• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  * arch/ia64/xen/irq_xen.c
3  *
4  * Copyright (c) 2008 Isaku Yamahata <yamahata at valinux co jp>
5  *                    VA Linux Systems Japan K.K.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  */
22 
23 #include <linux/cpu.h>
24 
25 #include <xen/interface/xen.h>
26 #include <xen/interface/callback.h>
27 #include <xen/events.h>
28 
29 #include <asm/xen/privop.h>
30 
31 #include "irq_xen.h"
32 
33 /***************************************************************************
34  * pv_irq_ops
35  * irq operations
36  */
37 
38 static int
xen_assign_irq_vector(int irq)39 xen_assign_irq_vector(int irq)
40 {
41 	struct physdev_irq irq_op;
42 
43 	irq_op.irq = irq;
44 	if (HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op))
45 		return -ENOSPC;
46 
47 	return irq_op.vector;
48 }
49 
50 static void
xen_free_irq_vector(int vector)51 xen_free_irq_vector(int vector)
52 {
53 	struct physdev_irq irq_op;
54 
55 	if (vector < IA64_FIRST_DEVICE_VECTOR ||
56 	    vector > IA64_LAST_DEVICE_VECTOR)
57 		return;
58 
59 	irq_op.vector = vector;
60 	if (HYPERVISOR_physdev_op(PHYSDEVOP_free_irq_vector, &irq_op))
61 		printk(KERN_WARNING "%s: xen_free_irq_vecotr fail vector=%d\n",
62 		       __func__, vector);
63 }
64 
65 
66 static DEFINE_PER_CPU(int, timer_irq) = -1;
67 static DEFINE_PER_CPU(int, ipi_irq) = -1;
68 static DEFINE_PER_CPU(int, resched_irq) = -1;
69 static DEFINE_PER_CPU(int, cmc_irq) = -1;
70 static DEFINE_PER_CPU(int, cmcp_irq) = -1;
71 static DEFINE_PER_CPU(int, cpep_irq) = -1;
72 #define NAME_SIZE	15
73 static DEFINE_PER_CPU(char[NAME_SIZE], timer_name);
74 static DEFINE_PER_CPU(char[NAME_SIZE], ipi_name);
75 static DEFINE_PER_CPU(char[NAME_SIZE], resched_name);
76 static DEFINE_PER_CPU(char[NAME_SIZE], cmc_name);
77 static DEFINE_PER_CPU(char[NAME_SIZE], cmcp_name);
78 static DEFINE_PER_CPU(char[NAME_SIZE], cpep_name);
79 #undef NAME_SIZE
80 
81 struct saved_irq {
82 	unsigned int irq;
83 	struct irqaction *action;
84 };
85 /* 16 should be far optimistic value, since only several percpu irqs
86  * are registered early.
87  */
88 #define MAX_LATE_IRQ	16
89 static struct saved_irq saved_percpu_irqs[MAX_LATE_IRQ];
90 static unsigned short late_irq_cnt;
91 static unsigned short saved_irq_cnt;
92 static int xen_slab_ready;
93 
94 #ifdef CONFIG_SMP
95 /* Dummy stub. Though we may check XEN_RESCHEDULE_VECTOR before __do_IRQ,
96  * it ends up to issue several memory accesses upon percpu data and
97  * thus adds unnecessary traffic to other paths.
98  */
99 static irqreturn_t
xen_dummy_handler(int irq,void * dev_id)100 xen_dummy_handler(int irq, void *dev_id)
101 {
102 
103 	return IRQ_HANDLED;
104 }
105 
106 static struct irqaction xen_ipi_irqaction = {
107 	.handler =	handle_IPI,
108 	.flags =	IRQF_DISABLED,
109 	.name =		"IPI"
110 };
111 
112 static struct irqaction xen_resched_irqaction = {
113 	.handler =	xen_dummy_handler,
114 	.flags =	IRQF_DISABLED,
115 	.name =		"resched"
116 };
117 
118 static struct irqaction xen_tlb_irqaction = {
119 	.handler =	xen_dummy_handler,
120 	.flags =	IRQF_DISABLED,
121 	.name =		"tlb_flush"
122 };
123 #endif
124 
125 /*
126  * This is xen version percpu irq registration, which needs bind
127  * to xen specific evtchn sub-system. One trick here is that xen
128  * evtchn binding interface depends on kmalloc because related
129  * port needs to be freed at device/cpu down. So we cache the
130  * registration on BSP before slab is ready and then deal them
131  * at later point. For rest instances happening after slab ready,
132  * we hook them to xen evtchn immediately.
133  *
134  * FIXME: MCA is not supported by far, and thus "nomca" boot param is
135  * required.
136  */
137 static void
__xen_register_percpu_irq(unsigned int cpu,unsigned int vec,struct irqaction * action,int save)138 __xen_register_percpu_irq(unsigned int cpu, unsigned int vec,
139 			struct irqaction *action, int save)
140 {
141 	irq_desc_t *desc;
142 	int irq = 0;
143 
144 	if (xen_slab_ready) {
145 		switch (vec) {
146 		case IA64_TIMER_VECTOR:
147 			snprintf(per_cpu(timer_name, cpu),
148 				 sizeof(per_cpu(timer_name, cpu)),
149 				 "%s%d", action->name, cpu);
150 			irq = bind_virq_to_irqhandler(VIRQ_ITC, cpu,
151 				action->handler, action->flags,
152 				per_cpu(timer_name, cpu), action->dev_id);
153 			per_cpu(timer_irq, cpu) = irq;
154 			break;
155 		case IA64_IPI_RESCHEDULE:
156 			snprintf(per_cpu(resched_name, cpu),
157 				 sizeof(per_cpu(resched_name, cpu)),
158 				 "%s%d", action->name, cpu);
159 			irq = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, cpu,
160 				action->handler, action->flags,
161 				per_cpu(resched_name, cpu), action->dev_id);
162 			per_cpu(resched_irq, cpu) = irq;
163 			break;
164 		case IA64_IPI_VECTOR:
165 			snprintf(per_cpu(ipi_name, cpu),
166 				 sizeof(per_cpu(ipi_name, cpu)),
167 				 "%s%d", action->name, cpu);
168 			irq = bind_ipi_to_irqhandler(XEN_IPI_VECTOR, cpu,
169 				action->handler, action->flags,
170 				per_cpu(ipi_name, cpu), action->dev_id);
171 			per_cpu(ipi_irq, cpu) = irq;
172 			break;
173 		case IA64_CMC_VECTOR:
174 			snprintf(per_cpu(cmc_name, cpu),
175 				 sizeof(per_cpu(cmc_name, cpu)),
176 				 "%s%d", action->name, cpu);
177 			irq = bind_virq_to_irqhandler(VIRQ_MCA_CMC, cpu,
178 						      action->handler,
179 						      action->flags,
180 						      per_cpu(cmc_name, cpu),
181 						      action->dev_id);
182 			per_cpu(cmc_irq, cpu) = irq;
183 			break;
184 		case IA64_CMCP_VECTOR:
185 			snprintf(per_cpu(cmcp_name, cpu),
186 				 sizeof(per_cpu(cmcp_name, cpu)),
187 				 "%s%d", action->name, cpu);
188 			irq = bind_ipi_to_irqhandler(XEN_CMCP_VECTOR, cpu,
189 						     action->handler,
190 						     action->flags,
191 						     per_cpu(cmcp_name, cpu),
192 						     action->dev_id);
193 			per_cpu(cmcp_irq, cpu) = irq;
194 			break;
195 		case IA64_CPEP_VECTOR:
196 			snprintf(per_cpu(cpep_name, cpu),
197 				 sizeof(per_cpu(cpep_name, cpu)),
198 				 "%s%d", action->name, cpu);
199 			irq = bind_ipi_to_irqhandler(XEN_CPEP_VECTOR, cpu,
200 						     action->handler,
201 						     action->flags,
202 						     per_cpu(cpep_name, cpu),
203 						     action->dev_id);
204 			per_cpu(cpep_irq, cpu) = irq;
205 			break;
206 		case IA64_CPE_VECTOR:
207 		case IA64_MCA_RENDEZ_VECTOR:
208 		case IA64_PERFMON_VECTOR:
209 		case IA64_MCA_WAKEUP_VECTOR:
210 		case IA64_SPURIOUS_INT_VECTOR:
211 			/* No need to complain, these aren't supported. */
212 			break;
213 		default:
214 			printk(KERN_WARNING "Percpu irq %d is unsupported "
215 			       "by xen!\n", vec);
216 			break;
217 		}
218 		BUG_ON(irq < 0);
219 
220 		if (irq > 0) {
221 			/*
222 			 * Mark percpu.  Without this, migrate_irqs() will
223 			 * mark the interrupt for migrations and trigger it
224 			 * on cpu hotplug.
225 			 */
226 			desc = irq_desc + irq;
227 			desc->status |= IRQ_PER_CPU;
228 		}
229 	}
230 
231 	/* For BSP, we cache registered percpu irqs, and then re-walk
232 	 * them when initializing APs
233 	 */
234 	if (!cpu && save) {
235 		BUG_ON(saved_irq_cnt == MAX_LATE_IRQ);
236 		saved_percpu_irqs[saved_irq_cnt].irq = vec;
237 		saved_percpu_irqs[saved_irq_cnt].action = action;
238 		saved_irq_cnt++;
239 		if (!xen_slab_ready)
240 			late_irq_cnt++;
241 	}
242 }
243 
244 static void
xen_register_percpu_irq(ia64_vector vec,struct irqaction * action)245 xen_register_percpu_irq(ia64_vector vec, struct irqaction *action)
246 {
247 	__xen_register_percpu_irq(smp_processor_id(), vec, action, 1);
248 }
249 
250 static void
xen_bind_early_percpu_irq(void)251 xen_bind_early_percpu_irq(void)
252 {
253 	int i;
254 
255 	xen_slab_ready = 1;
256 	/* There's no race when accessing this cached array, since only
257 	 * BSP will face with such step shortly
258 	 */
259 	for (i = 0; i < late_irq_cnt; i++)
260 		__xen_register_percpu_irq(smp_processor_id(),
261 					  saved_percpu_irqs[i].irq,
262 					  saved_percpu_irqs[i].action, 0);
263 }
264 
265 /* FIXME: There's no obvious point to check whether slab is ready. So
266  * a hack is used here by utilizing a late time hook.
267  */
268 
269 #ifdef CONFIG_HOTPLUG_CPU
270 static int __devinit
unbind_evtchn_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)271 unbind_evtchn_callback(struct notifier_block *nfb,
272 		       unsigned long action, void *hcpu)
273 {
274 	unsigned int cpu = (unsigned long)hcpu;
275 
276 	if (action == CPU_DEAD) {
277 		/* Unregister evtchn.  */
278 		if (per_cpu(cpep_irq, cpu) >= 0) {
279 			unbind_from_irqhandler(per_cpu(cpep_irq, cpu), NULL);
280 			per_cpu(cpep_irq, cpu) = -1;
281 		}
282 		if (per_cpu(cmcp_irq, cpu) >= 0) {
283 			unbind_from_irqhandler(per_cpu(cmcp_irq, cpu), NULL);
284 			per_cpu(cmcp_irq, cpu) = -1;
285 		}
286 		if (per_cpu(cmc_irq, cpu) >= 0) {
287 			unbind_from_irqhandler(per_cpu(cmc_irq, cpu), NULL);
288 			per_cpu(cmc_irq, cpu) = -1;
289 		}
290 		if (per_cpu(ipi_irq, cpu) >= 0) {
291 			unbind_from_irqhandler(per_cpu(ipi_irq, cpu), NULL);
292 			per_cpu(ipi_irq, cpu) = -1;
293 		}
294 		if (per_cpu(resched_irq, cpu) >= 0) {
295 			unbind_from_irqhandler(per_cpu(resched_irq, cpu),
296 						NULL);
297 			per_cpu(resched_irq, cpu) = -1;
298 		}
299 		if (per_cpu(timer_irq, cpu) >= 0) {
300 			unbind_from_irqhandler(per_cpu(timer_irq, cpu), NULL);
301 			per_cpu(timer_irq, cpu) = -1;
302 		}
303 	}
304 	return NOTIFY_OK;
305 }
306 
307 static struct notifier_block unbind_evtchn_notifier = {
308 	.notifier_call = unbind_evtchn_callback,
309 	.priority = 0
310 };
311 #endif
312 
xen_smp_intr_init_early(unsigned int cpu)313 void xen_smp_intr_init_early(unsigned int cpu)
314 {
315 #ifdef CONFIG_SMP
316 	unsigned int i;
317 
318 	for (i = 0; i < saved_irq_cnt; i++)
319 		__xen_register_percpu_irq(cpu, saved_percpu_irqs[i].irq,
320 					  saved_percpu_irqs[i].action, 0);
321 #endif
322 }
323 
xen_smp_intr_init(void)324 void xen_smp_intr_init(void)
325 {
326 #ifdef CONFIG_SMP
327 	unsigned int cpu = smp_processor_id();
328 	struct callback_register event = {
329 		.type = CALLBACKTYPE_event,
330 		.address = { .ip = (unsigned long)&xen_event_callback },
331 	};
332 
333 	if (cpu == 0) {
334 		/* Initialization was already done for boot cpu.  */
335 #ifdef CONFIG_HOTPLUG_CPU
336 		/* Register the notifier only once.  */
337 		register_cpu_notifier(&unbind_evtchn_notifier);
338 #endif
339 		return;
340 	}
341 
342 	/* This should be piggyback when setup vcpu guest context */
343 	BUG_ON(HYPERVISOR_callback_op(CALLBACKOP_register, &event));
344 #endif /* CONFIG_SMP */
345 }
346 
347 void __init
xen_irq_init(void)348 xen_irq_init(void)
349 {
350 	struct callback_register event = {
351 		.type = CALLBACKTYPE_event,
352 		.address = { .ip = (unsigned long)&xen_event_callback },
353 	};
354 
355 	xen_init_IRQ();
356 	BUG_ON(HYPERVISOR_callback_op(CALLBACKOP_register, &event));
357 	late_time_init = xen_bind_early_percpu_irq;
358 }
359 
360 void
xen_platform_send_ipi(int cpu,int vector,int delivery_mode,int redirect)361 xen_platform_send_ipi(int cpu, int vector, int delivery_mode, int redirect)
362 {
363 #ifdef CONFIG_SMP
364 	/* TODO: we need to call vcpu_up here */
365 	if (unlikely(vector == ap_wakeup_vector)) {
366 		/* XXX
367 		 * This should be in __cpu_up(cpu) in ia64 smpboot.c
368 		 * like x86. But don't want to modify it,
369 		 * keep it untouched.
370 		 */
371 		xen_smp_intr_init_early(cpu);
372 
373 		xen_send_ipi(cpu, vector);
374 		/* vcpu_prepare_and_up(cpu); */
375 		return;
376 	}
377 #endif
378 
379 	switch (vector) {
380 	case IA64_IPI_VECTOR:
381 		xen_send_IPI_one(cpu, XEN_IPI_VECTOR);
382 		break;
383 	case IA64_IPI_RESCHEDULE:
384 		xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
385 		break;
386 	case IA64_CMCP_VECTOR:
387 		xen_send_IPI_one(cpu, XEN_CMCP_VECTOR);
388 		break;
389 	case IA64_CPEP_VECTOR:
390 		xen_send_IPI_one(cpu, XEN_CPEP_VECTOR);
391 		break;
392 	case IA64_TIMER_VECTOR: {
393 		/* this is used only once by check_sal_cache_flush()
394 		   at boot time */
395 		static int used = 0;
396 		if (!used) {
397 			xen_send_ipi(cpu, IA64_TIMER_VECTOR);
398 			used = 1;
399 			break;
400 		}
401 		/* fallthrough */
402 	}
403 	default:
404 		printk(KERN_WARNING "Unsupported IPI type 0x%x\n",
405 		       vector);
406 		notify_remote_via_irq(0); /* defaults to 0 irq */
407 		break;
408 	}
409 }
410 
411 static void __init
xen_register_ipi(void)412 xen_register_ipi(void)
413 {
414 #ifdef CONFIG_SMP
415 	register_percpu_irq(IA64_IPI_VECTOR, &xen_ipi_irqaction);
416 	register_percpu_irq(IA64_IPI_RESCHEDULE, &xen_resched_irqaction);
417 	register_percpu_irq(IA64_IPI_LOCAL_TLB_FLUSH, &xen_tlb_irqaction);
418 #endif
419 }
420 
421 static void
xen_resend_irq(unsigned int vector)422 xen_resend_irq(unsigned int vector)
423 {
424 	(void)resend_irq_on_evtchn(vector);
425 }
426 
427 const struct pv_irq_ops xen_irq_ops __initdata = {
428 	.register_ipi = xen_register_ipi,
429 
430 	.assign_irq_vector = xen_assign_irq_vector,
431 	.free_irq_vector = xen_free_irq_vector,
432 	.register_percpu_irq = xen_register_percpu_irq,
433 
434 	.resend_irq = xen_resend_irq,
435 };
436