• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      The Descriptor Based DMA channel manager that first appeared
5  *	on the Au1550.  I started with dma.c, but I think all that is
6  *	left is this initial comment :-)
7  *
8  * Copyright 2004 Embedded Edge, LLC
9  *	dan@embeddededge.com
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/interrupt.h>
37 #include <linux/module.h>
38 #include <asm/mach-au1x00/au1000.h>
39 #include <asm/mach-au1x00/au1xxx_dbdma.h>
40 
41 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
42 
43 /*
44  * The Descriptor Based DMA supports up to 16 channels.
45  *
46  * There are 32 devices defined. We keep an internal structure
47  * of devices using these channels, along with additional
48  * information.
49  *
50  * We allocate the descriptors and allow access to them through various
51  * functions.  The drivers allocate the data buffers and assign them
52  * to the descriptors.
53  */
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
55 
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
58 
59 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
60 static int dbdma_initialized;
61 static void au1xxx_dbdma_init(void);
62 
63 static dbdev_tab_t dbdev_tab[] = {
64 #ifdef CONFIG_SOC_AU1550
65 	/* UARTS */
66 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
67 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
68 	{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
69 	{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
70 
71 	/* EXT DMA */
72 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
73 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
74 	{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
75 	{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
76 
77 	/* USB DEV */
78 	{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
79 	{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
80 	{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
81 	{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
82 	{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
83 	{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
84 
85 	/* PSC 0 */
86 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
87 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
88 
89 	/* PSC 1 */
90 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
91 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
92 
93 	/* PSC 2 */
94 	{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
95 	{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
96 
97 	/* PSC 3 */
98 	{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
99 	{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
100 
101 	{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 },	/* PCI */
102 	{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 },	/* NAND */
103 
104 	/* MAC 0 */
105 	{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
106 	{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
107 
108 	/* MAC 1 */
109 	{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
110 	{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
111 
112 #endif /* CONFIG_SOC_AU1550 */
113 
114 #ifdef CONFIG_SOC_AU1200
115 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
116 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
117 	{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
118 	{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
119 
120 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
121 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
122 
123 	{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124 	{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125 	{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126 	{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
127 
128 	{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
129 	{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
130 	{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
131 	{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
132 
133 	{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
134 	{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
135 
136 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
137 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
138 	{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
139 
140 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
141 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
142 	{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
143 
144 	{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
145 	{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
146 	{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
147 	{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
148 
149 	{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
150 
151 #endif /* CONFIG_SOC_AU1200 */
152 
153 	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
154 	{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
155 
156 	/* Provide 16 user definable device types */
157 	{ ~0, 0, 0, 0, 0, 0, 0 },
158 	{ ~0, 0, 0, 0, 0, 0, 0 },
159 	{ ~0, 0, 0, 0, 0, 0, 0 },
160 	{ ~0, 0, 0, 0, 0, 0, 0 },
161 	{ ~0, 0, 0, 0, 0, 0, 0 },
162 	{ ~0, 0, 0, 0, 0, 0, 0 },
163 	{ ~0, 0, 0, 0, 0, 0, 0 },
164 	{ ~0, 0, 0, 0, 0, 0, 0 },
165 	{ ~0, 0, 0, 0, 0, 0, 0 },
166 	{ ~0, 0, 0, 0, 0, 0, 0 },
167 	{ ~0, 0, 0, 0, 0, 0, 0 },
168 	{ ~0, 0, 0, 0, 0, 0, 0 },
169 	{ ~0, 0, 0, 0, 0, 0, 0 },
170 	{ ~0, 0, 0, 0, 0, 0, 0 },
171 	{ ~0, 0, 0, 0, 0, 0, 0 },
172 	{ ~0, 0, 0, 0, 0, 0, 0 },
173 };
174 
175 #define DBDEV_TAB_SIZE	ARRAY_SIZE(dbdev_tab)
176 
177 #ifdef CONFIG_PM
178 static u32 au1xxx_dbdma_pm_regs[NUM_DBDMA_CHANS + 1][8];
179 #endif
180 
181 
182 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
183 
find_dbdev_id(u32 id)184 static dbdev_tab_t *find_dbdev_id(u32 id)
185 {
186 	int i;
187 	dbdev_tab_t *p;
188 	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
189 		p = &dbdev_tab[i];
190 		if (p->dev_id == id)
191 			return p;
192 	}
193 	return NULL;
194 }
195 
au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t * dp)196 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
197 {
198 	return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
199 }
200 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
201 
au1xxx_ddma_add_device(dbdev_tab_t * dev)202 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
203 {
204 	u32 ret = 0;
205 	dbdev_tab_t *p;
206 	static u16 new_id = 0x1000;
207 
208 	p = find_dbdev_id(~0);
209 	if (NULL != p) {
210 		memcpy(p, dev, sizeof(dbdev_tab_t));
211 		p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
212 		ret = p->dev_id;
213 		new_id++;
214 #if 0
215 		printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
216 				  p->dev_id, p->dev_flags, p->dev_physaddr);
217 #endif
218 	}
219 
220 	return ret;
221 }
222 EXPORT_SYMBOL(au1xxx_ddma_add_device);
223 
au1xxx_ddma_del_device(u32 devid)224 void au1xxx_ddma_del_device(u32 devid)
225 {
226 	dbdev_tab_t *p = find_dbdev_id(devid);
227 
228 	if (p != NULL) {
229 		memset(p, 0, sizeof(dbdev_tab_t));
230 		p->dev_id = ~0;
231 	}
232 }
233 EXPORT_SYMBOL(au1xxx_ddma_del_device);
234 
235 /* Allocate a channel and return a non-zero descriptor if successful. */
au1xxx_dbdma_chan_alloc(u32 srcid,u32 destid,void (* callback)(int,void *),void * callparam)236 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
237        void (*callback)(int, void *), void *callparam)
238 {
239 	unsigned long   flags;
240 	u32		used, chan, rv;
241 	u32		dcp;
242 	int		i;
243 	dbdev_tab_t	*stp, *dtp;
244 	chan_tab_t	*ctp;
245 	au1x_dma_chan_t *cp;
246 
247 	/*
248 	 * We do the intialization on the first channel allocation.
249 	 * We have to wait because of the interrupt handler initialization
250 	 * which can't be done successfully during board set up.
251 	 */
252 	if (!dbdma_initialized)
253 		au1xxx_dbdma_init();
254 	dbdma_initialized = 1;
255 
256 	stp = find_dbdev_id(srcid);
257 	if (stp == NULL)
258 		return 0;
259 	dtp = find_dbdev_id(destid);
260 	if (dtp == NULL)
261 		return 0;
262 
263 	used = 0;
264 	rv = 0;
265 
266 	/* Check to see if we can get both channels. */
267 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
268 	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
269 	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
270 		/* Got source */
271 		stp->dev_flags |= DEV_FLAGS_INUSE;
272 		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
273 		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
274 			/* Got destination */
275 			dtp->dev_flags |= DEV_FLAGS_INUSE;
276 		} else {
277 			/* Can't get dest.  Release src. */
278 			stp->dev_flags &= ~DEV_FLAGS_INUSE;
279 			used++;
280 		}
281 	} else
282 		used++;
283 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
284 
285 	if (!used) {
286 		/* Let's see if we can allocate a channel for it. */
287 		ctp = NULL;
288 		chan = 0;
289 		spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
290 		for (i = 0; i < NUM_DBDMA_CHANS; i++)
291 			if (chan_tab_ptr[i] == NULL) {
292 				/*
293 				 * If kmalloc fails, it is caught below same
294 				 * as a channel not available.
295 				 */
296 				ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
297 				chan_tab_ptr[i] = ctp;
298 				break;
299 			}
300 		spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
301 
302 		if (ctp != NULL) {
303 			memset(ctp, 0, sizeof(chan_tab_t));
304 			ctp->chan_index = chan = i;
305 			dcp = DDMA_CHANNEL_BASE;
306 			dcp += (0x0100 * chan);
307 			ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
308 			cp = (au1x_dma_chan_t *)dcp;
309 			ctp->chan_src = stp;
310 			ctp->chan_dest = dtp;
311 			ctp->chan_callback = callback;
312 			ctp->chan_callparam = callparam;
313 
314 			/* Initialize channel configuration. */
315 			i = 0;
316 			if (stp->dev_intlevel)
317 				i |= DDMA_CFG_SED;
318 			if (stp->dev_intpolarity)
319 				i |= DDMA_CFG_SP;
320 			if (dtp->dev_intlevel)
321 				i |= DDMA_CFG_DED;
322 			if (dtp->dev_intpolarity)
323 				i |= DDMA_CFG_DP;
324 			if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
325 				(dtp->dev_flags & DEV_FLAGS_SYNC))
326 					i |= DDMA_CFG_SYNC;
327 			cp->ddma_cfg = i;
328 			au_sync();
329 
330 			/* Return a non-zero value that can be used to
331 			 * find the channel information in subsequent
332 			 * operations.
333 			 */
334 			rv = (u32)(&chan_tab_ptr[chan]);
335 		} else {
336 			/* Release devices */
337 			stp->dev_flags &= ~DEV_FLAGS_INUSE;
338 			dtp->dev_flags &= ~DEV_FLAGS_INUSE;
339 		}
340 	}
341 	return rv;
342 }
343 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
344 
345 /*
346  * Set the device width if source or destination is a FIFO.
347  * Should be 8, 16, or 32 bits.
348  */
au1xxx_dbdma_set_devwidth(u32 chanid,int bits)349 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
350 {
351 	u32		rv;
352 	chan_tab_t	*ctp;
353 	dbdev_tab_t	*stp, *dtp;
354 
355 	ctp = *((chan_tab_t **)chanid);
356 	stp = ctp->chan_src;
357 	dtp = ctp->chan_dest;
358 	rv = 0;
359 
360 	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
361 		rv = stp->dev_devwidth;
362 		stp->dev_devwidth = bits;
363 	}
364 	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
365 		rv = dtp->dev_devwidth;
366 		dtp->dev_devwidth = bits;
367 	}
368 
369 	return rv;
370 }
371 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
372 
373 /* Allocate a descriptor ring, initializing as much as possible. */
au1xxx_dbdma_ring_alloc(u32 chanid,int entries)374 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
375 {
376 	int			i;
377 	u32			desc_base, srcid, destid;
378 	u32			cmd0, cmd1, src1, dest1;
379 	u32			src0, dest0;
380 	chan_tab_t		*ctp;
381 	dbdev_tab_t		*stp, *dtp;
382 	au1x_ddma_desc_t	*dp;
383 
384 	/*
385 	 * I guess we could check this to be within the
386 	 * range of the table......
387 	 */
388 	ctp = *((chan_tab_t **)chanid);
389 	stp = ctp->chan_src;
390 	dtp = ctp->chan_dest;
391 
392 	/*
393 	 * The descriptors must be 32-byte aligned.  There is a
394 	 * possibility the allocation will give us such an address,
395 	 * and if we try that first we are likely to not waste larger
396 	 * slabs of memory.
397 	 */
398 	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
399 				 GFP_KERNEL|GFP_DMA);
400 	if (desc_base == 0)
401 		return 0;
402 
403 	if (desc_base & 0x1f) {
404 		/*
405 		 * Lost....do it again, allocate extra, and round
406 		 * the address base.
407 		 */
408 		kfree((const void *)desc_base);
409 		i = entries * sizeof(au1x_ddma_desc_t);
410 		i += (sizeof(au1x_ddma_desc_t) - 1);
411 		desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
412 		if (desc_base == 0)
413 			return 0;
414 
415 		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
416 	}
417 	dp = (au1x_ddma_desc_t *)desc_base;
418 
419 	/* Keep track of the base descriptor. */
420 	ctp->chan_desc_base = dp;
421 
422 	/* Initialize the rings with as much information as we know. */
423 	srcid = stp->dev_id;
424 	destid = dtp->dev_id;
425 
426 	cmd0 = cmd1 = src1 = dest1 = 0;
427 	src0 = dest0 = 0;
428 
429 	cmd0 |= DSCR_CMD0_SID(srcid);
430 	cmd0 |= DSCR_CMD0_DID(destid);
431 	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
432 	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
433 
434 	/* Is it mem to mem transfer? */
435 	if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
436 	     (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
437 	    ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
438 	     (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
439 		cmd0 |= DSCR_CMD0_MEM;
440 
441 	switch (stp->dev_devwidth) {
442 	case 8:
443 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
444 		break;
445 	case 16:
446 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
447 		break;
448 	case 32:
449 	default:
450 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
451 		break;
452 	}
453 
454 	switch (dtp->dev_devwidth) {
455 	case 8:
456 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
457 		break;
458 	case 16:
459 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
460 		break;
461 	case 32:
462 	default:
463 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
464 		break;
465 	}
466 
467 	/*
468 	 * If the device is marked as an in/out FIFO, ensure it is
469 	 * set non-coherent.
470 	 */
471 	if (stp->dev_flags & DEV_FLAGS_IN)
472 		cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */
473 	if (dtp->dev_flags & DEV_FLAGS_OUT)
474 		cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */
475 
476 	/*
477 	 * Set up source1.  For now, assume no stride and increment.
478 	 * A channel attribute update can change this later.
479 	 */
480 	switch (stp->dev_tsize) {
481 	case 1:
482 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
483 		break;
484 	case 2:
485 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
486 		break;
487 	case 4:
488 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
489 		break;
490 	case 8:
491 	default:
492 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
493 		break;
494 	}
495 
496 	/* If source input is FIFO, set static address.	*/
497 	if (stp->dev_flags & DEV_FLAGS_IN) {
498 		if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
499 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
500 		else
501 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
502 	}
503 
504 	if (stp->dev_physaddr)
505 		src0 = stp->dev_physaddr;
506 
507 	/*
508 	 * Set up dest1.  For now, assume no stride and increment.
509 	 * A channel attribute update can change this later.
510 	 */
511 	switch (dtp->dev_tsize) {
512 	case 1:
513 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
514 		break;
515 	case 2:
516 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
517 		break;
518 	case 4:
519 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
520 		break;
521 	case 8:
522 	default:
523 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
524 		break;
525 	}
526 
527 	/* If destination output is FIFO, set static address. */
528 	if (dtp->dev_flags & DEV_FLAGS_OUT) {
529 		if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
530 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
531 		else
532 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
533 	}
534 
535 	if (dtp->dev_physaddr)
536 		dest0 = dtp->dev_physaddr;
537 
538 #if 0
539 		printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
540 				  "source1:%x dest0:%x dest1:%x\n",
541 				  dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
542 				  src1, dest0, dest1);
543 #endif
544 	for (i = 0; i < entries; i++) {
545 		dp->dscr_cmd0 = cmd0;
546 		dp->dscr_cmd1 = cmd1;
547 		dp->dscr_source0 = src0;
548 		dp->dscr_source1 = src1;
549 		dp->dscr_dest0 = dest0;
550 		dp->dscr_dest1 = dest1;
551 		dp->dscr_stat = 0;
552 		dp->sw_context = 0;
553 		dp->sw_status = 0;
554 		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
555 		dp++;
556 	}
557 
558 	/* Make last descrptor point to the first. */
559 	dp--;
560 	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
561 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
562 
563 	return (u32)ctp->chan_desc_base;
564 }
565 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
566 
567 /*
568  * Put a source buffer into the DMA ring.
569  * This updates the source pointer and byte count.  Normally used
570  * for memory to fifo transfers.
571  */
_au1xxx_dbdma_put_source(u32 chanid,void * buf,int nbytes,u32 flags)572 u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
573 {
574 	chan_tab_t		*ctp;
575 	au1x_ddma_desc_t	*dp;
576 
577 	/*
578 	 * I guess we could check this to be within the
579 	 * range of the table......
580 	 */
581 	ctp = *(chan_tab_t **)chanid;
582 
583 	/*
584 	 * We should have multiple callers for a particular channel,
585 	 * an interrupt doesn't affect this pointer nor the descriptor,
586 	 * so no locking should be needed.
587 	 */
588 	dp = ctp->put_ptr;
589 
590 	/*
591 	 * If the descriptor is valid, we are way ahead of the DMA
592 	 * engine, so just return an error condition.
593 	 */
594 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
595 		return 0;
596 
597 	/* Load up buffer address and byte count. */
598 	dp->dscr_source0 = virt_to_phys(buf);
599 	dp->dscr_cmd1 = nbytes;
600 	/* Check flags */
601 	if (flags & DDMA_FLAGS_IE)
602 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
603 	if (flags & DDMA_FLAGS_NOIE)
604 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
605 
606 	/*
607 	 * There is an errata on the Au1200/Au1550 parts that could result
608 	 * in "stale" data being DMA'ed. It has to do with the snoop logic on
609 	 * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
610 	 * these parts. If it is fixed in the future, these dma_cache_inv will
611 	 * just be nothing more than empty macros. See io.h.
612 	 */
613 	dma_cache_wback_inv((unsigned long)buf, nbytes);
614 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
615 	au_sync();
616 	dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
617 	ctp->chan_ptr->ddma_dbell = 0;
618 
619 	/* Get next descriptor pointer.	*/
620 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
621 
622 	/* Return something non-zero. */
623 	return nbytes;
624 }
625 EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
626 
627 /* Put a destination buffer into the DMA ring.
628  * This updates the destination pointer and byte count.  Normally used
629  * to place an empty buffer into the ring for fifo to memory transfers.
630  */
631 u32
_au1xxx_dbdma_put_dest(u32 chanid,void * buf,int nbytes,u32 flags)632 _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
633 {
634 	chan_tab_t		*ctp;
635 	au1x_ddma_desc_t	*dp;
636 
637 	/* I guess we could check this to be within the
638 	 * range of the table......
639 	 */
640 	ctp = *((chan_tab_t **)chanid);
641 
642 	/* We should have multiple callers for a particular channel,
643 	 * an interrupt doesn't affect this pointer nor the descriptor,
644 	 * so no locking should be needed.
645 	 */
646 	dp = ctp->put_ptr;
647 
648 	/* If the descriptor is valid, we are way ahead of the DMA
649 	 * engine, so just return an error condition.
650 	 */
651 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
652 		return 0;
653 
654 	/* Load up buffer address and byte count */
655 
656 	/* Check flags  */
657 	if (flags & DDMA_FLAGS_IE)
658 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
659 	if (flags & DDMA_FLAGS_NOIE)
660 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
661 
662 	dp->dscr_dest0 = virt_to_phys(buf);
663 	dp->dscr_cmd1 = nbytes;
664 #if 0
665 	printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
666 			  dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
667 			  dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
668 #endif
669 	/*
670 	 * There is an errata on the Au1200/Au1550 parts that could result in
671 	 * "stale" data being DMA'ed. It has to do with the snoop logic on the
672 	 * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
673 	 * parts. If it is fixed in the future, these dma_cache_inv will just
674 	 * be nothing more than empty macros. See io.h.
675 	 */
676 	dma_cache_inv((unsigned long)buf, nbytes);
677 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
678 	au_sync();
679 	dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
680 	ctp->chan_ptr->ddma_dbell = 0;
681 
682 	/* Get next descriptor pointer.	*/
683 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
684 
685 	/* Return something non-zero. */
686 	return nbytes;
687 }
688 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
689 
690 /*
691  * Get a destination buffer into the DMA ring.
692  * Normally used to get a full buffer from the ring during fifo
693  * to memory transfers.  This does not set the valid bit, you will
694  * have to put another destination buffer to keep the DMA going.
695  */
au1xxx_dbdma_get_dest(u32 chanid,void ** buf,int * nbytes)696 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
697 {
698 	chan_tab_t		*ctp;
699 	au1x_ddma_desc_t	*dp;
700 	u32			rv;
701 
702 	/*
703 	 * I guess we could check this to be within the
704 	 * range of the table......
705 	 */
706 	ctp = *((chan_tab_t **)chanid);
707 
708 	/*
709 	 * We should have multiple callers for a particular channel,
710 	 * an interrupt doesn't affect this pointer nor the descriptor,
711 	 * so no locking should be needed.
712 	 */
713 	dp = ctp->get_ptr;
714 
715 	/*
716 	 * If the descriptor is valid, we are way ahead of the DMA
717 	 * engine, so just return an error condition.
718 	 */
719 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
720 		return 0;
721 
722 	/* Return buffer address and byte count. */
723 	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
724 	*nbytes = dp->dscr_cmd1;
725 	rv = dp->dscr_stat;
726 
727 	/* Get next descriptor pointer.	*/
728 	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
729 
730 	/* Return something non-zero. */
731 	return rv;
732 }
733 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
734 
au1xxx_dbdma_stop(u32 chanid)735 void au1xxx_dbdma_stop(u32 chanid)
736 {
737 	chan_tab_t	*ctp;
738 	au1x_dma_chan_t *cp;
739 	int halt_timeout = 0;
740 
741 	ctp = *((chan_tab_t **)chanid);
742 
743 	cp = ctp->chan_ptr;
744 	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
745 	au_sync();
746 	while (!(cp->ddma_stat & DDMA_STAT_H)) {
747 		udelay(1);
748 		halt_timeout++;
749 		if (halt_timeout > 100) {
750 			printk(KERN_WARNING "warning: DMA channel won't halt\n");
751 			break;
752 		}
753 	}
754 	/* clear current desc valid and doorbell */
755 	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
756 	au_sync();
757 }
758 EXPORT_SYMBOL(au1xxx_dbdma_stop);
759 
760 /*
761  * Start using the current descriptor pointer.  If the DBDMA encounters
762  * a non-valid descriptor, it will stop.  In this case, we can just
763  * continue by adding a buffer to the list and starting again.
764  */
au1xxx_dbdma_start(u32 chanid)765 void au1xxx_dbdma_start(u32 chanid)
766 {
767 	chan_tab_t	*ctp;
768 	au1x_dma_chan_t *cp;
769 
770 	ctp = *((chan_tab_t **)chanid);
771 	cp = ctp->chan_ptr;
772 	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
773 	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
774 	au_sync();
775 	cp->ddma_dbell = 0;
776 	au_sync();
777 }
778 EXPORT_SYMBOL(au1xxx_dbdma_start);
779 
au1xxx_dbdma_reset(u32 chanid)780 void au1xxx_dbdma_reset(u32 chanid)
781 {
782 	chan_tab_t		*ctp;
783 	au1x_ddma_desc_t	*dp;
784 
785 	au1xxx_dbdma_stop(chanid);
786 
787 	ctp = *((chan_tab_t **)chanid);
788 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
789 
790 	/* Run through the descriptors and reset the valid indicator. */
791 	dp = ctp->chan_desc_base;
792 
793 	do {
794 		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
795 		/*
796 		 * Reset our software status -- this is used to determine
797 		 * if a descriptor is in use by upper level software. Since
798 		 * posting can reset 'V' bit.
799 		 */
800 		dp->sw_status = 0;
801 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
802 	} while (dp != ctp->chan_desc_base);
803 }
804 EXPORT_SYMBOL(au1xxx_dbdma_reset);
805 
au1xxx_get_dma_residue(u32 chanid)806 u32 au1xxx_get_dma_residue(u32 chanid)
807 {
808 	chan_tab_t	*ctp;
809 	au1x_dma_chan_t *cp;
810 	u32		rv;
811 
812 	ctp = *((chan_tab_t **)chanid);
813 	cp = ctp->chan_ptr;
814 
815 	/* This is only valid if the channel is stopped. */
816 	rv = cp->ddma_bytecnt;
817 	au_sync();
818 
819 	return rv;
820 }
821 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
822 
au1xxx_dbdma_chan_free(u32 chanid)823 void au1xxx_dbdma_chan_free(u32 chanid)
824 {
825 	chan_tab_t	*ctp;
826 	dbdev_tab_t	*stp, *dtp;
827 
828 	ctp = *((chan_tab_t **)chanid);
829 	stp = ctp->chan_src;
830 	dtp = ctp->chan_dest;
831 
832 	au1xxx_dbdma_stop(chanid);
833 
834 	kfree((void *)ctp->chan_desc_base);
835 
836 	stp->dev_flags &= ~DEV_FLAGS_INUSE;
837 	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
838 	chan_tab_ptr[ctp->chan_index] = NULL;
839 
840 	kfree(ctp);
841 }
842 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
843 
dbdma_interrupt(int irq,void * dev_id)844 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
845 {
846 	u32 intstat;
847 	u32 chan_index;
848 	chan_tab_t		*ctp;
849 	au1x_ddma_desc_t	*dp;
850 	au1x_dma_chan_t *cp;
851 
852 	intstat = dbdma_gptr->ddma_intstat;
853 	au_sync();
854 	chan_index = __ffs(intstat);
855 
856 	ctp = chan_tab_ptr[chan_index];
857 	cp = ctp->chan_ptr;
858 	dp = ctp->cur_ptr;
859 
860 	/* Reset interrupt. */
861 	cp->ddma_irq = 0;
862 	au_sync();
863 
864 	if (ctp->chan_callback)
865 		ctp->chan_callback(irq, ctp->chan_callparam);
866 
867 	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
868 	return IRQ_RETVAL(1);
869 }
870 
au1xxx_dbdma_init(void)871 static void au1xxx_dbdma_init(void)
872 {
873 	int irq_nr;
874 
875 	dbdma_gptr->ddma_config = 0;
876 	dbdma_gptr->ddma_throttle = 0;
877 	dbdma_gptr->ddma_inten = 0xffff;
878 	au_sync();
879 
880 #if defined(CONFIG_SOC_AU1550)
881 	irq_nr = AU1550_DDMA_INT;
882 #elif defined(CONFIG_SOC_AU1200)
883 	irq_nr = AU1200_DDMA_INT;
884 #else
885 	#error Unknown Au1x00 SOC
886 #endif
887 
888 	if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
889 			"Au1xxx dbdma", (void *)dbdma_gptr))
890 		printk(KERN_ERR "Can't get 1550 dbdma irq");
891 }
892 
au1xxx_dbdma_dump(u32 chanid)893 void au1xxx_dbdma_dump(u32 chanid)
894 {
895 	chan_tab_t	 *ctp;
896 	au1x_ddma_desc_t *dp;
897 	dbdev_tab_t	 *stp, *dtp;
898 	au1x_dma_chan_t  *cp;
899 	u32 i		 = 0;
900 
901 	ctp = *((chan_tab_t **)chanid);
902 	stp = ctp->chan_src;
903 	dtp = ctp->chan_dest;
904 	cp = ctp->chan_ptr;
905 
906 	printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d) \n",
907 			  (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
908 			  dtp - dbdev_tab);
909 	printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
910 			  (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
911 			  (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
912 
913 	printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
914 	printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
915 			  cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
916 	printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
917 			  cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
918 			  cp->ddma_bytecnt);
919 
920 	/* Run through the descriptors */
921 	dp = ctp->chan_desc_base;
922 
923 	do {
924 		printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
925 				  i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
926 		printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
927 				  dp->dscr_source0, dp->dscr_source1,
928 				  dp->dscr_dest0, dp->dscr_dest1);
929 		printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
930 				  dp->dscr_stat, dp->dscr_nxtptr);
931 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
932 	} while (dp != ctp->chan_desc_base);
933 }
934 
935 /* Put a descriptor into the DMA ring.
936  * This updates the source/destination pointers and byte count.
937  */
au1xxx_dbdma_put_dscr(u32 chanid,au1x_ddma_desc_t * dscr)938 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
939 {
940 	chan_tab_t *ctp;
941 	au1x_ddma_desc_t *dp;
942 	u32 nbytes = 0;
943 
944 	/*
945 	 * I guess we could check this to be within the
946 	 * range of the table......
947 	 */
948 	ctp = *((chan_tab_t **)chanid);
949 
950 	/*
951 	 * We should have multiple callers for a particular channel,
952 	 * an interrupt doesn't affect this pointer nor the descriptor,
953 	 * so no locking should be needed.
954 	 */
955 	dp = ctp->put_ptr;
956 
957 	/*
958 	 * If the descriptor is valid, we are way ahead of the DMA
959 	 * engine, so just return an error condition.
960 	 */
961 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
962 		return 0;
963 
964 	/* Load up buffer addresses and byte count. */
965 	dp->dscr_dest0 = dscr->dscr_dest0;
966 	dp->dscr_source0 = dscr->dscr_source0;
967 	dp->dscr_dest1 = dscr->dscr_dest1;
968 	dp->dscr_source1 = dscr->dscr_source1;
969 	dp->dscr_cmd1 = dscr->dscr_cmd1;
970 	nbytes = dscr->dscr_cmd1;
971 	/* Allow the caller to specifiy if an interrupt is generated */
972 	dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
973 	dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
974 	ctp->chan_ptr->ddma_dbell = 0;
975 
976 	/* Get next descriptor pointer.	*/
977 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
978 
979 	/* Return something non-zero. */
980 	return nbytes;
981 }
982 
983 #ifdef CONFIG_PM
au1xxx_dbdma_suspend(void)984 void au1xxx_dbdma_suspend(void)
985 {
986 	int i;
987 	u32 addr;
988 
989 	addr = DDMA_GLOBAL_BASE;
990 	au1xxx_dbdma_pm_regs[0][0] = au_readl(addr + 0x00);
991 	au1xxx_dbdma_pm_regs[0][1] = au_readl(addr + 0x04);
992 	au1xxx_dbdma_pm_regs[0][2] = au_readl(addr + 0x08);
993 	au1xxx_dbdma_pm_regs[0][3] = au_readl(addr + 0x0c);
994 
995 	/* save channel configurations */
996 	for (i = 1, addr = DDMA_CHANNEL_BASE; i < NUM_DBDMA_CHANS; i++) {
997 		au1xxx_dbdma_pm_regs[i][0] = au_readl(addr + 0x00);
998 		au1xxx_dbdma_pm_regs[i][1] = au_readl(addr + 0x04);
999 		au1xxx_dbdma_pm_regs[i][2] = au_readl(addr + 0x08);
1000 		au1xxx_dbdma_pm_regs[i][3] = au_readl(addr + 0x0c);
1001 		au1xxx_dbdma_pm_regs[i][4] = au_readl(addr + 0x10);
1002 		au1xxx_dbdma_pm_regs[i][5] = au_readl(addr + 0x14);
1003 		au1xxx_dbdma_pm_regs[i][6] = au_readl(addr + 0x18);
1004 
1005 		/* halt channel */
1006 		au_writel(au1xxx_dbdma_pm_regs[i][0] & ~1, addr + 0x00);
1007 		au_sync();
1008 		while (!(au_readl(addr + 0x14) & 1))
1009 			au_sync();
1010 
1011 		addr += 0x100;	/* next channel base */
1012 	}
1013 	/* disable channel interrupts */
1014 	au_writel(0, DDMA_GLOBAL_BASE + 0x0c);
1015 	au_sync();
1016 }
1017 
au1xxx_dbdma_resume(void)1018 void au1xxx_dbdma_resume(void)
1019 {
1020 	int i;
1021 	u32 addr;
1022 
1023 	addr = DDMA_GLOBAL_BASE;
1024 	au_writel(au1xxx_dbdma_pm_regs[0][0], addr + 0x00);
1025 	au_writel(au1xxx_dbdma_pm_regs[0][1], addr + 0x04);
1026 	au_writel(au1xxx_dbdma_pm_regs[0][2], addr + 0x08);
1027 	au_writel(au1xxx_dbdma_pm_regs[0][3], addr + 0x0c);
1028 
1029 	/* restore channel configurations */
1030 	for (i = 1, addr = DDMA_CHANNEL_BASE; i < NUM_DBDMA_CHANS; i++) {
1031 		au_writel(au1xxx_dbdma_pm_regs[i][0], addr + 0x00);
1032 		au_writel(au1xxx_dbdma_pm_regs[i][1], addr + 0x04);
1033 		au_writel(au1xxx_dbdma_pm_regs[i][2], addr + 0x08);
1034 		au_writel(au1xxx_dbdma_pm_regs[i][3], addr + 0x0c);
1035 		au_writel(au1xxx_dbdma_pm_regs[i][4], addr + 0x10);
1036 		au_writel(au1xxx_dbdma_pm_regs[i][5], addr + 0x14);
1037 		au_writel(au1xxx_dbdma_pm_regs[i][6], addr + 0x18);
1038 		au_sync();
1039 		addr += 0x100;	/* next channel base */
1040 	}
1041 }
1042 #endif	/* CONFIG_PM */
1043 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
1044