• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_POWERPC_PGTABLE_PPC32_H
2 #define _ASM_POWERPC_PGTABLE_PPC32_H
3 
4 #include <asm-generic/pgtable-nopmd.h>
5 
6 #ifndef __ASSEMBLY__
7 #include <linux/sched.h>
8 #include <linux/threads.h>
9 #include <asm/io.h>			/* For sub-arch specific PPC_PIN_SIZE */
10 
11 extern unsigned long va_to_phys(unsigned long address);
12 extern pte_t *va_to_pte(unsigned long address);
13 extern unsigned long ioremap_bot, ioremap_base;
14 
15 #ifdef CONFIG_44x
16 extern int icache_44x_need_flush;
17 #endif
18 
19 #endif /* __ASSEMBLY__ */
20 
21 /*
22  * The PowerPC MMU uses a hash table containing PTEs, together with
23  * a set of 16 segment registers (on 32-bit implementations), to define
24  * the virtual to physical address mapping.
25  *
26  * We use the hash table as an extended TLB, i.e. a cache of currently
27  * active mappings.  We maintain a two-level page table tree, much
28  * like that used by the i386, for the sake of the Linux memory
29  * management code.  Low-level assembler code in hashtable.S
30  * (procedure hash_page) is responsible for extracting ptes from the
31  * tree and putting them into the hash table when necessary, and
32  * updating the accessed and modified bits in the page table tree.
33  */
34 
35 /*
36  * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
37  * We also use the two level tables, but we can put the real bits in them
38  * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0,
39  * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has
40  * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
41  * based upon user/super access.  The TLB does not have accessed nor write
42  * protect.  We assume that if the TLB get loaded with an entry it is
43  * accessed, and overload the changed bit for write protect.  We use
44  * two bits in the software pte that are supposed to be set to zero in
45  * the TLB entry (24 and 25) for these indicators.  Although the level 1
46  * descriptor contains the guarded and writethrough/copyback bits, we can
47  * set these at the page level since they get copied from the Mx_TWC
48  * register when the TLB entry is loaded.  We will use bit 27 for guard, since
49  * that is where it exists in the MD_TWC, and bit 26 for writethrough.
50  * These will get masked from the level 2 descriptor at TLB load time, and
51  * copied to the MD_TWC before it gets loaded.
52  * Large page sizes added.  We currently support two sizes, 4K and 8M.
53  * This also allows a TLB hander optimization because we can directly
54  * load the PMD into MD_TWC.  The 8M pages are only used for kernel
55  * mapping of well known areas.  The PMD (PGD) entries contain control
56  * flags in addition to the address, so care must be taken that the
57  * software no longer assumes these are only pointers.
58  */
59 
60 /*
61  * At present, all PowerPC 400-class processors share a similar TLB
62  * architecture. The instruction and data sides share a unified,
63  * 64-entry, fully-associative TLB which is maintained totally under
64  * software control. In addition, the instruction side has a
65  * hardware-managed, 4-entry, fully-associative TLB which serves as a
66  * first level to the shared TLB. These two TLBs are known as the UTLB
67  * and ITLB, respectively (see "mmu.h" for definitions).
68  */
69 
70 /*
71  * The normal case is that PTEs are 32-bits and we have a 1-page
72  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
73  *
74  * For any >32-bit physical address platform, we can use the following
75  * two level page table layout where the pgdir is 8KB and the MS 13 bits
76  * are an index to the second level table.  The combined pgdir/pmd first
77  * level has 2048 entries and the second level has 512 64-bit PTE entries.
78  * -Matt
79  */
80 /* PGDIR_SHIFT determines what a top-level page table entry can map */
81 #define PGDIR_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
82 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
83 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
84 
85 /*
86  * entries per page directory level: our page-table tree is two-level, so
87  * we don't really have any PMD directory.
88  */
89 #ifndef __ASSEMBLY__
90 #define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_SHIFT)
91 #define PGD_TABLE_SIZE	(sizeof(pgd_t) << (32 - PGDIR_SHIFT))
92 #endif	/* __ASSEMBLY__ */
93 
94 #define PTRS_PER_PTE	(1 << PTE_SHIFT)
95 #define PTRS_PER_PMD	1
96 #define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
97 
98 #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
99 #define FIRST_USER_ADDRESS	0
100 
101 #define pte_ERROR(e) \
102 	printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
103 		(unsigned long long)pte_val(e))
104 #define pgd_ERROR(e) \
105 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
106 
107 /*
108  * Just any arbitrary offset to the start of the vmalloc VM area: the
109  * current 64MB value just means that there will be a 64MB "hole" after the
110  * physical memory until the kernel virtual memory starts.  That means that
111  * any out-of-bounds memory accesses will hopefully be caught.
112  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
113  * area for the same reason. ;)
114  *
115  * We no longer map larger than phys RAM with the BATs so we don't have
116  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
117  * about clashes between our early calls to ioremap() that start growing down
118  * from ioremap_base being run into the VM area allocations (growing upwards
119  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
120  * we actually run into our mappings setup in the early boot with the VM
121  * system.  This really does become a problem for machines with good amounts
122  * of RAM.  -- Cort
123  */
124 #define VMALLOC_OFFSET (0x1000000) /* 16M */
125 #ifdef PPC_PIN_SIZE
126 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
127 #else
128 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
129 #endif
130 #define VMALLOC_END	ioremap_bot
131 
132 /*
133  * Bits in a linux-style PTE.  These match the bits in the
134  * (hardware-defined) PowerPC PTE as closely as possible.
135  */
136 
137 #if defined(CONFIG_40x)
138 
139 /* There are several potential gotchas here.  The 40x hardware TLBLO
140    field looks like this:
141 
142    0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
143    RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
144 
145    Where possible we make the Linux PTE bits match up with this
146 
147    - bits 20 and 21 must be cleared, because we use 4k pages (40x can
148      support down to 1k pages), this is done in the TLBMiss exception
149      handler.
150    - We use only zones 0 (for kernel pages) and 1 (for user pages)
151      of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
152      miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
153      zone.
154    - PRESENT *must* be in the bottom two bits because swap cache
155      entries use the top 30 bits.  Because 40x doesn't support SMP
156      anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
157      is cleared in the TLB miss handler before the TLB entry is loaded.
158    - All other bits of the PTE are loaded into TLBLO without
159      modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
160      software PTE bits.  We actually use use bits 21, 24, 25, and
161      30 respectively for the software bits: ACCESSED, DIRTY, RW, and
162      PRESENT.
163 */
164 
165 /* Definitions for 40x embedded chips. */
166 #define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
167 #define _PAGE_FILE	0x001	/* when !present: nonlinear file mapping */
168 #define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
169 #define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
170 #define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
171 #define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
172 #define	_PAGE_RW	0x040	/* software: Writes permitted */
173 #define	_PAGE_DIRTY	0x080	/* software: dirty page */
174 #define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
175 #define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
176 #define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
177 
178 #define _PMD_PRESENT	0x400	/* PMD points to page of PTEs */
179 #define _PMD_BAD	0x802
180 #define _PMD_SIZE	0x0e0	/* size field, != 0 for large-page PMD entry */
181 #define _PMD_SIZE_4M	0x0c0
182 #define _PMD_SIZE_16M	0x0e0
183 #define PMD_PAGE_SIZE(pmdval)	(1024 << (((pmdval) & _PMD_SIZE) >> 4))
184 
185 /* Until my rework is finished, 40x still needs atomic PTE updates */
186 #define PTE_ATOMIC_UPDATES	1
187 
188 #elif defined(CONFIG_44x)
189 /*
190  * Definitions for PPC440
191  *
192  * Because of the 3 word TLB entries to support 36-bit addressing,
193  * the attribute are difficult to map in such a fashion that they
194  * are easily loaded during exception processing.  I decided to
195  * organize the entry so the ERPN is the only portion in the
196  * upper word of the PTE and the attribute bits below are packed
197  * in as sensibly as they can be in the area below a 4KB page size
198  * oriented RPN.  This at least makes it easy to load the RPN and
199  * ERPN fields in the TLB. -Matt
200  *
201  * Note that these bits preclude future use of a page size
202  * less than 4KB.
203  *
204  *
205  * PPC 440 core has following TLB attribute fields;
206  *
207  *   TLB1:
208  *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
209  *   RPN.................................  -  -  -  -  -  - ERPN.......
210  *
211  *   TLB2:
212  *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
213  *   -  -  -  -  -    - U0 U1 U2 U3 W  I  M  G  E   - UX UW UR SX SW SR
214  *
215  * Newer 440 cores (440x6 as used on AMCC 460EX/460GT) have additional
216  * TLB2 storage attibute fields. Those are:
217  *
218  *   TLB2:
219  *   0...10    11   12   13   14   15   16...31
220  *   no change WL1  IL1I IL1D IL2I IL2D no change
221  *
222  * There are some constrains and options, to decide mapping software bits
223  * into TLB entry.
224  *
225  *   - PRESENT *must* be in the bottom three bits because swap cache
226  *     entries use the top 29 bits for TLB2.
227  *
228  *   - FILE *must* be in the bottom three bits because swap cache
229  *     entries use the top 29 bits for TLB2.
230  *
231  *   - CACHE COHERENT bit (M) has no effect on original PPC440 cores,
232  *     because it doesn't support SMP. However, some later 460 variants
233  *     have -some- form of SMP support and so I keep the bit there for
234  *     future use
235  *
236  * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
237  * for memory protection related functions (see PTE structure in
238  * include/asm-ppc/mmu.h).  The _PAGE_XXX definitions in this file map to the
239  * above bits.  Note that the bit values are CPU specific, not architecture
240  * specific.
241  *
242  * The kernel PTE entry holds an arch-dependent swp_entry structure under
243  * certain situations. In other words, in such situations some portion of
244  * the PTE bits are used as a swp_entry. In the PPC implementation, the
245  * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
246  * hold protection values. That means the three protection bits are
247  * reserved for both PTE and SWAP entry at the most significant three
248  * LSBs.
249  *
250  * There are three protection bits available for SWAP entry:
251  *	_PAGE_PRESENT
252  *	_PAGE_FILE
253  *	_PAGE_HASHPTE (if HW has)
254  *
255  * So those three bits have to be inside of 0-2nd LSB of PTE.
256  *
257  */
258 
259 #define _PAGE_PRESENT	0x00000001		/* S: PTE valid */
260 #define _PAGE_RW	0x00000002		/* S: Write permission */
261 #define _PAGE_FILE	0x00000004		/* S: nonlinear file mapping */
262 #define _PAGE_HWEXEC	0x00000004		/* H: Execute permission */
263 #define _PAGE_ACCESSED	0x00000008		/* S: Page referenced */
264 #define _PAGE_DIRTY	0x00000010		/* S: Page dirty */
265 #define _PAGE_SPECIAL	0x00000020		/* S: Special page */
266 #define _PAGE_USER	0x00000040		/* S: User page */
267 #define _PAGE_ENDIAN	0x00000080		/* H: E bit */
268 #define _PAGE_GUARDED	0x00000100		/* H: G bit */
269 #define _PAGE_COHERENT	0x00000200		/* H: M bit */
270 #define _PAGE_NO_CACHE	0x00000400		/* H: I bit */
271 #define _PAGE_WRITETHRU	0x00000800		/* H: W bit */
272 
273 /* TODO: Add large page lowmem mapping support */
274 #define _PMD_PRESENT	0
275 #define _PMD_PRESENT_MASK (PAGE_MASK)
276 #define _PMD_BAD	(~PAGE_MASK)
277 
278 /* ERPN in a PTE never gets cleared, ignore it */
279 #define _PTE_NONE_MASK	0xffffffff00000000ULL
280 
281 #define __HAVE_ARCH_PTE_SPECIAL
282 
283 #elif defined(CONFIG_FSL_BOOKE)
284 /*
285    MMU Assist Register 3:
286 
287    32 33 34 35 36  ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63
288    RPN......................  0  0 U0 U1 U2 U3 UX SX UW SW UR SR
289 
290    - PRESENT *must* be in the bottom three bits because swap cache
291      entries use the top 29 bits.
292 
293    - FILE *must* be in the bottom three bits because swap cache
294      entries use the top 29 bits.
295 */
296 
297 /* Definitions for FSL Book-E Cores */
298 #define _PAGE_PRESENT	0x00001	/* S: PTE contains a translation */
299 #define _PAGE_USER	0x00002	/* S: User page (maps to UR) */
300 #define _PAGE_FILE	0x00002	/* S: when !present: nonlinear file mapping */
301 #define _PAGE_RW	0x00004	/* S: Write permission (SW) */
302 #define _PAGE_DIRTY	0x00008	/* S: Page dirty */
303 #define _PAGE_HWEXEC	0x00010	/* H: SX permission */
304 #define _PAGE_ACCESSED	0x00020	/* S: Page referenced */
305 
306 #define _PAGE_ENDIAN	0x00040	/* H: E bit */
307 #define _PAGE_GUARDED	0x00080	/* H: G bit */
308 #define _PAGE_COHERENT	0x00100	/* H: M bit */
309 #define _PAGE_NO_CACHE	0x00200	/* H: I bit */
310 #define _PAGE_WRITETHRU	0x00400	/* H: W bit */
311 #define _PAGE_SPECIAL	0x00800 /* S: Special page */
312 
313 #ifdef CONFIG_PTE_64BIT
314 /* ERPN in a PTE never gets cleared, ignore it */
315 #define _PTE_NONE_MASK	0xffffffffffff0000ULL
316 #endif
317 
318 #define _PMD_PRESENT	0
319 #define _PMD_PRESENT_MASK (PAGE_MASK)
320 #define _PMD_BAD	(~PAGE_MASK)
321 
322 #define __HAVE_ARCH_PTE_SPECIAL
323 
324 #elif defined(CONFIG_8xx)
325 /* Definitions for 8xx embedded chips. */
326 #define _PAGE_PRESENT	0x0001	/* Page is valid */
327 #define _PAGE_FILE	0x0002	/* when !present: nonlinear file mapping */
328 #define _PAGE_NO_CACHE	0x0002	/* I: cache inhibit */
329 #define _PAGE_SHARED	0x0004	/* No ASID (context) compare */
330 
331 /* These five software bits must be masked out when the entry is loaded
332  * into the TLB.
333  */
334 #define _PAGE_EXEC	0x0008	/* software: i-cache coherency required */
335 #define _PAGE_GUARDED	0x0010	/* software: guarded access */
336 #define _PAGE_DIRTY	0x0020	/* software: page changed */
337 #define _PAGE_RW	0x0040	/* software: user write access allowed */
338 #define _PAGE_ACCESSED	0x0080	/* software: page referenced */
339 
340 /* Setting any bits in the nibble with the follow two controls will
341  * require a TLB exception handler change.  It is assumed unused bits
342  * are always zero.
343  */
344 #define _PAGE_HWWRITE	0x0100	/* h/w write enable: never set in Linux PTE */
345 #define _PAGE_USER	0x0800	/* One of the PP bits, the other is USER&~RW */
346 
347 #define _PMD_PRESENT	0x0001
348 #define _PMD_BAD	0x0ff0
349 #define _PMD_PAGE_MASK	0x000c
350 #define _PMD_PAGE_8M	0x000c
351 
352 #define _PTE_NONE_MASK _PAGE_ACCESSED
353 
354 /* Until my rework is finished, 8xx still needs atomic PTE updates */
355 #define PTE_ATOMIC_UPDATES	1
356 
357 #else /* CONFIG_6xx */
358 /* Definitions for 60x, 740/750, etc. */
359 #define _PAGE_PRESENT	0x001	/* software: pte contains a translation */
360 #define _PAGE_HASHPTE	0x002	/* hash_page has made an HPTE for this pte */
361 #define _PAGE_FILE	0x004	/* when !present: nonlinear file mapping */
362 #define _PAGE_USER	0x004	/* usermode access allowed */
363 #define _PAGE_GUARDED	0x008	/* G: prohibit speculative access */
364 #define _PAGE_COHERENT	0x010	/* M: enforce memory coherence (SMP systems) */
365 #define _PAGE_NO_CACHE	0x020	/* I: cache inhibit */
366 #define _PAGE_WRITETHRU	0x040	/* W: cache write-through */
367 #define _PAGE_DIRTY	0x080	/* C: page changed */
368 #define _PAGE_ACCESSED	0x100	/* R: page referenced */
369 #define _PAGE_EXEC	0x200	/* software: i-cache coherency required */
370 #define _PAGE_RW	0x400	/* software: user write access allowed */
371 #define _PAGE_SPECIAL	0x800	/* software: Special page */
372 
373 #ifdef CONFIG_PTE_64BIT
374 /* We never clear the high word of the pte */
375 #define _PTE_NONE_MASK	(0xffffffff00000000ULL | _PAGE_HASHPTE)
376 #else
377 #define _PTE_NONE_MASK	_PAGE_HASHPTE
378 #endif
379 
380 #define _PMD_PRESENT	0
381 #define _PMD_PRESENT_MASK (PAGE_MASK)
382 #define _PMD_BAD	(~PAGE_MASK)
383 
384 /* Hash table based platforms need atomic updates of the linux PTE */
385 #define PTE_ATOMIC_UPDATES	1
386 
387 #define __HAVE_ARCH_PTE_SPECIAL
388 
389 #endif
390 
391 /*
392  * Some bits are only used on some cpu families...
393  */
394 #ifndef _PAGE_HASHPTE
395 #define _PAGE_HASHPTE	0
396 #endif
397 #ifndef _PTE_NONE_MASK
398 #define _PTE_NONE_MASK 0
399 #endif
400 #ifndef _PAGE_SHARED
401 #define _PAGE_SHARED	0
402 #endif
403 #ifndef _PAGE_HWWRITE
404 #define _PAGE_HWWRITE	0
405 #endif
406 #ifndef _PAGE_HWEXEC
407 #define _PAGE_HWEXEC	0
408 #endif
409 #ifndef _PAGE_EXEC
410 #define _PAGE_EXEC	0
411 #endif
412 #ifndef _PAGE_ENDIAN
413 #define _PAGE_ENDIAN	0
414 #endif
415 #ifndef _PAGE_COHERENT
416 #define _PAGE_COHERENT	0
417 #endif
418 #ifndef _PAGE_WRITETHRU
419 #define _PAGE_WRITETHRU	0
420 #endif
421 #ifndef _PAGE_SPECIAL
422 #define _PAGE_SPECIAL	0
423 #endif
424 #ifndef _PMD_PRESENT_MASK
425 #define _PMD_PRESENT_MASK	_PMD_PRESENT
426 #endif
427 #ifndef _PMD_SIZE
428 #define _PMD_SIZE	0
429 #define PMD_PAGE_SIZE(pmd)	bad_call_to_PMD_PAGE_SIZE()
430 #endif
431 
432 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | \
433 			 _PAGE_SPECIAL)
434 
435 
436 #define PAGE_PROT_BITS	(_PAGE_GUARDED | _PAGE_COHERENT | _PAGE_NO_CACHE | \
437 			 _PAGE_WRITETHRU | _PAGE_ENDIAN | \
438 			 _PAGE_USER | _PAGE_ACCESSED | \
439 			 _PAGE_RW | _PAGE_HWWRITE | _PAGE_DIRTY | \
440 			 _PAGE_EXEC | _PAGE_HWEXEC)
441 
442 /*
443  * We define 2 sets of base prot bits, one for basic pages (ie,
444  * cacheable kernel and user pages) and one for non cacheable
445  * pages. We always set _PAGE_COHERENT when SMP is enabled or
446  * the processor might need it for DMA coherency.
447  */
448 #if defined(CONFIG_SMP) || defined(CONFIG_PPC_STD_MMU)
449 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
450 #else
451 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
452 #endif
453 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)
454 
455 #define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
456 #define _PAGE_KERNEL	(_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
457 #define _PAGE_KERNEL_NC	(_PAGE_BASE_NC | _PAGE_SHARED | _PAGE_WRENABLE)
458 
459 #ifdef CONFIG_PPC_STD_MMU
460 /* On standard PPC MMU, no user access implies kernel read/write access,
461  * so to write-protect kernel memory we must turn on user access */
462 #define _PAGE_KERNEL_RO	(_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
463 #else
464 #define _PAGE_KERNEL_RO	(_PAGE_BASE | _PAGE_SHARED)
465 #endif
466 
467 #define _PAGE_IO	(_PAGE_KERNEL_NC | _PAGE_GUARDED)
468 #define _PAGE_RAM	(_PAGE_KERNEL | _PAGE_HWEXEC)
469 
470 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
471 	defined(CONFIG_KPROBES)
472 /* We want the debuggers to be able to set breakpoints anywhere, so
473  * don't write protect the kernel text */
474 #define _PAGE_RAM_TEXT	_PAGE_RAM
475 #else
476 #define _PAGE_RAM_TEXT	(_PAGE_KERNEL_RO | _PAGE_HWEXEC)
477 #endif
478 
479 #define PAGE_NONE	__pgprot(_PAGE_BASE)
480 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
481 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
482 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
483 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
484 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
485 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
486 
487 #define PAGE_KERNEL		__pgprot(_PAGE_RAM)
488 #define PAGE_KERNEL_NOCACHE	__pgprot(_PAGE_IO)
489 
490 /*
491  * The PowerPC can only do execute protection on a segment (256MB) basis,
492  * not on a page basis.  So we consider execute permission the same as read.
493  * Also, write permissions imply read permissions.
494  * This is the closest we can get..
495  */
496 #define __P000	PAGE_NONE
497 #define __P001	PAGE_READONLY_X
498 #define __P010	PAGE_COPY
499 #define __P011	PAGE_COPY_X
500 #define __P100	PAGE_READONLY
501 #define __P101	PAGE_READONLY_X
502 #define __P110	PAGE_COPY
503 #define __P111	PAGE_COPY_X
504 
505 #define __S000	PAGE_NONE
506 #define __S001	PAGE_READONLY_X
507 #define __S010	PAGE_SHARED
508 #define __S011	PAGE_SHARED_X
509 #define __S100	PAGE_READONLY
510 #define __S101	PAGE_READONLY_X
511 #define __S110	PAGE_SHARED
512 #define __S111	PAGE_SHARED_X
513 
514 #ifndef __ASSEMBLY__
515 /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
516  * kernel without large page PMD support */
517 extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
518 
519 /*
520  * Conversions between PTE values and page frame numbers.
521  */
522 
523 /* in some case we want to additionaly adjust where the pfn is in the pte to
524  * allow room for more flags */
525 #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
526 #define PFN_SHIFT_OFFSET	(PAGE_SHIFT + 8)
527 #else
528 #define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
529 #endif
530 
531 #define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
532 #define pte_page(x)		pfn_to_page(pte_pfn(x))
533 
534 #define pfn_pte(pfn, prot)	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
535 					pgprot_val(prot))
536 #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)
537 #endif /* __ASSEMBLY__ */
538 
539 #define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
540 #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
541 #define pte_clear(mm, addr, ptep) \
542 	do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
543 
544 #define pmd_none(pmd)		(!pmd_val(pmd))
545 #define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
546 #define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
547 #define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
548 
549 #ifndef __ASSEMBLY__
550 /*
551  * The following only work if pte_present() is true.
552  * Undefined behaviour if not..
553  */
pte_write(pte_t pte)554 static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
pte_dirty(pte_t pte)555 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)556 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
pte_file(pte_t pte)557 static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
pte_special(pte_t pte)558 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
559 
pte_wrprotect(pte_t pte)560 static inline pte_t pte_wrprotect(pte_t pte) {
561 	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
pte_mkclean(pte_t pte)562 static inline pte_t pte_mkclean(pte_t pte) {
563 	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
pte_mkold(pte_t pte)564 static inline pte_t pte_mkold(pte_t pte) {
565 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
566 
pte_mkwrite(pte_t pte)567 static inline pte_t pte_mkwrite(pte_t pte) {
568 	pte_val(pte) |= _PAGE_RW; return pte; }
pte_mkdirty(pte_t pte)569 static inline pte_t pte_mkdirty(pte_t pte) {
570 	pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)571 static inline pte_t pte_mkyoung(pte_t pte) {
572 	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkspecial(pte_t pte)573 static inline pte_t pte_mkspecial(pte_t pte) {
574 	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
pte_pgprot(pte_t pte)575 static inline pgprot_t pte_pgprot(pte_t pte)
576 {
577 	return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
578 }
579 
pte_modify(pte_t pte,pgprot_t newprot)580 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
581 {
582 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
583 	return pte;
584 }
585 
586 /*
587  * When flushing the tlb entry for a page, we also need to flush the hash
588  * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
589  */
590 extern int flush_hash_pages(unsigned context, unsigned long va,
591 			    unsigned long pmdval, int count);
592 
593 /* Add an HPTE to the hash table */
594 extern void add_hash_page(unsigned context, unsigned long va,
595 			  unsigned long pmdval);
596 
597 /* Flush an entry from the TLB/hash table */
598 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
599 			     unsigned long address);
600 
601 /*
602  * Atomic PTE updates.
603  *
604  * pte_update clears and sets bit atomically, and returns
605  * the old pte value.  In the 64-bit PTE case we lock around the
606  * low PTE word since we expect ALL flag bits to be there
607  */
608 #ifndef CONFIG_PTE_64BIT
pte_update(pte_t * p,unsigned long clr,unsigned long set)609 static inline unsigned long pte_update(pte_t *p,
610 				       unsigned long clr,
611 				       unsigned long set)
612 {
613 #ifdef PTE_ATOMIC_UPDATES
614 	unsigned long old, tmp;
615 
616 	__asm__ __volatile__("\
617 1:	lwarx	%0,0,%3\n\
618 	andc	%1,%0,%4\n\
619 	or	%1,%1,%5\n"
620 	PPC405_ERR77(0,%3)
621 "	stwcx.	%1,0,%3\n\
622 	bne-	1b"
623 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
624 	: "r" (p), "r" (clr), "r" (set), "m" (*p)
625 	: "cc" );
626 #else /* PTE_ATOMIC_UPDATES */
627 	unsigned long old = pte_val(*p);
628 	*p = __pte((old & ~clr) | set);
629 #endif /* !PTE_ATOMIC_UPDATES */
630 
631 #ifdef CONFIG_44x
632 	if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
633 		icache_44x_need_flush = 1;
634 #endif
635 	return old;
636 }
637 #else /* CONFIG_PTE_64BIT */
pte_update(pte_t * p,unsigned long clr,unsigned long set)638 static inline unsigned long long pte_update(pte_t *p,
639 					    unsigned long clr,
640 					    unsigned long set)
641 {
642 #ifdef PTE_ATOMIC_UPDATES
643 	unsigned long long old;
644 	unsigned long tmp;
645 
646 	__asm__ __volatile__("\
647 1:	lwarx	%L0,0,%4\n\
648 	lwzx	%0,0,%3\n\
649 	andc	%1,%L0,%5\n\
650 	or	%1,%1,%6\n"
651 	PPC405_ERR77(0,%3)
652 "	stwcx.	%1,0,%4\n\
653 	bne-	1b"
654 	: "=&r" (old), "=&r" (tmp), "=m" (*p)
655 	: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
656 	: "cc" );
657 #else /* PTE_ATOMIC_UPDATES */
658 	unsigned long long old = pte_val(*p);
659 	*p = __pte((old & ~(unsigned long long)clr) | set);
660 #endif /* !PTE_ATOMIC_UPDATES */
661 
662 #ifdef CONFIG_44x
663 	if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
664 		icache_44x_need_flush = 1;
665 #endif
666 	return old;
667 }
668 #endif /* CONFIG_PTE_64BIT */
669 
670 /*
671  * set_pte stores a linux PTE into the linux page table.
672  * On machines which use an MMU hash table we avoid changing the
673  * _PAGE_HASHPTE bit.
674  */
675 
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)676 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
677 			      pte_t *ptep, pte_t pte)
678 {
679 #if (_PAGE_HASHPTE != 0) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
680 	pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
681 #elif defined(CONFIG_PTE_64BIT) && defined(CONFIG_SMP)
682 #if _PAGE_HASHPTE != 0
683 	if (pte_val(*ptep) & _PAGE_HASHPTE)
684 		flush_hash_entry(mm, ptep, addr);
685 #endif
686 	__asm__ __volatile__("\
687 		stw%U0%X0 %2,%0\n\
688 		eieio\n\
689 		stw%U0%X0 %L2,%1"
690 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
691 	: "r" (pte) : "memory");
692 #else
693 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
694 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
695 #endif
696 }
697 
698 
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)699 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
700 			      pte_t *ptep, pte_t pte)
701 {
702 #if defined(CONFIG_PTE_64BIT) && defined(CONFIG_SMP) && defined(CONFIG_DEBUG_VM)
703 	WARN_ON(pte_present(*ptep));
704 #endif
705 	__set_pte_at(mm, addr, ptep, pte);
706 }
707 
708 /*
709  * 2.6 calls this without flushing the TLB entry; this is wrong
710  * for our hash-based implementation, we fix that up here.
711  */
712 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(unsigned int context,unsigned long addr,pte_t * ptep)713 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
714 {
715 	unsigned long old;
716 	old = pte_update(ptep, _PAGE_ACCESSED, 0);
717 #if _PAGE_HASHPTE != 0
718 	if (old & _PAGE_HASHPTE) {
719 		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
720 		flush_hash_pages(context, addr, ptephys, 1);
721 	}
722 #endif
723 	return (old & _PAGE_ACCESSED) != 0;
724 }
725 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
726 	__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
727 
728 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)729 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
730 				       pte_t *ptep)
731 {
732 	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
733 }
734 
735 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)736 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
737 				      pte_t *ptep)
738 {
739 	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
740 }
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)741 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
742 					   unsigned long addr, pte_t *ptep)
743 {
744 	ptep_set_wrprotect(mm, addr, ptep);
745 }
746 
747 
748 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
__ptep_set_access_flags(pte_t * ptep,pte_t entry,int dirty)749 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
750 {
751 	unsigned long bits = pte_val(entry) &
752 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW);
753 	pte_update(ptep, 0, bits);
754 }
755 
756 #define  ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
757 ({									   \
758 	int __changed = !pte_same(*(__ptep), __entry);			   \
759 	if (__changed) {						   \
760 		__ptep_set_access_flags(__ptep, __entry, __dirty);         \
761 		flush_tlb_page_nohash(__vma, __address);		   \
762 	}								   \
763 	__changed;							   \
764 })
765 
766 #define __HAVE_ARCH_PTE_SAME
767 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
768 
769 /*
770  * Note that on Book E processors, the pmd contains the kernel virtual
771  * (lowmem) address of the pte page.  The physical address is less useful
772  * because everything runs with translation enabled (even the TLB miss
773  * handler).  On everything else the pmd contains the physical address
774  * of the pte page.  -- paulus
775  */
776 #ifndef CONFIG_BOOKE
777 #define pmd_page_vaddr(pmd)	\
778 	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
779 #define pmd_page(pmd)		\
780 	(mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
781 #else
782 #define pmd_page_vaddr(pmd)	\
783 	((unsigned long) (pmd_val(pmd) & PAGE_MASK))
784 #define pmd_page(pmd)		\
785 	pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
786 #endif
787 
788 /* to find an entry in a kernel page-table-directory */
789 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
790 
791 /* to find an entry in a page-table-directory */
792 #define pgd_index(address)	 ((address) >> PGDIR_SHIFT)
793 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
794 
795 /* Find an entry in the third-level page table.. */
796 #define pte_index(address)		\
797 	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
798 #define pte_offset_kernel(dir, addr)	\
799 	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
800 #define pte_offset_map(dir, addr)		\
801 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
802 #define pte_offset_map_nested(dir, addr)	\
803 	((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
804 
805 #define pte_unmap(pte)		kunmap_atomic(pte, KM_PTE0)
806 #define pte_unmap_nested(pte)	kunmap_atomic(pte, KM_PTE1)
807 
808 /*
809  * Encode and decode a swap entry.
810  * Note that the bits we use in a PTE for representing a swap entry
811  * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
812  *_PAGE_HASHPTE bit (if used).  -- paulus
813  */
814 #define __swp_type(entry)		((entry).val & 0x1f)
815 #define __swp_offset(entry)		((entry).val >> 5)
816 #define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
817 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
818 #define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
819 
820 /* Encode and decode a nonlinear file mapping entry */
821 #define PTE_FILE_MAX_BITS	29
822 #define pte_to_pgoff(pte)	(pte_val(pte) >> 3)
823 #define pgoff_to_pte(off)	((pte_t) { ((off) << 3) | _PAGE_FILE })
824 
825 /*
826  * No page table caches to initialise
827  */
828 #define pgtable_cache_init()	do { } while (0)
829 
830 extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
831 		      pmd_t **pmdp);
832 
833 #endif /* !__ASSEMBLY__ */
834 
835 #endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
836