• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 MIPS Technologies, Inc.
7  * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
8  * Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
9  */
10 #include <linux/clockchips.h>
11 #include <linux/interrupt.h>
12 #include <linux/percpu.h>
13 
14 #include <asm/smtc_ipi.h>
15 #include <asm/time.h>
16 #include <asm/cevt-r4k.h>
17 
18 /*
19  * Variant clock event timer support for SMTC on MIPS 34K, 1004K
20  * or other MIPS MT cores.
21  *
22  * Notes on SMTC Support:
23  *
24  * SMTC has multiple microthread TCs pretending to be Linux CPUs.
25  * But there's only one Count/Compare pair per VPE, and Compare
26  * interrupts are taken opportunisitically by available TCs
27  * bound to the VPE with the Count register.  The new timer
28  * framework provides for global broadcasts, but we really
29  * want VPE-level multicasts for best behavior. So instead
30  * of invoking the high-level clock-event broadcast code,
31  * this version of SMTC support uses the historical SMTC
32  * multicast mechanisms "under the hood", appearing to the
33  * generic clock layer as if the interrupts are per-CPU.
34  *
35  * The approach taken here is to maintain a set of NR_CPUS
36  * virtual timers, and track which "CPU" needs to be alerted
37  * at each event.
38  *
39  * It's unlikely that we'll see a MIPS MT core with more than
40  * 2 VPEs, but we *know* that we won't need to handle more
41  * VPEs than we have "CPUs".  So NCPUs arrays of NCPUs elements
42  * is always going to be overkill, but always going to be enough.
43  */
44 
45 unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
46 static int smtc_nextinvpe[NR_CPUS];
47 
48 /*
49  * Timestamps stored are absolute values to be programmed
50  * into Count register.  Valid timestamps will never be zero.
51  * If a Zero Count value is actually calculated, it is converted
52  * to be a 1, which will introduce 1 or two CPU cycles of error
53  * roughly once every four billion events, which at 1000 HZ means
54  * about once every 50 days.  If that's actually a problem, one
55  * could alternate squashing 0 to 1 and to -1.
56  */
57 
58 #define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
59 #define ISVALID(x) ((x) != 0L)
60 
61 /*
62  * Time comparison is subtle, as it's really truncated
63  * modular arithmetic.
64  */
65 
66 #define IS_SOONER(a, b, reference) \
67     (((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))
68 
69 /*
70  * CATCHUP_INCREMENT, used when the function falls behind the counter.
71  * Could be an increasing function instead of a constant;
72  */
73 
74 #define CATCHUP_INCREMENT 64
75 
mips_next_event(unsigned long delta,struct clock_event_device * evt)76 static int mips_next_event(unsigned long delta,
77 				struct clock_event_device *evt)
78 {
79 	unsigned long flags;
80 	unsigned int mtflags;
81 	unsigned long timestamp, reference, previous;
82 	unsigned long nextcomp = 0L;
83 	int vpe = current_cpu_data.vpe_id;
84 	int cpu = smp_processor_id();
85 	local_irq_save(flags);
86 	mtflags = dmt();
87 
88 	/*
89 	 * Maintain the per-TC virtual timer
90 	 * and program the per-VPE shared Count register
91 	 * as appropriate here...
92 	 */
93 	reference = (unsigned long)read_c0_count();
94 	timestamp = MAKEVALID(reference + delta);
95 	/*
96 	 * To really model the clock, we have to catch the case
97 	 * where the current next-in-VPE timestamp is the old
98 	 * timestamp for the calling CPE, but the new value is
99 	 * in fact later.  In that case, we have to do a full
100 	 * scan and discover the new next-in-VPE CPU id and
101 	 * timestamp.
102 	 */
103 	previous = smtc_nexttime[vpe][cpu];
104 	if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
105 	    && IS_SOONER(previous, timestamp, reference)) {
106 		int i;
107 		int soonest = cpu;
108 
109 		/*
110 		 * Update timestamp array here, so that new
111 		 * value gets considered along with those of
112 		 * other virtual CPUs on the VPE.
113 		 */
114 		smtc_nexttime[vpe][cpu] = timestamp;
115 		for_each_online_cpu(i) {
116 			if (ISVALID(smtc_nexttime[vpe][i])
117 			    && IS_SOONER(smtc_nexttime[vpe][i],
118 				smtc_nexttime[vpe][soonest], reference)) {
119 				    soonest = i;
120 			}
121 		}
122 		smtc_nextinvpe[vpe] = soonest;
123 		nextcomp = smtc_nexttime[vpe][soonest];
124 	/*
125 	 * Otherwise, we don't have to process the whole array rank,
126 	 * we just have to see if the event horizon has gotten closer.
127 	 */
128 	} else {
129 		if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
130 		    IS_SOONER(timestamp,
131 			smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
132 			    smtc_nextinvpe[vpe] = cpu;
133 			    nextcomp = timestamp;
134 		}
135 		/*
136 		 * Since next-in-VPE may me the same as the executing
137 		 * virtual CPU, we update the array *after* checking
138 		 * its value.
139 		 */
140 		smtc_nexttime[vpe][cpu] = timestamp;
141 	}
142 
143 	/*
144 	 * It may be that, in fact, we don't need to update Compare,
145 	 * but if we do, we want to make sure we didn't fall into
146 	 * a crack just behind Count.
147 	 */
148 	if (ISVALID(nextcomp)) {
149 		write_c0_compare(nextcomp);
150 		ehb();
151 		/*
152 		 * We never return an error, we just make sure
153 		 * that we trigger the handlers as quickly as
154 		 * we can if we fell behind.
155 		 */
156 		while ((nextcomp - (unsigned long)read_c0_count())
157 			> (unsigned long)LONG_MAX) {
158 			nextcomp += CATCHUP_INCREMENT;
159 			write_c0_compare(nextcomp);
160 			ehb();
161 		}
162 	}
163 	emt(mtflags);
164 	local_irq_restore(flags);
165 	return 0;
166 }
167 
168 
smtc_distribute_timer(int vpe)169 void smtc_distribute_timer(int vpe)
170 {
171 	unsigned long flags;
172 	unsigned int mtflags;
173 	int cpu;
174 	struct clock_event_device *cd;
175 	unsigned long nextstamp = 0L;
176 	unsigned long reference;
177 
178 
179 repeat:
180 	for_each_online_cpu(cpu) {
181 	    /*
182 	     * Find virtual CPUs within the current VPE who have
183 	     * unserviced timer requests whose time is now past.
184 	     */
185 	    local_irq_save(flags);
186 	    mtflags = dmt();
187 	    if (cpu_data[cpu].vpe_id == vpe &&
188 		ISVALID(smtc_nexttime[vpe][cpu])) {
189 		reference = (unsigned long)read_c0_count();
190 		if ((smtc_nexttime[vpe][cpu] - reference)
191 			 > (unsigned long)LONG_MAX) {
192 			    smtc_nexttime[vpe][cpu] = 0L;
193 			    emt(mtflags);
194 			    local_irq_restore(flags);
195 			    /*
196 			     * We don't send IPIs to ourself.
197 			     */
198 			    if (cpu != smp_processor_id()) {
199 				smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
200 			    } else {
201 				cd = &per_cpu(mips_clockevent_device, cpu);
202 				cd->event_handler(cd);
203 			    }
204 		} else {
205 			/* Local to VPE but Valid Time not yet reached. */
206 			if (!ISVALID(nextstamp) ||
207 			    IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
208 			    reference)) {
209 				smtc_nextinvpe[vpe] = cpu;
210 				nextstamp = smtc_nexttime[vpe][cpu];
211 			}
212 			emt(mtflags);
213 			local_irq_restore(flags);
214 		}
215 	    } else {
216 		emt(mtflags);
217 		local_irq_restore(flags);
218 
219 	    }
220 	}
221 	/* Reprogram for interrupt at next soonest timestamp for VPE */
222 	if (ISVALID(nextstamp)) {
223 		write_c0_compare(nextstamp);
224 		ehb();
225 		if ((nextstamp - (unsigned long)read_c0_count())
226 			> (unsigned long)LONG_MAX)
227 				goto repeat;
228 	}
229 }
230 
231 
c0_compare_interrupt(int irq,void * dev_id)232 irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
233 {
234 	int cpu = smp_processor_id();
235 
236 	/* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
237 	handle_perf_irq(1);
238 
239 	if (read_c0_cause() & (1 << 30)) {
240 		/* Clear Count/Compare Interrupt */
241 		write_c0_compare(read_c0_compare());
242 		smtc_distribute_timer(cpu_data[cpu].vpe_id);
243 	}
244 	return IRQ_HANDLED;
245 }
246 
247 
mips_clockevent_init(void)248 int __cpuinit mips_clockevent_init(void)
249 {
250 	uint64_t mips_freq = mips_hpt_frequency;
251 	unsigned int cpu = smp_processor_id();
252 	struct clock_event_device *cd;
253 	unsigned int irq;
254 	int i;
255 	int j;
256 
257 	if (!cpu_has_counter || !mips_hpt_frequency)
258 		return -ENXIO;
259 	if (cpu == 0) {
260 		for (i = 0; i < num_possible_cpus(); i++) {
261 			smtc_nextinvpe[i] = 0;
262 			for (j = 0; j < num_possible_cpus(); j++)
263 				smtc_nexttime[i][j] = 0L;
264 		}
265 		/*
266 		 * SMTC also can't have the usablility test
267 		 * run by secondary TCs once Compare is in use.
268 		 */
269 		if (!c0_compare_int_usable())
270 			return -ENXIO;
271 	}
272 
273 	/*
274 	 * With vectored interrupts things are getting platform specific.
275 	 * get_c0_compare_int is a hook to allow a platform to return the
276 	 * interrupt number of it's liking.
277 	 */
278 	irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
279 	if (get_c0_compare_int)
280 		irq = get_c0_compare_int();
281 
282 	cd = &per_cpu(mips_clockevent_device, cpu);
283 
284 	cd->name		= "MIPS";
285 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
286 
287 	/* Calculate the min / max delta */
288 	cd->mult	= div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
289 	cd->shift		= 32;
290 	cd->max_delta_ns	= clockevent_delta2ns(0x7fffffff, cd);
291 	cd->min_delta_ns	= clockevent_delta2ns(0x300, cd);
292 
293 	cd->rating		= 300;
294 	cd->irq			= irq;
295 	cd->cpumask		= cpumask_of(cpu);
296 	cd->set_next_event	= mips_next_event;
297 	cd->set_mode		= mips_set_clock_mode;
298 	cd->event_handler	= mips_event_handler;
299 
300 	clockevents_register_device(cd);
301 
302 	/*
303 	 * On SMTC we only want to do the data structure
304 	 * initialization and IRQ setup once.
305 	 */
306 	if (cpu)
307 		return 0;
308 	/*
309 	 * And we need the hwmask associated with the c0_compare
310 	 * vector to be initialized.
311 	 */
312 	irq_hwmask[irq] = (0x100 << cp0_compare_irq);
313 	if (cp0_timer_irq_installed)
314 		return 0;
315 
316 	cp0_timer_irq_installed = 1;
317 
318 	setup_irq(irq, &c0_compare_irqaction);
319 
320 	return 0;
321 }
322