
5977 
5978 	/*
5979 	 * keep a copy of psr.up (for reload)
5980 	 */
5981 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5982 }
5983 
5984 static void
pfm_lazy_save_regs(struct task_struct * task)5985 pfm_lazy_save_regs (struct task_struct *task)
5986 {
5987 	pfm_context_t *ctx;
5988 	unsigned long flags;
5989 
5990 	{ u64 psr  = pfm_get_psr();
5991 	  BUG_ON(psr & IA64_PSR_UP);
5992 	}
5993 
5994 	ctx = PFM_GET_CTX(task);
5995 
5996 	/*
5997 	 * we need to mask PMU overflow here to
5998 	 * make sure that we maintain pmc0 until
5999 	 * we save it. overflow interrupts are
6000 	 * treated as spurious if there is no
6001 	 * owner.
6002 	 *
6003 	 * XXX: I don't think this is necessary
6004 	 */
6005 	PROTECT_CTX(ctx,flags);
6006 
6007 	/*
6008 	 * release ownership of this PMU.
6009 	 * must be done before we save the registers.
6010 	 *
6011 	 * after this call any PMU interrupt is treated
6012 	 * as spurious.
6013 	 */
6014 	SET_PMU_OWNER(NULL, NULL);
6015 
6016 	/*
6017 	 * save all the pmds we use
6018 	 */
6019 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6020 
6021 	/*
6022 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6023 	 * it is needed to check for pended overflow
6024 	 * on the restore path
6025 	 */
6026 	ctx->th_pmcs[0] = ia64_get_pmc(0);
6027 
6028 	/*
6029 	 * unfreeze PMU if had pending overflows
6030 	 */
6031 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6032 
6033 	/*
6034 	 * now get can unmask PMU interrupts, they will
6035 	 * be treated as purely spurious and we will not
6036 	 * lose any information
6037 	 */
6038 	UNPROTECT_CTX(ctx,flags);
6039 }
6040 #endif /* CONFIG_SMP */
6041 
6042 #ifdef CONFIG_SMP
6043 /*
6044  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6045  */
6046 void
pfm_load_regs(struct task_struct * task)6047 pfm_load_regs (struct task_struct *task)
6048 {
6049 	pfm_context_t *ctx;
6050 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6051 	unsigned long flags;
6052 	u64 psr, psr_up;
6053 	int need_irq_resend;
6054 
6055 	ctx = PFM_GET_CTX(task);
6056 	if (unlikely(ctx == NULL)) return;
6057 
6058 	BUG_ON(GET_PMU_OWNER());
6059 
6060 	/*
6061 	 * possible on unload
6062 	 */
6063 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6064 
6065 	/*
6066  	 * we always come here with interrupts ALREADY disabled by
6067  	 * the scheduler. So we simply need to protect against concurrent
6068 	 * access, not CPU concurrency.
6069 	 */
6070 	flags = pfm_protect_ctx_ctxsw(ctx);
6071 	psr   = pfm_get_psr();
6072 
6073 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6074 
6075 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6076 	BUG_ON(psr & IA64_PSR_I);
6077 
6078 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6079 		struct pt_regs *regs = task_pt_regs(task);
6080 
6081 		BUG_ON(ctx->ctx_smpl_hdr);
6082 
6083 		pfm_force_cleanup(ctx, regs);
6084 
6085 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6086 
6087 		/*
6088 		 * this one (kmalloc'ed) is fine with interrupts disabled
6089 		 */
6090 		pfm_context_free(ctx);
6091 
6092 		return;
6093 	}
6094 
6095 	/*
6096 	 * we restore ALL the debug registers to avoid picking up
6097 	 * stale state.
6098 	 */
6099 	if (ctx->ctx_fl_using_dbreg) {
6100 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6101 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6102 	}
6103 	/*
6104 	 * retrieve saved psr.up
6105 	 */
6106 	psr_up = ctx->ctx_saved_psr_up;
6107 
6108 	/*
6109 	 * if we were the last user of the PMU on that CPU,
6110 	 * then nothing to do except restore psr
6111 	 */
6112 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6113 
6114 		/*
6115 		 * retrieve partial reload masks (due to user modifications)
6116 		 */
6117 		pmc_mask = ctx->ctx_reload_pmcs[0];
6118 		pmd_mask = ctx->ctx_reload_pmds[0];
6119 
6120 	} else {
6121 		/*
6122 	 	 * To avoid leaking information to the user level when psr.sp=0,
6123 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6124 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6125 	 	 * we initialized or requested (sampling) so there is no risk there.
6126 	 	 */
6127 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6128 
6129 		/*
6130 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6131 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6132 	 	 * up stale configuration.
6133 	 	 *
6134 	 	 * PMC0 is never in the mask. It is always restored separately.
6135 	 	 */
6136 		pmc_mask = ctx->ctx_all_pmcs[0];
6137 	}
6138 	/*
6139 	 * when context is MASKED, we will restore PMC with plm=0
6140 	 * and PMD with stale information, but that's ok, nothing
6141 	 * will be captured.
6142 	 *
6143 	 * XXX: optimize here
6144 	 */
6145 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6146 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6147 
6148 	/*
6149 	 * check for pending overflow at the time the state
6150 	 * was saved.
6151 	 */
6152 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6153 		/*
6154 		 * reload pmc0 with the overflow information
6155 		 * On McKinley PMU, this will trigger a PMU interrupt
6156 		 */
6157 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6158 		ia64_srlz_d();
6159 		ctx->th_pmcs[0] = 0UL;
6160 
6161 		/*
6162 		 * will replay the PMU interrupt
6163 		 */
6164 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6165 
6166 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6167 	}
6168 
6169 	/*
6170 	 * we just did a reload, so we reset the partial reload fields
6171 	 */
6172 	ctx->ctx_reload_pmcs[0] = 0UL;
6173 	ctx->ctx_reload_pmds[0] = 0UL;
6174 
6175 	SET_LAST_CPU(ctx, smp_processor_id());
6176 
6177 	/*
6178 	 * dump activation value for this PMU
6179 	 */
6180 	INC_ACTIVATION();
6181 	/*
6182 	 * record current activation for this context
6183 	 */
6184 	SET_ACTIVATION(ctx);
6185 
6186 	/*
6187 	 * establish new ownership.
6188 	 */
6189 	SET_PMU_OWNER(task, ctx);
6190 
6191 	/*
6192 	 * restore the psr.up bit. measurement
6193 	 * is active again.
6194 	 * no PMU interrupt can happen at this point
6195 	 * because we still have interrupts disabled.
6196 	 */
6197 	if (likely(psr_up)) pfm_set_psr_up();
6198 
6199 	/*
6200 	 * allow concurrent access to context
6201 	 */
6202 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6203 }
6204 #else /*  !CONFIG_SMP */
6205 /*
6206  * reload PMU state for UP kernels
6207  * in 2.5 we come here with interrupts disabled
6208  */
6209 void
pfm_load_regs(struct task_struct * task)6210 pfm_load_regs (struct task_struct *task)
6211 {
6212 	pfm_context_t *ctx;
6213 	struct task_struct *owner;
6214 	unsigned long pmd_mask, pmc_mask;
6215 	u64 psr, psr_up;
6216 	int need_irq_resend;
6217 
6218 	owner = GET_PMU_OWNER();
6219 	ctx   = PFM_GET_CTX(task);
6220 	psr   = pfm_get_psr();
6221 
6222 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6223 	BUG_ON(psr & IA64_PSR_I);
6224 
6225 	/*
6226 	 * we restore ALL the debug registers to avoid picking up
6227 	 * stale state.
6228 	 *
6229 	 * This must be done even when the task is still the owner
6230 	 * as the registers may have been modified via ptrace()
6231 	 * (not perfmon) by the previous task.
6232 	 */
6233 	if (ctx->ctx_fl_using_dbreg) {
6234 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6235 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6236 	}
6237 
6238 	/*
6239 	 * retrieved saved psr.up
6240 	 */
6241 	psr_up = ctx->ctx_saved_psr_up;
6242 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6243 
6244 	/*
6245 	 * short path, our state is still there, just
6246 	 * need to restore psr and we go
6247 	 *
6248 	 * we do not touch either PMC nor PMD. the psr is not touched
6249 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6250 	 * concurrency even without interrupt masking.
6251 	 */
6252 	if (likely(owner == task)) {
6253 		if (likely(psr_up)) pfm_set_psr_up();
6254 		return;
6255 	}
6256 
6257 	/*
6258 	 * someone else is still using the PMU, first push it out and
6259 	 * then we'll be able to install our stuff !
6260 	 *
6261 	 * Upon return, there will be no owner for the current PMU
6262 	 */
6263 	if (owner) pfm_lazy_save_regs(owner);
6264 
6265 	/*
6266 	 * To avoid leaking information to the user level when psr.sp=0,
6267 	 * we must reload ALL implemented pmds (even the ones we don't use).
6268 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6269 	 * we initialized or requested (sampling) so there is no risk there.
6270 	 */
6271 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6272 
6273 	/*
6274 	 * ALL accessible PMCs are systematically reloaded, unused registers
6275 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6276 	 * up stale configuration.
6277 	 *
6278 	 * PMC0 is never in the mask. It is always restored separately
6279 	 */
6280 	pmc_mask = ctx->ctx_all_pmcs[0];
6281 
6282 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6283 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6284 
6285 	/*
6286 	 * check for pending overflow at the time the state
6287 	 * was saved.
6288 	 */
6289 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6290 		/*
6291 		 * reload pmc0 with the overflow information
6292 		 * On McKinley PMU, this will trigger a PMU interrupt
6293 		 */
6294 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6295 		ia64_srlz_d();
6296 
6297 		ctx->th_pmcs[0] = 0UL;
6298 
6299 		/*
6300 		 * will replay the PMU interrupt
6301 		 */
6302 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6303 
6304 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6305 	}
6306 
6307 	/*
6308 	 * establish new ownership.
6309 	 */
6310 	SET_PMU_OWNER(task, ctx);
6311 
6312 	/*
6313 	 * restore the psr.up bit. measurement
6314 	 * is active again.
6315 	 * no PMU interrupt can happen at this point
6316 	 * because we still have interrupts disabled.
6317 	 */
6318 	if (likely(psr_up)) pfm_set_psr_up();
6319 }
6320 #endif /* CONFIG_SMP */
6321 
6322 /*
6323  * this function assumes monitoring is stopped
6324  */
6325 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6326 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6327 {
6328 	u64 pmc0;
6329 	unsigned long mask2, val, pmd_val, ovfl_val;
6330 	int i, can_access_pmu = 0;
6331 	int is_self;
6332 
6333 	/*
6334 	 * is the caller the task being monitored (or which initiated the
6335 	 * session for system wide measurements)
6336 	 */
6337 	is_self = ctx->ctx_task == task ? 1 : 0;
6338 
6339 	/*
6340 	 * can access PMU is task is the owner of the PMU state on the current CPU
6341 	 * or if we are running on the CPU bound to the context in system-wide mode
6342 	 * (that is not necessarily the task the context is attached to in this mode).
6343 	 * In system-wide we always have can_access_pmu true because a task running on an
6344 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6345 	 */
6346 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6347 	if (can_access_pmu) {
6348 		/*
6349 		 * Mark the PMU as not owned
6350 		 * This will cause the interrupt handler to do nothing in case an overflow
6351 		 * interrupt was in-flight
6352 		 * This also guarantees that pmc0 will contain the final state
6353 		 * It virtually gives us full control on overflow processing from that point
6354 		 * on.
6355 		 */
6356 		SET_PMU_OWNER(NULL, NULL);
6357 		DPRINT(("releasing ownership\n"));
6358 
6359 		/*
6360 		 * read current overflow status:
6361 		 *
6362 		 * we are guaranteed to read the final stable state
6363 		 */
6364 		ia64_srlz_d();
6365 		pmc0 = ia64_get_pmc(0); /* slow */
6366 
6367 		/*
6368 		 * reset freeze bit, overflow status information destroyed
6369 		 */
6370 		pfm_unfreeze_pmu();
6371 	} else {
6372 		pmc0 = ctx->th_pmcs[0];
6373 		/*
6374 		 * clear whatever overflow status bits there were
6375 		 */
6376 		ctx->th_pmcs[0] = 0;
6377 	}
6378 	ovfl_val = pmu_conf->ovfl_val;
6379 	/*
6380 	 * we save all the used pmds
6381 	 * we take care of overflows for counting PMDs
6382 	 *
6383 	 * XXX: sampling situation is not taken into account here
6384 	 */
6385 	mask2 = ctx->ctx_used_pmds[0];
6386 
6387 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6388 
6389 	for (i = 0; mask2; i++, mask2>>=1) {
6390 
6391 		/* skip non used pmds */
6392 		if ((mask2 & 0x1) == 0) continue;
6393 
6394 		/*
6395 		 * can access PMU always true in system wide mode
6396 		 */
6397 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6398 
6399 		if (PMD_IS_COUNTING(i)) {
6400 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6401 				task_pid_nr(task),
6402 				i,
6403 				ctx->ctx_pmds[i].val,
6404 				val & ovfl_val));
6405 
6406 			/*
6407 			 * we rebuild the full 64 bit value of the counter
6408 			 */
6409 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6410 
6411 			/*
6412 			 * now everything is in ctx_pmds[] and we need
6413 			 * to clear the saved context from save_regs() such that
6414 			 * pfm_read_pmds() gets the correct value
6415 			 */
6416 			pmd_val = 0UL;
6417 
6418 			/*
6419 			 * take care of overflow inline
6420 			 */
6421 			if (pmc0 & (1UL << i)) {
6422 				val += 1 + ovfl_val;
6423 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6424 			}
6425 		}
6426 
6427 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6428 
6429 		if (is_self) ctx->th_pmds[i] = pmd_val;
6430 
6431 		ctx->ctx_pmds[i].val = val;
6432 	}
6433 }
6434 
6435 static struct irqaction perfmon_irqaction = {
6436 	.handler = pfm_interrupt_handler,
6437 	.flags   = IRQF_DISABLED,
6438 	.name    = "perfmon"
6439 };
6440 
6441 static void
pfm_alt_save_pmu_state(void * data)6442 pfm_alt_save_pmu_state(void *data)
6443 {
6444 	struct pt_regs *regs;
6445 
6446 	regs = task_pt_regs(current);
6447 
6448 	DPRINT(("called\n"));
6449 
6450 	/*
6451 	 * should not be necessary but
6452 	 * let's take not risk
6453 	 */
6454 	pfm_clear_psr_up();
6455 	pfm_clear_psr_pp();
6456 	ia64_psr(regs)->pp = 0;
6457 
6458 	/*
6459 	 * This call is required
6460 	 * May cause a spurious interrupt on some processors
6461 	 */
6462 	pfm_freeze_pmu();
6463 
6464 	ia64_srlz_d();
6465 }
6466 
6467 void
pfm_alt_restore_pmu_state(void * data)6468 pfm_alt_restore_pmu_state(void *data)
6469 {
6470 	struct pt_regs *regs;
6471 
6472 	regs = task_pt_regs(current);
6473 
6474 	DPRINT(("called\n"));
6475 
6476 	/*
6477 	 * put PMU back in state expected
6478 	 * by perfmon
6479 	 */
6480 	pfm_clear_psr_up();
6481 	pfm_clear_psr_pp();
6482 	ia64_psr(regs)->pp = 0;
6483 
6484 	/*
6485 	 * perfmon runs with PMU unfrozen at all times
6486 	 */
6487 	pfm_unfreeze_pmu();
6488 
6489 	ia64_srlz_d();
6490 }
6491 
6492 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6493 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6494 {
6495 	int ret, i;
6496 	int reserve_cpu;
6497 
6498 	/* some sanity checks */
6499 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6500 
6501 	/* do the easy test first */
6502 	if (pfm_alt_intr_handler) return -EBUSY;
6503 
6504 	/* one at a time in the install or remove, just fail the others */
6505 	if (!spin_trylock(&pfm_alt_install_check)) {
6506 		return -EBUSY;
6507 	}
6508 
6509 	/* reserve our session */
6510 	for_each_online_cpu(reserve_cpu) {
6511 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6512 		if (ret) goto cleanup_reserve;
6513 	}
6514 
6515 	/* save the current system wide pmu states */
6516 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6517 	if (ret) {
6518 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6519 		goto cleanup_reserve;
6520 	}
6521 
6522 	/* officially change to the alternate interrupt handler */
6523 	pfm_alt_intr_handler = hdl;
6524 
6525 	spin_unlock(&pfm_alt_install_check);
6526 
6527 	return 0;
6528 
6529 cleanup_reserve:
6530 	for_each_online_cpu(i) {
6531 		/* don't unreserve more than we reserved */
6532 		if (i >= reserve_cpu) break;
6533 
6534 		pfm_unreserve_session(NULL, 1, i);
6535 	}
6536 
6537 	spin_unlock(&pfm_alt_install_check);
6538 
6539 	return ret;
6540 }
6541 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6542 
6543 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6544 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6545 {
6546 	int i;
6547 	int ret;
6548 
6549 	if (hdl == NULL) return -EINVAL;
6550 
6551 	/* cannot remove someone else's handler! */
6552 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6553 
6554 	/* one at a time in the install or remove, just fail the others */
6555 	if (!spin_trylock(&pfm_alt_install_check)) {
6556 		return -EBUSY;
6557 	}
6558 
6559 	pfm_alt_intr_handler = NULL;
6560 
6561 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6562 	if (ret) {
6563 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6564 	}
6565 
6566 	for_each_online_cpu(i) {
6567 		pfm_unreserve_session(NULL, 1, i);
6568 	}
6569 
6570 	spin_unlock(&pfm_alt_install_check);
6571 
6572 	return 0;
6573 }
6574 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6575 
6576 /*
6577  * perfmon initialization routine, called from the initcall() table
6578  */
6579 static int init_pfm_fs(void);
6580 
6581 static int __init
pfm_probe_pmu(void)6582 pfm_probe_pmu(void)
6583 {
6584 	pmu_config_t **p;
6585 	int family;
6586 
6587 	family = local_cpu_data->family;
6588 	p      = pmu_confs;
6589 
6590 	while(*p) {
6591 		if ((*p)->probe) {
6592 			if ((*p)->probe() == 0) goto found;
6593 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6594 			goto found;
6595 		}
6596 		p++;
6597 	}
6598 	return -1;
6599 found:
6600 	pmu_conf = *p;
6601 	return 0;
6602 }
6603 
6604 static const struct file_operations pfm_proc_fops = {
6605 	.open		= pfm_proc_open,
6606 	.read		= seq_read,
6607 	.llseek		= seq_lseek,
6608 	.release	= seq_release,
6609 };
6610 
6611 int __init
pfm_init(void)6612 pfm_init(void)
6613 {
6614 	unsigned int n, n_counters, i;
6615 
6616 	printk("perfmon: version %u.%u IRQ %u\n",
6617 		PFM_VERSION_MAJ,
6618 		PFM_VERSION_MIN,
6619 		IA64_PERFMON_VECTOR);
6620 
6621 	if (pfm_probe_pmu()) {
6622 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6623 				local_cpu_data->family);
6624 		return -ENODEV;
6625 	}
6626 
6627 	/*
6628 	 * compute the number of implemented PMD/PMC from the
6629 	 * description tables
6630 	 */
6631 	n = 0;
6632 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6633 		if (PMC_IS_IMPL(i) == 0) continue;
6634 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6635 		n++;
6636 	}
6637 	pmu_conf->num_pmcs = n;
6638 
6639 	n = 0; n_counters = 0;
6640 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6641 		if (PMD_IS_IMPL(i) == 0) continue;
6642 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6643 		n++;
6644 		if (PMD_IS_COUNTING(i)) n_counters++;
6645 	}
6646 	pmu_conf->num_pmds      = n;
6647 	pmu_conf->num_counters  = n_counters;
6648 
6649 	/*
6650 	 * sanity checks on the number of debug registers
6651 	 */
6652 	if (pmu_conf->use_rr_dbregs) {
6653 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6654 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6655 			pmu_conf = NULL;
6656 			return -1;
6657 		}
6658 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6659 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6660 			pmu_conf = NULL;
6661 			return -1;
6662 		}
6663 	}
6664 
6665 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6666 	       pmu_conf->pmu_name,
6667 	       pmu_conf->num_pmcs,
6668 	       pmu_conf->num_pmds,
6669 	       pmu_conf->num_counters,
6670 	       ffz(pmu_conf->ovfl_val));
6671 
6672 	/* sanity check */
6673 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6674 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6675 		pmu_conf = NULL;
6676 		return -1;
6677 	}
6678 
6679 	/*
6680 	 * create /proc/perfmon (mostly for debugging purposes)
6681 	 */
6682 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6683 	if (perfmon_dir == NULL) {
6684 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6685 		pmu_conf = NULL;
6686 		return -1;
6687 	}
6688 
6689 	/*
6690 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6691 	 */
6692 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6693 
6694 	/*
6695 	 * initialize all our spinlocks
6696 	 */
6697 	spin_lock_init(&pfm_sessions.pfs_lock);
6698 	spin_lock_init(&pfm_buffer_fmt_lock);
6699 
6700 	init_pfm_fs();
6701 
6702 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6703 
6704 	return 0;
6705 }
6706 
6707 __initcall(pfm_init);
6708 
6709 /*
6710  * this function is called before pfm_init()
6711  */
6712 void
pfm_init_percpu(void)6713 pfm_init_percpu (void)
6714 {
6715 	static int first_time=1;
6716 	/*
6717 	 * make sure no measurement is active
6718 	 * (may inherit programmed PMCs from EFI).
6719 	 */
6720 	pfm_clear_psr_pp();
6721 	pfm_clear_psr_up();
6722 
6723 	/*
6724 	 * we run with the PMU not frozen at all times
6725 	 */
6726 	pfm_unfreeze_pmu();
6727 
6728 	if (first_time) {
6729 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6730 		first_time=0;
6731 	}
6732 
6733 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6734 	ia64_srlz_d();
6735 }
6736 
6737 /*
6738  * used for debug purposes only
6739  */
6740 void
dump_pmu_state(const char * from)6741 dump_pmu_state(const char *from)
6742 {
6743 	struct task_struct *task;
6744 	struct pt_regs *regs;
6745 	pfm_context_t *ctx;
6746 	unsigned long psr, dcr, info, flags;
6747 	int i, this_cpu;
6748 
6749 	local_irq_save(flags);
6750 
6751 	this_cpu = smp_processor_id();
6752 	regs     = task_pt_regs(current);
6753 	info     = PFM_CPUINFO_GET();
6754 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6755 
6756 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6757 		local_irq_restore(flags);
6758 		return;
6759 	}
6760 
6761 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6762 		this_cpu,
6763 		from,
6764 		task_pid_nr(current),
6765 		regs->cr_iip,
6766 		current->comm);
6767 
6768 	task = GET_PMU_OWNER();
6769 	ctx  = GET_PMU_CTX();
6770 
6771 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6772 
6773 	psr = pfm_get_psr();
6774 
6775 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6776 		this_cpu,
6777 		ia64_get_pmc(0),
6778 		psr & IA64_PSR_PP ? 1 : 0,
6779 		psr & IA64_PSR_UP ? 1 : 0,
6780 		dcr & IA64_DCR_PP ? 1 : 0,
6781 		info,
6782 		ia64_psr(regs)->up,
6783 		ia64_psr(regs)->pp);
6784 
6785 	ia64_psr(regs)->up = 0;
6786 	ia64_psr(regs)->pp = 0;
6787 
6788 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6789 		if (PMC_IS_IMPL(i) == 0) continue;
6790 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6791 	}
6792 
6793 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6794 		if (PMD_IS_IMPL(i) == 0) continue;
6795 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6796 	}
6797 
6798 	if (ctx) {
6799 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6800 				this_cpu,
6801 				ctx->ctx_state,
6802 				ctx->ctx_smpl_vaddr,
6803 				ctx->ctx_smpl_hdr,
6804 				ctx->ctx_msgq_head,
6805 				ctx->ctx_msgq_tail,
6806 				ctx->ctx_saved_psr_up);
6807 	}
6808 	local_irq_restore(flags);
6809 }
6810 
6811 /*
6812  * called from process.c:copy_thread(). task is new child.
6813  */
6814 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6815 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6816 {
6817 	struct thread_struct *thread;
6818 
6819 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6820 
6821 	thread = &task->thread;
6822 
6823 	/*
6824 	 * cut links inherited from parent (current)
6825 	 */
6826 	thread->pfm_context = NULL;
6827 
6828 	PFM_SET_WORK_PENDING(task, 0);
6829 
6830 	/*
6831 	 * the psr bits are already set properly in copy_threads()
6832 	 */
6833 }
6834 #else  /* !CONFIG_PERFMON */
6835 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6836 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6837 {
6838 	return -ENOSYS;
6839 }
6840 #endif /* CONFIG_PERFMON */
6841