• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *	   Carl Love <carll@us.ibm.com>
9  *	   Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/system.h>
38 #include <asm/cell-regs.h>
39 
40 #include "../platforms/cell/interrupt.h"
41 #include "cell/pr_util.h"
42 
43 #define PPU_PROFILING            0
44 #define SPU_PROFILING_CYCLES     1
45 #define SPU_PROFILING_EVENTS     2
46 
47 #define SPU_EVENT_NUM_START      4100
48 #define SPU_EVENT_NUM_STOP       4399
49 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
50 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
51 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
52 
53 #define NUM_SPUS_PER_NODE    8
54 #define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
55 
56 #define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
57 #define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
58 				 * PPU_CYCLES event
59 				 */
60 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
61 
62 #define NUM_THREADS 2         /* number of physical threads in
63 			       * physical processor
64 			       */
65 #define NUM_DEBUG_BUS_WORDS 4
66 #define NUM_INPUT_BUS_WORDS 2
67 
68 #define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
69 
70 /* Minumum HW interval timer setting to send value to trace buffer is 10 cycle.
71  * To configure counter to send value every N cycles set counter to
72  * 2^32 - 1 - N.
73  */
74 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
75 
76 /*
77  * spu_cycle_reset is the number of cycles between samples.
78  * This variable is used for SPU profiling and should ONLY be set
79  * at the beginning of cell_reg_setup; otherwise, it's read-only.
80  */
81 static unsigned int spu_cycle_reset;
82 static unsigned int profiling_mode;
83 static int spu_evnt_phys_spu_indx;
84 
85 struct pmc_cntrl_data {
86 	unsigned long vcntr;
87 	unsigned long evnts;
88 	unsigned long masks;
89 	unsigned long enabled;
90 };
91 
92 /*
93  * ibm,cbe-perftools rtas parameters
94  */
95 struct pm_signal {
96 	u16 cpu;		/* Processor to modify */
97 	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
98 	short int signal_group; /* Signal Group to Enable/Disable */
99 	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
100 				 * Bus Word(s) (bitmask)
101 				 */
102 	u8 bit;			/* Trigger/Event bit (if applicable) */
103 };
104 
105 /*
106  * rtas call arguments
107  */
108 enum {
109 	SUBFUNC_RESET = 1,
110 	SUBFUNC_ACTIVATE = 2,
111 	SUBFUNC_DEACTIVATE = 3,
112 
113 	PASSTHRU_IGNORE = 0,
114 	PASSTHRU_ENABLE = 1,
115 	PASSTHRU_DISABLE = 2,
116 };
117 
118 struct pm_cntrl {
119 	u16 enable;
120 	u16 stop_at_max;
121 	u16 trace_mode;
122 	u16 freeze;
123 	u16 count_mode;
124 	u16 spu_addr_trace;
125 	u8  trace_buf_ovflw;
126 };
127 
128 static struct {
129 	u32 group_control;
130 	u32 debug_bus_control;
131 	struct pm_cntrl pm_cntrl;
132 	u32 pm07_cntrl[NR_PHYS_CTRS];
133 } pm_regs;
134 
135 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
136 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
137 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
138 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
139 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
140 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
141 
142 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
143 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
144 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
145 
146 /*
147  * The CELL profiling code makes rtas calls to setup the debug bus to
148  * route the performance signals.  Additionally, SPU profiling requires
149  * a second rtas call to setup the hardware to capture the SPU PCs.
150  * The EIO error value is returned if the token lookups or the rtas
151  * call fail.  The EIO error number is the best choice of the existing
152  * error numbers.  The probability of rtas related error is very low.  But
153  * by returning EIO and printing additional information to dmsg the user
154  * will know that OProfile did not start and dmesg will tell them why.
155  * OProfile does not support returning errors on Stop.	Not a huge issue
156  * since failure to reset the debug bus or stop the SPU PC collection is
157  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
158  * either.
159  */
160 
161 /*
162  * Interpetation of hdw_thread:
163  * 0 - even virtual cpus 0, 2, 4,...
164  * 1 - odd virtual cpus 1, 3, 5, ...
165  *
166  * FIXME: this is strictly wrong, we need to clean this up in a number
167  * of places. It works for now. -arnd
168  */
169 static u32 hdw_thread;
170 
171 static u32 virt_cntr_inter_mask;
172 static struct timer_list timer_virt_cntr;
173 static struct timer_list timer_spu_event_swap;
174 
175 /*
176  * pm_signal needs to be global since it is initialized in
177  * cell_reg_setup at the time when the necessary information
178  * is available.
179  */
180 static struct pm_signal pm_signal[NR_PHYS_CTRS];
181 static int pm_rtas_token;    /* token for debug bus setup call */
182 static int spu_rtas_token;   /* token for SPU cycle profiling */
183 
184 static u32 reset_value[NR_PHYS_CTRS];
185 static int num_counters;
186 static int oprofile_running;
187 static DEFINE_SPINLOCK(cntr_lock);
188 
189 static u32 ctr_enabled;
190 
191 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
192 
193 /*
194  * Firmware interface functions
195  */
196 static int
rtas_ibm_cbe_perftools(int subfunc,int passthru,void * address,unsigned long length)197 rtas_ibm_cbe_perftools(int subfunc, int passthru,
198 		       void *address, unsigned long length)
199 {
200 	u64 paddr = __pa(address);
201 
202 	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
203 			 passthru, paddr >> 32, paddr & 0xffffffff, length);
204 }
205 
pm_rtas_reset_signals(u32 node)206 static void pm_rtas_reset_signals(u32 node)
207 {
208 	int ret;
209 	struct pm_signal pm_signal_local;
210 
211 	/*
212 	 * The debug bus is being set to the passthru disable state.
213 	 * However, the FW still expects atleast one legal signal routing
214 	 * entry or it will return an error on the arguments.	If we don't
215 	 * supply a valid entry, we must ignore all return values.  Ignoring
216 	 * all return values means we might miss an error we should be
217 	 * concerned about.
218 	 */
219 
220 	/*  fw expects physical cpu #. */
221 	pm_signal_local.cpu = node;
222 	pm_signal_local.signal_group = 21;
223 	pm_signal_local.bus_word = 1;
224 	pm_signal_local.sub_unit = 0;
225 	pm_signal_local.bit = 0;
226 
227 	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
228 				     &pm_signal_local,
229 				     sizeof(struct pm_signal));
230 
231 	if (unlikely(ret))
232 		/*
233 		 * Not a fatal error. For Oprofile stop, the oprofile
234 		 * functions do not support returning an error for
235 		 * failure to stop OProfile.
236 		 */
237 		printk(KERN_WARNING "%s: rtas returned: %d\n",
238 		       __func__, ret);
239 }
240 
pm_rtas_activate_signals(u32 node,u32 count)241 static int pm_rtas_activate_signals(u32 node, u32 count)
242 {
243 	int ret;
244 	int i, j;
245 	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
246 
247 	/*
248 	 * There is no debug setup required for the cycles event.
249 	 * Note that only events in the same group can be used.
250 	 * Otherwise, there will be conflicts in correctly routing
251 	 * the signals on the debug bus.  It is the responsiblity
252 	 * of the OProfile user tool to check the events are in
253 	 * the same group.
254 	 */
255 	i = 0;
256 	for (j = 0; j < count; j++) {
257 		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
258 
259 			/* fw expects physical cpu # */
260 			pm_signal_local[i].cpu = node;
261 			pm_signal_local[i].signal_group
262 				= pm_signal[j].signal_group;
263 			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
264 			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
265 			pm_signal_local[i].bit = pm_signal[j].bit;
266 			i++;
267 		}
268 	}
269 
270 	if (i != 0) {
271 		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
272 					     pm_signal_local,
273 					     i * sizeof(struct pm_signal));
274 
275 		if (unlikely(ret)) {
276 			printk(KERN_WARNING "%s: rtas returned: %d\n",
277 			       __func__, ret);
278 			return -EIO;
279 		}
280 	}
281 
282 	return 0;
283 }
284 
285 /*
286  * PM Signal functions
287  */
set_pm_event(u32 ctr,int event,u32 unit_mask)288 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
289 {
290 	struct pm_signal *p;
291 	u32 signal_bit;
292 	u32 bus_word, bus_type, count_cycles, polarity, input_control;
293 	int j, i;
294 
295 	if (event == PPU_CYCLES_EVENT_NUM) {
296 		/* Special Event: Count all cpu cycles */
297 		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
298 		p = &(pm_signal[ctr]);
299 		p->signal_group = PPU_CYCLES_GRP_NUM;
300 		p->bus_word = 1;
301 		p->sub_unit = 0;
302 		p->bit = 0;
303 		goto out;
304 	} else {
305 		pm_regs.pm07_cntrl[ctr] = 0;
306 	}
307 
308 	bus_word = GET_BUS_WORD(unit_mask);
309 	bus_type = GET_BUS_TYPE(unit_mask);
310 	count_cycles = GET_COUNT_CYCLES(unit_mask);
311 	polarity = GET_POLARITY(unit_mask);
312 	input_control = GET_INPUT_CONTROL(unit_mask);
313 	signal_bit = (event % 100);
314 
315 	p = &(pm_signal[ctr]);
316 
317 	p->signal_group = event / 100;
318 	p->bus_word = bus_word;
319 	p->sub_unit = GET_SUB_UNIT(unit_mask);
320 
321 	pm_regs.pm07_cntrl[ctr] = 0;
322 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
323 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
324 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
325 
326 	/*
327 	 * Some of the islands signal selection is based on 64 bit words.
328 	 * The debug bus words are 32 bits, the input words to the performance
329 	 * counters are defined as 32 bits.  Need to convert the 64 bit island
330 	 * specification to the appropriate 32 input bit and bus word for the
331 	 * performance counter event selection.	 See the CELL Performance
332 	 * monitoring signals manual and the Perf cntr hardware descriptions
333 	 * for the details.
334 	 */
335 	if (input_control == 0) {
336 		if (signal_bit > 31) {
337 			signal_bit -= 32;
338 			if (bus_word == 0x3)
339 				bus_word = 0x2;
340 			else if (bus_word == 0xc)
341 				bus_word = 0x8;
342 		}
343 
344 		if ((bus_type == 0) && p->signal_group >= 60)
345 			bus_type = 2;
346 		if ((bus_type == 1) && p->signal_group >= 50)
347 			bus_type = 0;
348 
349 		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
350 	} else {
351 		pm_regs.pm07_cntrl[ctr] = 0;
352 		p->bit = signal_bit;
353 	}
354 
355 	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
356 		if (bus_word & (1 << i)) {
357 			pm_regs.debug_bus_control |=
358 				(bus_type << (30 - (2 * i)));
359 
360 			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
361 				if (input_bus[j] == 0xff) {
362 					input_bus[j] = i;
363 					pm_regs.group_control |=
364 						(i << (30 - (2 * j)));
365 
366 					break;
367 				}
368 			}
369 		}
370 	}
371 out:
372 	;
373 }
374 
write_pm_cntrl(int cpu)375 static void write_pm_cntrl(int cpu)
376 {
377 	/*
378 	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
379 	 * pmregs.pm_cntrl is a global
380 	 */
381 
382 	u32 val = 0;
383 	if (pm_regs.pm_cntrl.enable == 1)
384 		val |= CBE_PM_ENABLE_PERF_MON;
385 
386 	if (pm_regs.pm_cntrl.stop_at_max == 1)
387 		val |= CBE_PM_STOP_AT_MAX;
388 
389 	if (pm_regs.pm_cntrl.trace_mode != 0)
390 		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
391 
392 	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
393 		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
394 	if (pm_regs.pm_cntrl.freeze == 1)
395 		val |= CBE_PM_FREEZE_ALL_CTRS;
396 
397 	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
398 
399 	/*
400 	 * Routine set_count_mode must be called previously to set
401 	 * the count mode based on the user selection of user and kernel.
402 	 */
403 	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
404 	cbe_write_pm(cpu, pm_control, val);
405 }
406 
407 static inline void
set_count_mode(u32 kernel,u32 user)408 set_count_mode(u32 kernel, u32 user)
409 {
410 	/*
411 	 * The user must specify user and kernel if they want them. If
412 	 *  neither is specified, OProfile will count in hypervisor mode.
413 	 *  pm_regs.pm_cntrl is a global
414 	 */
415 	if (kernel) {
416 		if (user)
417 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
418 		else
419 			pm_regs.pm_cntrl.count_mode =
420 				CBE_COUNT_SUPERVISOR_MODE;
421 	} else {
422 		if (user)
423 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
424 		else
425 			pm_regs.pm_cntrl.count_mode =
426 				CBE_COUNT_HYPERVISOR_MODE;
427 	}
428 }
429 
enable_ctr(u32 cpu,u32 ctr,u32 * pm07_cntrl)430 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
431 {
432 
433 	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
434 	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
435 }
436 
437 /*
438  * Oprofile is expected to collect data on all CPUs simultaneously.
439  * However, there is one set of performance counters per node.	There are
440  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
441  * multiplex in time the performance counter collection on the two virtual
442  * CPUs.  The multiplexing of the performance counters is done by this
443  * virtual counter routine.
444  *
445  * The pmc_values used below is defined as 'per-cpu' but its use is
446  * more akin to 'per-node'.  We need to store two sets of counter
447  * values per node -- one for the previous run and one for the next.
448  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
449  * pair of per-cpu arrays is used for storing the previous and next
450  * pmc values for a given node.
451  * NOTE: We use the per-cpu variable to improve cache performance.
452  *
453  * This routine will alternate loading the virtual counters for
454  * virtual CPUs
455  */
cell_virtual_cntr(unsigned long data)456 static void cell_virtual_cntr(unsigned long data)
457 {
458 	int i, prev_hdw_thread, next_hdw_thread;
459 	u32 cpu;
460 	unsigned long flags;
461 
462 	/*
463 	 * Make sure that the interrupt_hander and the virt counter are
464 	 * not both playing with the counters on the same node.
465 	 */
466 
467 	spin_lock_irqsave(&cntr_lock, flags);
468 
469 	prev_hdw_thread = hdw_thread;
470 
471 	/* switch the cpu handling the interrupts */
472 	hdw_thread = 1 ^ hdw_thread;
473 	next_hdw_thread = hdw_thread;
474 
475 	pm_regs.group_control = 0;
476 	pm_regs.debug_bus_control = 0;
477 
478 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
479 		input_bus[i] = 0xff;
480 
481 	/*
482 	 * There are some per thread events.  Must do the
483 	 * set event, for the thread that is being started
484 	 */
485 	for (i = 0; i < num_counters; i++)
486 		set_pm_event(i,
487 			pmc_cntrl[next_hdw_thread][i].evnts,
488 			pmc_cntrl[next_hdw_thread][i].masks);
489 
490 	/*
491 	 * The following is done only once per each node, but
492 	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
493 	 */
494 	for_each_online_cpu(cpu) {
495 		if (cbe_get_hw_thread_id(cpu))
496 			continue;
497 
498 		/*
499 		 * stop counters, save counter values, restore counts
500 		 * for previous thread
501 		 */
502 		cbe_disable_pm(cpu);
503 		cbe_disable_pm_interrupts(cpu);
504 		for (i = 0; i < num_counters; i++) {
505 			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
506 				= cbe_read_ctr(cpu, i);
507 
508 			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
509 			    == 0xFFFFFFFF)
510 				/* If the cntr value is 0xffffffff, we must
511 				 * reset that to 0xfffffff0 when the current
512 				 * thread is restarted.	 This will generate a
513 				 * new interrupt and make sure that we never
514 				 * restore the counters to the max value.  If
515 				 * the counters were restored to the max value,
516 				 * they do not increment and no interrupts are
517 				 * generated.  Hence no more samples will be
518 				 * collected on that cpu.
519 				 */
520 				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
521 			else
522 				cbe_write_ctr(cpu, i,
523 					      per_cpu(pmc_values,
524 						      cpu +
525 						      next_hdw_thread)[i]);
526 		}
527 
528 		/*
529 		 * Switch to the other thread. Change the interrupt
530 		 * and control regs to be scheduled on the CPU
531 		 * corresponding to the thread to execute.
532 		 */
533 		for (i = 0; i < num_counters; i++) {
534 			if (pmc_cntrl[next_hdw_thread][i].enabled) {
535 				/*
536 				 * There are some per thread events.
537 				 * Must do the set event, enable_cntr
538 				 * for each cpu.
539 				 */
540 				enable_ctr(cpu, i,
541 					   pm_regs.pm07_cntrl);
542 			} else {
543 				cbe_write_pm07_control(cpu, i, 0);
544 			}
545 		}
546 
547 		/* Enable interrupts on the CPU thread that is starting */
548 		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
549 					 virt_cntr_inter_mask);
550 		cbe_enable_pm(cpu);
551 	}
552 
553 	spin_unlock_irqrestore(&cntr_lock, flags);
554 
555 	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
556 }
557 
start_virt_cntrs(void)558 static void start_virt_cntrs(void)
559 {
560 	init_timer(&timer_virt_cntr);
561 	timer_virt_cntr.function = cell_virtual_cntr;
562 	timer_virt_cntr.data = 0UL;
563 	timer_virt_cntr.expires = jiffies + HZ / 10;
564 	add_timer(&timer_virt_cntr);
565 }
566 
cell_reg_setup_spu_cycles(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)567 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
568 			struct op_system_config *sys, int num_ctrs)
569 {
570 	spu_cycle_reset = ctr[0].count;
571 
572 	/*
573 	 * Each node will need to make the rtas call to start
574 	 * and stop SPU profiling.  Get the token once and store it.
575 	 */
576 	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
577 
578 	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
579 		printk(KERN_ERR
580 		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
581 		       __func__);
582 		return -EIO;
583 	}
584 	return 0;
585 }
586 
587 /* Unfortunately, the hardware will only support event profiling
588  * on one SPU per node at a time.  Therefore, we must time slice
589  * the profiling across all SPUs in the node.  Note, we do this
590  * in parallel for each node.  The following routine is called
591  * periodically based on kernel timer to switch which SPU is
592  * being monitored in a round robbin fashion.
593  */
spu_evnt_swap(unsigned long data)594 static void spu_evnt_swap(unsigned long data)
595 {
596 	int node;
597 	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
598 	unsigned long flags;
599 	int cpu;
600 	int ret;
601 	u32 interrupt_mask;
602 
603 
604 	/* enable interrupts on cntr 0 */
605 	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
606 
607 	hdw_thread = 0;
608 
609 	/* Make sure spu event interrupt handler and spu event swap
610 	 * don't access the counters simultaneously.
611 	 */
612 	spin_lock_irqsave(&cntr_lock, flags);
613 
614 	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
615 
616 	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
617 		spu_evnt_phys_spu_indx = 0;
618 
619 	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
620 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
621 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
622 
623 	/* switch the SPU being profiled on each node */
624 	for_each_online_cpu(cpu) {
625 		if (cbe_get_hw_thread_id(cpu))
626 			continue;
627 
628 		node = cbe_cpu_to_node(cpu);
629 		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
630 			+ cur_spu_evnt_phys_spu_indx;
631 		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
632 			+ spu_evnt_phys_spu_indx;
633 
634 		/*
635 		 * stop counters, save counter values, restore counts
636 		 * for previous physical SPU
637 		 */
638 		cbe_disable_pm(cpu);
639 		cbe_disable_pm_interrupts(cpu);
640 
641 		spu_pm_cnt[cur_phys_spu]
642 			= cbe_read_ctr(cpu, 0);
643 
644 		/* restore previous count for the next spu to sample */
645 		/* NOTE, hardware issue, counter will not start if the
646 		 * counter value is at max (0xFFFFFFFF).
647 		 */
648 		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
649 			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
650 		 else
651 			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
652 
653 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
654 
655 		/* setup the debug bus measure the one event and
656 		 * the two events to route the next SPU's PC on
657 		 * the debug bus
658 		 */
659 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
660 		if (ret)
661 			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
662 			       "SPU event swap\n", __func__);
663 
664 		/* clear the trace buffer, don't want to take PC for
665 		 * previous SPU*/
666 		cbe_write_pm(cpu, trace_address, 0);
667 
668 		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
669 
670 		/* Enable interrupts on the CPU thread that is starting */
671 		cbe_enable_pm_interrupts(cpu, hdw_thread,
672 					 interrupt_mask);
673 		cbe_enable_pm(cpu);
674 	}
675 
676 	spin_unlock_irqrestore(&cntr_lock, flags);
677 
678 	/* swap approximately every 0.1 seconds */
679 	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
680 }
681 
start_spu_event_swap(void)682 static void start_spu_event_swap(void)
683 {
684 	init_timer(&timer_spu_event_swap);
685 	timer_spu_event_swap.function = spu_evnt_swap;
686 	timer_spu_event_swap.data = 0UL;
687 	timer_spu_event_swap.expires = jiffies + HZ / 25;
688 	add_timer(&timer_spu_event_swap);
689 }
690 
cell_reg_setup_spu_events(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)691 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
692 			struct op_system_config *sys, int num_ctrs)
693 {
694 	int i;
695 
696 	/* routine is called once for all nodes */
697 
698 	spu_evnt_phys_spu_indx = 0;
699 	/*
700 	 * For all events except PPU CYCLEs, each node will need to make
701 	 * the rtas cbe-perftools call to setup and reset the debug bus.
702 	 * Make the token lookup call once and store it in the global
703 	 * variable pm_rtas_token.
704 	 */
705 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
706 
707 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
708 		printk(KERN_ERR
709 		       "%s: rtas token ibm,cbe-perftools unknown\n",
710 		       __func__);
711 		return -EIO;
712 	}
713 
714 	/* setup the pm_control register settings,
715 	 * settings will be written per node by the
716 	 * cell_cpu_setup() function.
717 	 */
718 	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
719 
720 	/* Use the occurrence trace mode to have SPU PC saved
721 	 * to the trace buffer.  Occurrence data in trace buffer
722 	 * is not used.  Bit 2 must be set to store SPU addresses.
723 	 */
724 	pm_regs.pm_cntrl.trace_mode = 2;
725 
726 	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
727 						   event 2 & 3 */
728 
729 	/* setup the debug bus event array with the SPU PC routing events.
730 	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
731 	*/
732 	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
733 	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
734 	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
735 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
736 
737 	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
738 	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
739 	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
740 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
741 
742 	/* Set the user selected spu event to profile on,
743 	 * note, only one SPU profiling event is supported
744 	 */
745 	num_counters = 1;  /* Only support one SPU event at a time */
746 	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
747 
748 	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
749 
750 	/* global, used by cell_cpu_setup */
751 	ctr_enabled |= 1;
752 
753 	/* Initialize the count for each SPU to the reset value */
754 	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
755 		spu_pm_cnt[i] = reset_value[0];
756 
757 	return 0;
758 }
759 
cell_reg_setup_ppu(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)760 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
761 			struct op_system_config *sys, int num_ctrs)
762 {
763 	/* routine is called once for all nodes */
764 	int i, j, cpu;
765 
766 	num_counters = num_ctrs;
767 
768 	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
769 		printk(KERN_ERR
770 		       "%s: Oprofile, number of specified events " \
771 		       "exceeds number of physical counters\n",
772 		       __func__);
773 		return -EIO;
774 	}
775 
776 	set_count_mode(sys->enable_kernel, sys->enable_user);
777 
778 	/* Setup the thread 0 events */
779 	for (i = 0; i < num_ctrs; ++i) {
780 
781 		pmc_cntrl[0][i].evnts = ctr[i].event;
782 		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
783 		pmc_cntrl[0][i].enabled = ctr[i].enabled;
784 		pmc_cntrl[0][i].vcntr = i;
785 
786 		for_each_possible_cpu(j)
787 			per_cpu(pmc_values, j)[i] = 0;
788 	}
789 
790 	/*
791 	 * Setup the thread 1 events, map the thread 0 event to the
792 	 * equivalent thread 1 event.
793 	 */
794 	for (i = 0; i < num_ctrs; ++i) {
795 		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
796 			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
797 		else if (ctr[i].event == 2203)
798 			pmc_cntrl[1][i].evnts = ctr[i].event;
799 		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
800 			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
801 		else
802 			pmc_cntrl[1][i].evnts = ctr[i].event;
803 
804 		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
805 		pmc_cntrl[1][i].enabled = ctr[i].enabled;
806 		pmc_cntrl[1][i].vcntr = i;
807 	}
808 
809 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
810 		input_bus[i] = 0xff;
811 
812 	/*
813 	 * Our counters count up, and "count" refers to
814 	 * how much before the next interrupt, and we interrupt
815 	 * on overflow.	 So we calculate the starting value
816 	 * which will give us "count" until overflow.
817 	 * Then we set the events on the enabled counters.
818 	 */
819 	for (i = 0; i < num_counters; ++i) {
820 		/* start with virtual counter set 0 */
821 		if (pmc_cntrl[0][i].enabled) {
822 			/* Using 32bit counters, reset max - count */
823 			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
824 			set_pm_event(i,
825 				     pmc_cntrl[0][i].evnts,
826 				     pmc_cntrl[0][i].masks);
827 
828 			/* global, used by cell_cpu_setup */
829 			ctr_enabled |= (1 << i);
830 		}
831 	}
832 
833 	/* initialize the previous counts for the virtual cntrs */
834 	for_each_online_cpu(cpu)
835 		for (i = 0; i < num_counters; ++i) {
836 			per_cpu(pmc_values, cpu)[i] = reset_value[i];
837 		}
838 
839 	return 0;
840 }
841 
842 
843 /* This function is called once for all cpus combined */
cell_reg_setup(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)844 static int cell_reg_setup(struct op_counter_config *ctr,
845 			struct op_system_config *sys, int num_ctrs)
846 {
847 	int ret=0;
848 	spu_cycle_reset = 0;
849 
850 	/* initialize the spu_arr_trace value, will be reset if
851 	 * doing spu event profiling.
852 	 */
853 	pm_regs.group_control = 0;
854 	pm_regs.debug_bus_control = 0;
855 	pm_regs.pm_cntrl.stop_at_max = 1;
856 	pm_regs.pm_cntrl.trace_mode = 0;
857 	pm_regs.pm_cntrl.freeze = 1;
858 	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
859 	pm_regs.pm_cntrl.spu_addr_trace = 0;
860 
861 	/*
862 	 * For all events except PPU CYCLEs, each node will need to make
863 	 * the rtas cbe-perftools call to setup and reset the debug bus.
864 	 * Make the token lookup call once and store it in the global
865 	 * variable pm_rtas_token.
866 	 */
867 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
868 
869 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
870 		printk(KERN_ERR
871 		       "%s: rtas token ibm,cbe-perftools unknown\n",
872 		       __func__);
873 		return -EIO;
874 	}
875 
876 	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
877 		profiling_mode = SPU_PROFILING_CYCLES;
878 		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
879 	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
880 		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
881 		profiling_mode = SPU_PROFILING_EVENTS;
882 		spu_cycle_reset = ctr[0].count;
883 
884 		/* for SPU event profiling, need to setup the
885 		 * pm_signal array with the events to route the
886 		 * SPU PC before making the FW call.  Note, only
887 		 * one SPU event for profiling can be specified
888 		 * at a time.
889 		 */
890 		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
891 	} else {
892 		profiling_mode = PPU_PROFILING;
893 		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
894 	}
895 
896 	return ret;
897 }
898 
899 
900 
901 /* This function is called once for each cpu */
cell_cpu_setup(struct op_counter_config * cntr)902 static int cell_cpu_setup(struct op_counter_config *cntr)
903 {
904 	u32 cpu = smp_processor_id();
905 	u32 num_enabled = 0;
906 	int i;
907 	int ret;
908 
909 	/* Cycle based SPU profiling does not use the performance
910 	 * counters.  The trace array is configured to collect
911 	 * the data.
912 	 */
913 	if (profiling_mode == SPU_PROFILING_CYCLES)
914 		return 0;
915 
916 	/* There is one performance monitor per processor chip (i.e. node),
917 	 * so we only need to perform this function once per node.
918 	 */
919 	if (cbe_get_hw_thread_id(cpu))
920 		return 0;
921 
922 	/* Stop all counters */
923 	cbe_disable_pm(cpu);
924 	cbe_disable_pm_interrupts(cpu);
925 
926 	cbe_write_pm(cpu, pm_start_stop, 0);
927 	cbe_write_pm(cpu, group_control, pm_regs.group_control);
928 	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
929 	write_pm_cntrl(cpu);
930 
931 	for (i = 0; i < num_counters; ++i) {
932 		if (ctr_enabled & (1 << i)) {
933 			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
934 			num_enabled++;
935 		}
936 	}
937 
938 	/*
939 	 * The pm_rtas_activate_signals will return -EIO if the FW
940 	 * call failed.
941 	 */
942 	if (profiling_mode == SPU_PROFILING_EVENTS) {
943 		/* For SPU event profiling also need to setup the
944 		 * pm interval timer
945 		 */
946 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
947 					       num_enabled+2);
948 		/* store PC from debug bus to Trace buffer as often
949 		 * as possible (every 10 cycles)
950 		 */
951 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
952 		return ret;
953 	} else
954 		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
955 						num_enabled);
956 }
957 
958 #define ENTRIES	 303
959 #define MAXLFSR	 0xFFFFFF
960 
961 /* precomputed table of 24 bit LFSR values */
962 static int initial_lfsr[] = {
963  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
964  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
965  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
966  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
967  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
968  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
969  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
970  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
971  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
972  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
973  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
974  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
975  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
976  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
977  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
978  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
979  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
980  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
981  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
982  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
983  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
984  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
985  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
986  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
987  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
988  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
989  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
990  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
991  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
992  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
993  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
994  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
995  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
996  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
997  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
998  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
999  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
1000  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1001 };
1002 
1003 /*
1004  * The hardware uses an LFSR counting sequence to determine when to capture
1005  * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
1006  * where each number occurs once in the sequence but the sequence is not in
1007  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1008  * the last value in the sequence.  Hence the user specified value N
1009  * corresponds to the LFSR number that is N from the end of the sequence.
1010  *
1011  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1012  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1013  * values is adjusted in each range so the error between the user specifed
1014  * number (N) of events between samples and the actual number of events based
1015  * on the precomputed value will be les then about 6.2%.  Note, if the user
1016  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1017  * This is to prevent the loss of samples because the trace buffer is full.
1018  *
1019  *	   User specified N		     Step between	   Index in
1020  *					 precomputed values	 precomputed
1021  *								    table
1022  * 0		    to	2^16-1			----		      0
1023  * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
1024  * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
1025  * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
1026  *
1027  *
1028  * For example, the LFSR values in the second range are computed for 2^16,
1029  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1030  * 1, 2,..., 127, 128.
1031  *
1032  * The 24 bit LFSR value for the nth number in the sequence can be
1033  * calculated using the following code:
1034  *
1035  * #define size 24
1036  * int calculate_lfsr(int n)
1037  * {
1038  *	int i;
1039  *	unsigned int newlfsr0;
1040  *	unsigned int lfsr = 0xFFFFFF;
1041  *	unsigned int howmany = n;
1042  *
1043  *	for (i = 2; i < howmany + 2; i++) {
1044  *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1045  *		((lfsr >> (size - 1 - 1)) & 1) ^
1046  *		(((lfsr >> (size - 1 - 6)) & 1) ^
1047  *		((lfsr >> (size - 1 - 23)) & 1)));
1048  *
1049  *		lfsr >>= 1;
1050  *		lfsr = lfsr | (newlfsr0 << (size - 1));
1051  *	}
1052  *	return lfsr;
1053  * }
1054  */
1055 
1056 #define V2_16  (0x1 << 16)
1057 #define V2_19  (0x1 << 19)
1058 #define V2_22  (0x1 << 22)
1059 
calculate_lfsr(int n)1060 static int calculate_lfsr(int n)
1061 {
1062 	/*
1063 	 * The ranges and steps are in powers of 2 so the calculations
1064 	 * can be done using shifts rather then divide.
1065 	 */
1066 	int index;
1067 
1068 	if ((n >> 16) == 0)
1069 		index = 0;
1070 	else if (((n - V2_16) >> 19) == 0)
1071 		index = ((n - V2_16) >> 12) + 1;
1072 	else if (((n - V2_16 - V2_19) >> 22) == 0)
1073 		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1074 	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1075 		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1076 	else
1077 		index = ENTRIES-1;
1078 
1079 	/* make sure index is valid */
1080 	if ((index > ENTRIES) || (index < 0))
1081 		index = ENTRIES-1;
1082 
1083 	return initial_lfsr[index];
1084 }
1085 
pm_rtas_activate_spu_profiling(u32 node)1086 static int pm_rtas_activate_spu_profiling(u32 node)
1087 {
1088 	int ret, i;
1089 	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1090 
1091 	/*
1092 	 * Set up the rtas call to configure the debug bus to
1093 	 * route the SPU PCs.  Setup the pm_signal for each SPU
1094 	 */
1095 	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1096 		pm_signal_local[i].cpu = node;
1097 		pm_signal_local[i].signal_group = 41;
1098 		/* spu i on word (i/2) */
1099 		pm_signal_local[i].bus_word = 1 << i / 2;
1100 		/* spu i */
1101 		pm_signal_local[i].sub_unit = i;
1102 		pm_signal_local[i].bit = 63;
1103 	}
1104 
1105 	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1106 				     PASSTHRU_ENABLE, pm_signal_local,
1107 				     (ARRAY_SIZE(pm_signal_local)
1108 				      * sizeof(struct pm_signal)));
1109 
1110 	if (unlikely(ret)) {
1111 		printk(KERN_WARNING "%s: rtas returned: %d\n",
1112 		       __func__, ret);
1113 		return -EIO;
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 #ifdef CONFIG_CPU_FREQ
1120 static int
oprof_cpufreq_notify(struct notifier_block * nb,unsigned long val,void * data)1121 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1122 {
1123 	int ret = 0;
1124 	struct cpufreq_freqs *frq = data;
1125 	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1126 	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1127 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1128 		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1129 	return ret;
1130 }
1131 
1132 static struct notifier_block cpu_freq_notifier_block = {
1133 	.notifier_call	= oprof_cpufreq_notify
1134 };
1135 #endif
1136 
1137 /*
1138  * Note the generic OProfile stop calls do not support returning
1139  * an error on stop.  Hence, will not return an error if the FW
1140  * calls fail on stop.	Failure to reset the debug bus is not an issue.
1141  * Failure to disable the SPU profiling is not an issue.  The FW calls
1142  * to enable the performance counters and debug bus will work even if
1143  * the hardware was not cleanly reset.
1144  */
cell_global_stop_spu_cycles(void)1145 static void cell_global_stop_spu_cycles(void)
1146 {
1147 	int subfunc, rtn_value;
1148 	unsigned int lfsr_value;
1149 	int cpu;
1150 
1151 	oprofile_running = 0;
1152 	smp_wmb();
1153 
1154 #ifdef CONFIG_CPU_FREQ
1155 	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1156 				    CPUFREQ_TRANSITION_NOTIFIER);
1157 #endif
1158 
1159 	for_each_online_cpu(cpu) {
1160 		if (cbe_get_hw_thread_id(cpu))
1161 			continue;
1162 
1163 		subfunc = 3;	/*
1164 				 * 2 - activate SPU tracing,
1165 				 * 3 - deactivate
1166 				 */
1167 		lfsr_value = 0x8f100000;
1168 
1169 		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1170 				      subfunc, cbe_cpu_to_node(cpu),
1171 				      lfsr_value);
1172 
1173 		if (unlikely(rtn_value != 0)) {
1174 			printk(KERN_ERR
1175 			       "%s: rtas call ibm,cbe-spu-perftools " \
1176 			       "failed, return = %d\n",
1177 			       __func__, rtn_value);
1178 		}
1179 
1180 		/* Deactivate the signals */
1181 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1182 	}
1183 
1184 	stop_spu_profiling_cycles();
1185 }
1186 
cell_global_stop_spu_events(void)1187 static void cell_global_stop_spu_events(void)
1188 {
1189 	int cpu;
1190 	oprofile_running = 0;
1191 
1192 	stop_spu_profiling_events();
1193 	smp_wmb();
1194 
1195 	for_each_online_cpu(cpu) {
1196 		if (cbe_get_hw_thread_id(cpu))
1197 			continue;
1198 
1199 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1200 		/* Stop the counters */
1201 		cbe_disable_pm(cpu);
1202 		cbe_write_pm07_control(cpu, 0, 0);
1203 
1204 		/* Deactivate the signals */
1205 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1206 
1207 		/* Deactivate interrupts */
1208 		cbe_disable_pm_interrupts(cpu);
1209 	}
1210 	del_timer_sync(&timer_spu_event_swap);
1211 }
1212 
cell_global_stop_ppu(void)1213 static void cell_global_stop_ppu(void)
1214 {
1215 	int cpu;
1216 
1217 	/*
1218 	 * This routine will be called once for the system.
1219 	 * There is one performance monitor per node, so we
1220 	 * only need to perform this function once per node.
1221 	 */
1222 	del_timer_sync(&timer_virt_cntr);
1223 	oprofile_running = 0;
1224 	smp_wmb();
1225 
1226 	for_each_online_cpu(cpu) {
1227 		if (cbe_get_hw_thread_id(cpu))
1228 			continue;
1229 
1230 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1231 		/* Stop the counters */
1232 		cbe_disable_pm(cpu);
1233 
1234 		/* Deactivate the signals */
1235 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1236 
1237 		/* Deactivate interrupts */
1238 		cbe_disable_pm_interrupts(cpu);
1239 	}
1240 }
1241 
cell_global_stop(void)1242 static void cell_global_stop(void)
1243 {
1244 	if (profiling_mode == PPU_PROFILING)
1245 		cell_global_stop_ppu();
1246 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1247 		cell_global_stop_spu_events();
1248 	else
1249 		cell_global_stop_spu_cycles();
1250 }
1251 
cell_global_start_spu_cycles(struct op_counter_config * ctr)1252 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1253 {
1254 	int subfunc;
1255 	unsigned int lfsr_value;
1256 	int cpu;
1257 	int ret;
1258 	int rtas_error;
1259 	unsigned int cpu_khzfreq = 0;
1260 
1261 	/* The SPU profiling uses time-based profiling based on
1262 	 * cpu frequency, so if configured with the CPU_FREQ
1263 	 * option, we should detect frequency changes and react
1264 	 * accordingly.
1265 	 */
1266 #ifdef CONFIG_CPU_FREQ
1267 	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1268 					CPUFREQ_TRANSITION_NOTIFIER);
1269 	if (ret < 0)
1270 		/* this is not a fatal error */
1271 		printk(KERN_ERR "CPU freq change registration failed: %d\n",
1272 		       ret);
1273 
1274 	else
1275 		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1276 #endif
1277 
1278 	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1279 
1280 	for_each_online_cpu(cpu) {
1281 		if (cbe_get_hw_thread_id(cpu))
1282 			continue;
1283 
1284 		/*
1285 		 * Setup SPU cycle-based profiling.
1286 		 * Set perf_mon_control bit 0 to a zero before
1287 		 * enabling spu collection hardware.
1288 		 */
1289 		cbe_write_pm(cpu, pm_control, 0);
1290 
1291 		if (spu_cycle_reset > MAX_SPU_COUNT)
1292 			/* use largest possible value */
1293 			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1294 		else
1295 			lfsr_value = calculate_lfsr(spu_cycle_reset);
1296 
1297 		/* must use a non zero value. Zero disables data collection. */
1298 		if (lfsr_value == 0)
1299 			lfsr_value = calculate_lfsr(1);
1300 
1301 		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1302 						* register location
1303 						*/
1304 
1305 		/* debug bus setup */
1306 		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1307 
1308 		if (unlikely(ret)) {
1309 			rtas_error = ret;
1310 			goto out;
1311 		}
1312 
1313 
1314 		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
1315 
1316 		/* start profiling */
1317 		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1318 				cbe_cpu_to_node(cpu), lfsr_value);
1319 
1320 		if (unlikely(ret != 0)) {
1321 			printk(KERN_ERR
1322 			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
1323 			       "return = %d\n", __func__, ret);
1324 			rtas_error = -EIO;
1325 			goto out;
1326 		}
1327 	}
1328 
1329 	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1330 	if (rtas_error)
1331 		goto out_stop;
1332 
1333 	oprofile_running = 1;
1334 	return 0;
1335 
1336 out_stop:
1337 	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
1338 out:
1339 	return rtas_error;
1340 }
1341 
cell_global_start_spu_events(struct op_counter_config * ctr)1342 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1343 {
1344 	int cpu;
1345 	u32 interrupt_mask = 0;
1346 	int rtn = 0;
1347 
1348 	hdw_thread = 0;
1349 
1350 	/* spu event profiling, uses the performance counters to generate
1351 	 * an interrupt.  The hardware is setup to store the SPU program
1352 	 * counter into the trace array.  The occurrence mode is used to
1353 	 * enable storing data to the trace buffer.  The bits are set
1354 	 * to send/store the SPU address in the trace buffer.  The debug
1355 	 * bus must be setup to route the SPU program counter onto the
1356 	 * debug bus.  The occurrence data in the trace buffer is not used.
1357 	 */
1358 
1359 	/* This routine gets called once for the system.
1360 	 * There is one performance monitor per node, so we
1361 	 * only need to perform this function once per node.
1362 	 */
1363 
1364 	for_each_online_cpu(cpu) {
1365 		if (cbe_get_hw_thread_id(cpu))
1366 			continue;
1367 
1368 		/*
1369 		 * Setup SPU event-based profiling.
1370 		 * Set perf_mon_control bit 0 to a zero before
1371 		 * enabling spu collection hardware.
1372 		 *
1373 		 * Only support one SPU event on one SPU per node.
1374 		 */
1375 		if (ctr_enabled & 1) {
1376 			cbe_write_ctr(cpu, 0, reset_value[0]);
1377 			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1378 			interrupt_mask |=
1379 				CBE_PM_CTR_OVERFLOW_INTR(0);
1380 		} else {
1381 			/* Disable counter */
1382 			cbe_write_pm07_control(cpu, 0, 0);
1383 		}
1384 
1385 		cbe_get_and_clear_pm_interrupts(cpu);
1386 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1387 		cbe_enable_pm(cpu);
1388 
1389 		/* clear the trace buffer */
1390 		cbe_write_pm(cpu, trace_address, 0);
1391 	}
1392 
1393 	/* Start the timer to time slice collecting the event profile
1394 	 * on each of the SPUs.  Note, can collect profile on one SPU
1395 	 * per node at a time.
1396 	 */
1397 	start_spu_event_swap();
1398 	start_spu_profiling_events();
1399 	oprofile_running = 1;
1400 	smp_wmb();
1401 
1402 	return rtn;
1403 }
1404 
cell_global_start_ppu(struct op_counter_config * ctr)1405 static int cell_global_start_ppu(struct op_counter_config *ctr)
1406 {
1407 	u32 cpu, i;
1408 	u32 interrupt_mask = 0;
1409 
1410 	/* This routine gets called once for the system.
1411 	 * There is one performance monitor per node, so we
1412 	 * only need to perform this function once per node.
1413 	 */
1414 	for_each_online_cpu(cpu) {
1415 		if (cbe_get_hw_thread_id(cpu))
1416 			continue;
1417 
1418 		interrupt_mask = 0;
1419 
1420 		for (i = 0; i < num_counters; ++i) {
1421 			if (ctr_enabled & (1 << i)) {
1422 				cbe_write_ctr(cpu, i, reset_value[i]);
1423 				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1424 				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1425 			} else {
1426 				/* Disable counter */
1427 				cbe_write_pm07_control(cpu, i, 0);
1428 			}
1429 		}
1430 
1431 		cbe_get_and_clear_pm_interrupts(cpu);
1432 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1433 		cbe_enable_pm(cpu);
1434 	}
1435 
1436 	virt_cntr_inter_mask = interrupt_mask;
1437 	oprofile_running = 1;
1438 	smp_wmb();
1439 
1440 	/*
1441 	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1442 	 * executed which manipulates the PMU.	We start the "virtual counter"
1443 	 * here so that we do not need to synchronize access to the PMU in
1444 	 * the above for-loop.
1445 	 */
1446 	start_virt_cntrs();
1447 
1448 	return 0;
1449 }
1450 
cell_global_start(struct op_counter_config * ctr)1451 static int cell_global_start(struct op_counter_config *ctr)
1452 {
1453 	if (profiling_mode == SPU_PROFILING_CYCLES)
1454 		return cell_global_start_spu_cycles(ctr);
1455 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1456 		return cell_global_start_spu_events(ctr);
1457 	else
1458 		return cell_global_start_ppu(ctr);
1459 }
1460 
1461 
1462 /* The SPU interrupt handler
1463  *
1464  * SPU event profiling works as follows:
1465  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1466  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1467  * pm_signal[2] contain the necessary events to route the SPU program
1468  * counter for the selected SPU onto the debug bus using words 2 and 3.
1469  * The pm_interval register is setup to write the SPU PC value into the
1470  * trace buffer at the maximum rate possible.  The trace buffer is configured
1471  * to store the PCs, wrapping when it is full.  The performance counter is
1472  * intialized to the max hardware count minus the number of events, N, between
1473  * samples.  Once the N events have occured, a HW counter overflow occurs
1474  * causing the generation of a HW counter interrupt which also stops the
1475  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1476  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1477  * we have to read from the beginning of the trace buffer to get to the
1478  * last value written.  We just hope the PPU has nothing better to do then
1479  * service this interrupt. The PC for the specific SPU being profiled is
1480  * extracted from the trace buffer processed and stored.  The trace buffer
1481  * is cleared, interrupts are cleared, the counter is reset to max - N.
1482  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1483  * to switch to the next physical SPU in the node to profile in round robbin
1484  * order.  This way data is collected for all SPUs on the node. It does mean
1485  * that we need to use a relatively small value of N to ensure enough samples
1486  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1487  * It may also be necessary to use a longer sample collection period.
1488  */
cell_handle_interrupt_spu(struct pt_regs * regs,struct op_counter_config * ctr)1489 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1490 				      struct op_counter_config *ctr)
1491 {
1492 	u32 cpu, cpu_tmp;
1493 	u64 trace_entry;
1494 	u32 interrupt_mask;
1495 	u64 trace_buffer[2];
1496 	u64 last_trace_buffer;
1497 	u32 sample;
1498 	u32 trace_addr;
1499 	unsigned long sample_array_lock_flags;
1500 	int spu_num;
1501 	unsigned long flags;
1502 
1503 	/* Make sure spu event interrupt handler and spu event swap
1504 	 * don't access the counters simultaneously.
1505 	 */
1506 	cpu = smp_processor_id();
1507 	spin_lock_irqsave(&cntr_lock, flags);
1508 
1509 	cpu_tmp = cpu;
1510 	cbe_disable_pm(cpu);
1511 
1512 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1513 
1514 	sample = 0xABCDEF;
1515 	trace_entry = 0xfedcba;
1516 	last_trace_buffer = 0xdeadbeaf;
1517 
1518 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1519 		/* disable writes to trace buff */
1520 		cbe_write_pm(cpu, pm_interval, 0);
1521 
1522 		/* only have one perf cntr being used, cntr 0 */
1523 		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1524 		    && ctr[0].enabled)
1525 			/* The SPU PC values will be read
1526 			 * from the trace buffer, reset counter
1527 			 */
1528 
1529 			cbe_write_ctr(cpu, 0, reset_value[0]);
1530 
1531 		trace_addr = cbe_read_pm(cpu, trace_address);
1532 
1533 		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1534 			/* There is data in the trace buffer to process
1535 			 * Read the buffer until you get to the last
1536 			 * entry.  This is the value we want.
1537 			 */
1538 
1539 			cbe_read_trace_buffer(cpu, trace_buffer);
1540 			trace_addr = cbe_read_pm(cpu, trace_address);
1541 		}
1542 
1543 		/* SPU Address 16 bit count format for 128 bit
1544 		 * HW trace buffer is used for the SPU PC storage
1545 		 *    HDR bits          0:15
1546 		 *    SPU Addr 0 bits   16:31
1547 		 *    SPU Addr 1 bits   32:47
1548 		 *    unused bits       48:127
1549 		 *
1550 		 * HDR: bit4 = 1 SPU Address 0 valid
1551 		 * HDR: bit5 = 1 SPU Address 1 valid
1552 		 *  - unfortunately, the valid bits don't seem to work
1553 		 *
1554 		 * Note trace_buffer[0] holds bits 0:63 of the HW
1555 		 * trace buffer, trace_buffer[1] holds bits 64:127
1556 		 */
1557 
1558 		trace_entry = trace_buffer[0]
1559 			& 0x00000000FFFF0000;
1560 
1561 		/* only top 16 of the 18 bit SPU PC address
1562 		 * is stored in trace buffer, hence shift right
1563 		 * by 16 -2 bits */
1564 		sample = trace_entry >> 14;
1565 		last_trace_buffer = trace_buffer[0];
1566 
1567 		spu_num = spu_evnt_phys_spu_indx
1568 			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1569 
1570 		/* make sure only one process at a time is calling
1571 		 * spu_sync_buffer()
1572 		 */
1573 		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1574 				  sample_array_lock_flags);
1575 		spu_sync_buffer(spu_num, &sample, 1);
1576 		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1577 				       sample_array_lock_flags);
1578 
1579 		smp_wmb();    /* insure spu event buffer updates are written
1580 			       * don't want events intermingled... */
1581 
1582 		/* The counters were frozen by the interrupt.
1583 		 * Reenable the interrupt and restart the counters.
1584 		 */
1585 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1586 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1587 					 virt_cntr_inter_mask);
1588 
1589 		/* clear the trace buffer, re-enable writes to trace buff */
1590 		cbe_write_pm(cpu, trace_address, 0);
1591 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1592 
1593 		/* The writes to the various performance counters only writes
1594 		 * to a latch.  The new values (interrupt setting bits, reset
1595 		 * counter value etc.) are not copied to the actual registers
1596 		 * until the performance monitor is enabled.  In order to get
1597 		 * this to work as desired, the permormance monitor needs to
1598 		 * be disabled while writing to the latches.  This is a
1599 		 * HW design issue.
1600 		 */
1601 		write_pm_cntrl(cpu);
1602 		cbe_enable_pm(cpu);
1603 	}
1604 	spin_unlock_irqrestore(&cntr_lock, flags);
1605 }
1606 
cell_handle_interrupt_ppu(struct pt_regs * regs,struct op_counter_config * ctr)1607 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1608 				      struct op_counter_config *ctr)
1609 {
1610 	u32 cpu;
1611 	u64 pc;
1612 	int is_kernel;
1613 	unsigned long flags = 0;
1614 	u32 interrupt_mask;
1615 	int i;
1616 
1617 	cpu = smp_processor_id();
1618 
1619 	/*
1620 	 * Need to make sure the interrupt handler and the virt counter
1621 	 * routine are not running at the same time. See the
1622 	 * cell_virtual_cntr() routine for additional comments.
1623 	 */
1624 	spin_lock_irqsave(&cntr_lock, flags);
1625 
1626 	/*
1627 	 * Need to disable and reenable the performance counters
1628 	 * to get the desired behavior from the hardware.  This
1629 	 * is hardware specific.
1630 	 */
1631 
1632 	cbe_disable_pm(cpu);
1633 
1634 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1635 
1636 	/*
1637 	 * If the interrupt mask has been cleared, then the virt cntr
1638 	 * has cleared the interrupt.  When the thread that generated
1639 	 * the interrupt is restored, the data count will be restored to
1640 	 * 0xffffff0 to cause the interrupt to be regenerated.
1641 	 */
1642 
1643 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1644 		pc = regs->nip;
1645 		is_kernel = is_kernel_addr(pc);
1646 
1647 		for (i = 0; i < num_counters; ++i) {
1648 			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1649 			    && ctr[i].enabled) {
1650 				oprofile_add_ext_sample(pc, regs, i, is_kernel);
1651 				cbe_write_ctr(cpu, i, reset_value[i]);
1652 			}
1653 		}
1654 
1655 		/*
1656 		 * The counters were frozen by the interrupt.
1657 		 * Reenable the interrupt and restart the counters.
1658 		 * If there was a race between the interrupt handler and
1659 		 * the virtual counter routine.	 The virutal counter
1660 		 * routine may have cleared the interrupts.  Hence must
1661 		 * use the virt_cntr_inter_mask to re-enable the interrupts.
1662 		 */
1663 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1664 					 virt_cntr_inter_mask);
1665 
1666 		/*
1667 		 * The writes to the various performance counters only writes
1668 		 * to a latch.	The new values (interrupt setting bits, reset
1669 		 * counter value etc.) are not copied to the actual registers
1670 		 * until the performance monitor is enabled.  In order to get
1671 		 * this to work as desired, the permormance monitor needs to
1672 		 * be disabled while writing to the latches.  This is a
1673 		 * HW design issue.
1674 		 */
1675 		cbe_enable_pm(cpu);
1676 	}
1677 	spin_unlock_irqrestore(&cntr_lock, flags);
1678 }
1679 
cell_handle_interrupt(struct pt_regs * regs,struct op_counter_config * ctr)1680 static void cell_handle_interrupt(struct pt_regs *regs,
1681 				  struct op_counter_config *ctr)
1682 {
1683 	if (profiling_mode == PPU_PROFILING)
1684 		cell_handle_interrupt_ppu(regs, ctr);
1685 	else
1686 		cell_handle_interrupt_spu(regs, ctr);
1687 }
1688 
1689 /*
1690  * This function is called from the generic OProfile
1691  * driver.  When profiling PPUs, we need to do the
1692  * generic sync start; otherwise, do spu_sync_start.
1693  */
cell_sync_start(void)1694 static int cell_sync_start(void)
1695 {
1696 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1697 	    (profiling_mode == SPU_PROFILING_EVENTS))
1698 		return spu_sync_start();
1699 	else
1700 		return DO_GENERIC_SYNC;
1701 }
1702 
cell_sync_stop(void)1703 static int cell_sync_stop(void)
1704 {
1705 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1706 	    (profiling_mode == SPU_PROFILING_EVENTS))
1707 		return spu_sync_stop();
1708 	else
1709 		return 1;
1710 }
1711 
1712 struct op_powerpc_model op_model_cell = {
1713 	.reg_setup = cell_reg_setup,
1714 	.cpu_setup = cell_cpu_setup,
1715 	.global_start = cell_global_start,
1716 	.global_stop = cell_global_stop,
1717 	.sync_start = cell_sync_start,
1718 	.sync_stop = cell_sync_stop,
1719 	.handle_interrupt = cell_handle_interrupt,
1720 };
1721