1 /* backing_ops.c - query/set operations on saved SPU context.
2 *
3 * Copyright (C) IBM 2005
4 * Author: Mark Nutter <mnutter@us.ibm.com>
5 *
6 * These register operations allow SPUFS to operate on saved
7 * SPU contexts rather than hardware.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/vmalloc.h>
30 #include <linux/smp.h>
31 #include <linux/stddef.h>
32 #include <linux/unistd.h>
33 #include <linux/poll.h>
34
35 #include <asm/io.h>
36 #include <asm/spu.h>
37 #include <asm/spu_csa.h>
38 #include <asm/spu_info.h>
39 #include <asm/mmu_context.h>
40 #include "spufs.h"
41
42 /*
43 * Reads/writes to various problem and priv2 registers require
44 * state changes, i.e. generate SPU events, modify channel
45 * counts, etc.
46 */
47
gen_spu_event(struct spu_context * ctx,u32 event)48 static void gen_spu_event(struct spu_context *ctx, u32 event)
49 {
50 u64 ch0_cnt;
51 u64 ch0_data;
52 u64 ch1_data;
53
54 ch0_cnt = ctx->csa.spu_chnlcnt_RW[0];
55 ch0_data = ctx->csa.spu_chnldata_RW[0];
56 ch1_data = ctx->csa.spu_chnldata_RW[1];
57 ctx->csa.spu_chnldata_RW[0] |= event;
58 if ((ch0_cnt == 0) && !(ch0_data & event) && (ch1_data & event)) {
59 ctx->csa.spu_chnlcnt_RW[0] = 1;
60 }
61 }
62
spu_backing_mbox_read(struct spu_context * ctx,u32 * data)63 static int spu_backing_mbox_read(struct spu_context *ctx, u32 * data)
64 {
65 u32 mbox_stat;
66 int ret = 0;
67
68 spin_lock(&ctx->csa.register_lock);
69 mbox_stat = ctx->csa.prob.mb_stat_R;
70 if (mbox_stat & 0x0000ff) {
71 /* Read the first available word.
72 * Implementation note: the depth
73 * of pu_mb_R is currently 1.
74 */
75 *data = ctx->csa.prob.pu_mb_R;
76 ctx->csa.prob.mb_stat_R &= ~(0x0000ff);
77 ctx->csa.spu_chnlcnt_RW[28] = 1;
78 gen_spu_event(ctx, MFC_PU_MAILBOX_AVAILABLE_EVENT);
79 ret = 4;
80 }
81 spin_unlock(&ctx->csa.register_lock);
82 return ret;
83 }
84
spu_backing_mbox_stat_read(struct spu_context * ctx)85 static u32 spu_backing_mbox_stat_read(struct spu_context *ctx)
86 {
87 return ctx->csa.prob.mb_stat_R;
88 }
89
spu_backing_mbox_stat_poll(struct spu_context * ctx,unsigned int events)90 static unsigned int spu_backing_mbox_stat_poll(struct spu_context *ctx,
91 unsigned int events)
92 {
93 int ret;
94 u32 stat;
95
96 ret = 0;
97 spin_lock_irq(&ctx->csa.register_lock);
98 stat = ctx->csa.prob.mb_stat_R;
99
100 /* if the requested event is there, return the poll
101 mask, otherwise enable the interrupt to get notified,
102 but first mark any pending interrupts as done so
103 we don't get woken up unnecessarily */
104
105 if (events & (POLLIN | POLLRDNORM)) {
106 if (stat & 0xff0000)
107 ret |= POLLIN | POLLRDNORM;
108 else {
109 ctx->csa.priv1.int_stat_class2_RW &=
110 ~CLASS2_MAILBOX_INTR;
111 ctx->csa.priv1.int_mask_class2_RW |=
112 CLASS2_ENABLE_MAILBOX_INTR;
113 }
114 }
115 if (events & (POLLOUT | POLLWRNORM)) {
116 if (stat & 0x00ff00)
117 ret = POLLOUT | POLLWRNORM;
118 else {
119 ctx->csa.priv1.int_stat_class2_RW &=
120 ~CLASS2_MAILBOX_THRESHOLD_INTR;
121 ctx->csa.priv1.int_mask_class2_RW |=
122 CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR;
123 }
124 }
125 spin_unlock_irq(&ctx->csa.register_lock);
126 return ret;
127 }
128
spu_backing_ibox_read(struct spu_context * ctx,u32 * data)129 static int spu_backing_ibox_read(struct spu_context *ctx, u32 * data)
130 {
131 int ret;
132
133 spin_lock(&ctx->csa.register_lock);
134 if (ctx->csa.prob.mb_stat_R & 0xff0000) {
135 /* Read the first available word.
136 * Implementation note: the depth
137 * of puint_mb_R is currently 1.
138 */
139 *data = ctx->csa.priv2.puint_mb_R;
140 ctx->csa.prob.mb_stat_R &= ~(0xff0000);
141 ctx->csa.spu_chnlcnt_RW[30] = 1;
142 gen_spu_event(ctx, MFC_PU_INT_MAILBOX_AVAILABLE_EVENT);
143 ret = 4;
144 } else {
145 /* make sure we get woken up by the interrupt */
146 ctx->csa.priv1.int_mask_class2_RW |= CLASS2_ENABLE_MAILBOX_INTR;
147 ret = 0;
148 }
149 spin_unlock(&ctx->csa.register_lock);
150 return ret;
151 }
152
spu_backing_wbox_write(struct spu_context * ctx,u32 data)153 static int spu_backing_wbox_write(struct spu_context *ctx, u32 data)
154 {
155 int ret;
156
157 spin_lock(&ctx->csa.register_lock);
158 if ((ctx->csa.prob.mb_stat_R) & 0x00ff00) {
159 int slot = ctx->csa.spu_chnlcnt_RW[29];
160 int avail = (ctx->csa.prob.mb_stat_R & 0x00ff00) >> 8;
161
162 /* We have space to write wbox_data.
163 * Implementation note: the depth
164 * of spu_mb_W is currently 4.
165 */
166 BUG_ON(avail != (4 - slot));
167 ctx->csa.spu_mailbox_data[slot] = data;
168 ctx->csa.spu_chnlcnt_RW[29] = ++slot;
169 ctx->csa.prob.mb_stat_R &= ~(0x00ff00);
170 ctx->csa.prob.mb_stat_R |= (((4 - slot) & 0xff) << 8);
171 gen_spu_event(ctx, MFC_SPU_MAILBOX_WRITTEN_EVENT);
172 ret = 4;
173 } else {
174 /* make sure we get woken up by the interrupt when space
175 becomes available */
176 ctx->csa.priv1.int_mask_class2_RW |=
177 CLASS2_ENABLE_MAILBOX_THRESHOLD_INTR;
178 ret = 0;
179 }
180 spin_unlock(&ctx->csa.register_lock);
181 return ret;
182 }
183
spu_backing_signal1_read(struct spu_context * ctx)184 static u32 spu_backing_signal1_read(struct spu_context *ctx)
185 {
186 return ctx->csa.spu_chnldata_RW[3];
187 }
188
spu_backing_signal1_write(struct spu_context * ctx,u32 data)189 static void spu_backing_signal1_write(struct spu_context *ctx, u32 data)
190 {
191 spin_lock(&ctx->csa.register_lock);
192 if (ctx->csa.priv2.spu_cfg_RW & 0x1)
193 ctx->csa.spu_chnldata_RW[3] |= data;
194 else
195 ctx->csa.spu_chnldata_RW[3] = data;
196 ctx->csa.spu_chnlcnt_RW[3] = 1;
197 gen_spu_event(ctx, MFC_SIGNAL_1_EVENT);
198 spin_unlock(&ctx->csa.register_lock);
199 }
200
spu_backing_signal2_read(struct spu_context * ctx)201 static u32 spu_backing_signal2_read(struct spu_context *ctx)
202 {
203 return ctx->csa.spu_chnldata_RW[4];
204 }
205
spu_backing_signal2_write(struct spu_context * ctx,u32 data)206 static void spu_backing_signal2_write(struct spu_context *ctx, u32 data)
207 {
208 spin_lock(&ctx->csa.register_lock);
209 if (ctx->csa.priv2.spu_cfg_RW & 0x2)
210 ctx->csa.spu_chnldata_RW[4] |= data;
211 else
212 ctx->csa.spu_chnldata_RW[4] = data;
213 ctx->csa.spu_chnlcnt_RW[4] = 1;
214 gen_spu_event(ctx, MFC_SIGNAL_2_EVENT);
215 spin_unlock(&ctx->csa.register_lock);
216 }
217
spu_backing_signal1_type_set(struct spu_context * ctx,u64 val)218 static void spu_backing_signal1_type_set(struct spu_context *ctx, u64 val)
219 {
220 u64 tmp;
221
222 spin_lock(&ctx->csa.register_lock);
223 tmp = ctx->csa.priv2.spu_cfg_RW;
224 if (val)
225 tmp |= 1;
226 else
227 tmp &= ~1;
228 ctx->csa.priv2.spu_cfg_RW = tmp;
229 spin_unlock(&ctx->csa.register_lock);
230 }
231
spu_backing_signal1_type_get(struct spu_context * ctx)232 static u64 spu_backing_signal1_type_get(struct spu_context *ctx)
233 {
234 return ((ctx->csa.priv2.spu_cfg_RW & 1) != 0);
235 }
236
spu_backing_signal2_type_set(struct spu_context * ctx,u64 val)237 static void spu_backing_signal2_type_set(struct spu_context *ctx, u64 val)
238 {
239 u64 tmp;
240
241 spin_lock(&ctx->csa.register_lock);
242 tmp = ctx->csa.priv2.spu_cfg_RW;
243 if (val)
244 tmp |= 2;
245 else
246 tmp &= ~2;
247 ctx->csa.priv2.spu_cfg_RW = tmp;
248 spin_unlock(&ctx->csa.register_lock);
249 }
250
spu_backing_signal2_type_get(struct spu_context * ctx)251 static u64 spu_backing_signal2_type_get(struct spu_context *ctx)
252 {
253 return ((ctx->csa.priv2.spu_cfg_RW & 2) != 0);
254 }
255
spu_backing_npc_read(struct spu_context * ctx)256 static u32 spu_backing_npc_read(struct spu_context *ctx)
257 {
258 return ctx->csa.prob.spu_npc_RW;
259 }
260
spu_backing_npc_write(struct spu_context * ctx,u32 val)261 static void spu_backing_npc_write(struct spu_context *ctx, u32 val)
262 {
263 ctx->csa.prob.spu_npc_RW = val;
264 }
265
spu_backing_status_read(struct spu_context * ctx)266 static u32 spu_backing_status_read(struct spu_context *ctx)
267 {
268 return ctx->csa.prob.spu_status_R;
269 }
270
spu_backing_get_ls(struct spu_context * ctx)271 static char *spu_backing_get_ls(struct spu_context *ctx)
272 {
273 return ctx->csa.lscsa->ls;
274 }
275
spu_backing_privcntl_write(struct spu_context * ctx,u64 val)276 static void spu_backing_privcntl_write(struct spu_context *ctx, u64 val)
277 {
278 ctx->csa.priv2.spu_privcntl_RW = val;
279 }
280
spu_backing_runcntl_read(struct spu_context * ctx)281 static u32 spu_backing_runcntl_read(struct spu_context *ctx)
282 {
283 return ctx->csa.prob.spu_runcntl_RW;
284 }
285
spu_backing_runcntl_write(struct spu_context * ctx,u32 val)286 static void spu_backing_runcntl_write(struct spu_context *ctx, u32 val)
287 {
288 spin_lock(&ctx->csa.register_lock);
289 ctx->csa.prob.spu_runcntl_RW = val;
290 if (val & SPU_RUNCNTL_RUNNABLE) {
291 ctx->csa.prob.spu_status_R &=
292 ~SPU_STATUS_STOPPED_BY_STOP &
293 ~SPU_STATUS_STOPPED_BY_HALT &
294 ~SPU_STATUS_SINGLE_STEP &
295 ~SPU_STATUS_INVALID_INSTR &
296 ~SPU_STATUS_INVALID_CH;
297 ctx->csa.prob.spu_status_R |= SPU_STATUS_RUNNING;
298 } else {
299 ctx->csa.prob.spu_status_R &= ~SPU_STATUS_RUNNING;
300 }
301 spin_unlock(&ctx->csa.register_lock);
302 }
303
spu_backing_runcntl_stop(struct spu_context * ctx)304 static void spu_backing_runcntl_stop(struct spu_context *ctx)
305 {
306 spu_backing_runcntl_write(ctx, SPU_RUNCNTL_STOP);
307 }
308
spu_backing_master_start(struct spu_context * ctx)309 static void spu_backing_master_start(struct spu_context *ctx)
310 {
311 struct spu_state *csa = &ctx->csa;
312 u64 sr1;
313
314 spin_lock(&csa->register_lock);
315 sr1 = csa->priv1.mfc_sr1_RW | MFC_STATE1_MASTER_RUN_CONTROL_MASK;
316 csa->priv1.mfc_sr1_RW = sr1;
317 spin_unlock(&csa->register_lock);
318 }
319
spu_backing_master_stop(struct spu_context * ctx)320 static void spu_backing_master_stop(struct spu_context *ctx)
321 {
322 struct spu_state *csa = &ctx->csa;
323 u64 sr1;
324
325 spin_lock(&csa->register_lock);
326 sr1 = csa->priv1.mfc_sr1_RW & ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
327 csa->priv1.mfc_sr1_RW = sr1;
328 spin_unlock(&csa->register_lock);
329 }
330
spu_backing_set_mfc_query(struct spu_context * ctx,u32 mask,u32 mode)331 static int spu_backing_set_mfc_query(struct spu_context * ctx, u32 mask,
332 u32 mode)
333 {
334 struct spu_problem_collapsed *prob = &ctx->csa.prob;
335 int ret;
336
337 spin_lock(&ctx->csa.register_lock);
338 ret = -EAGAIN;
339 if (prob->dma_querytype_RW)
340 goto out;
341 ret = 0;
342 /* FIXME: what are the side-effects of this? */
343 prob->dma_querymask_RW = mask;
344 prob->dma_querytype_RW = mode;
345 /* In the current implementation, the SPU context is always
346 * acquired in runnable state when new bits are added to the
347 * mask (tagwait), so it's sufficient just to mask
348 * dma_tagstatus_R with the 'mask' parameter here.
349 */
350 ctx->csa.prob.dma_tagstatus_R &= mask;
351 out:
352 spin_unlock(&ctx->csa.register_lock);
353
354 return ret;
355 }
356
spu_backing_read_mfc_tagstatus(struct spu_context * ctx)357 static u32 spu_backing_read_mfc_tagstatus(struct spu_context * ctx)
358 {
359 return ctx->csa.prob.dma_tagstatus_R;
360 }
361
spu_backing_get_mfc_free_elements(struct spu_context * ctx)362 static u32 spu_backing_get_mfc_free_elements(struct spu_context *ctx)
363 {
364 return ctx->csa.prob.dma_qstatus_R;
365 }
366
spu_backing_send_mfc_command(struct spu_context * ctx,struct mfc_dma_command * cmd)367 static int spu_backing_send_mfc_command(struct spu_context *ctx,
368 struct mfc_dma_command *cmd)
369 {
370 int ret;
371
372 spin_lock(&ctx->csa.register_lock);
373 ret = -EAGAIN;
374 /* FIXME: set up priv2->puq */
375 spin_unlock(&ctx->csa.register_lock);
376
377 return ret;
378 }
379
spu_backing_restart_dma(struct spu_context * ctx)380 static void spu_backing_restart_dma(struct spu_context *ctx)
381 {
382 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
383 }
384
385 struct spu_context_ops spu_backing_ops = {
386 .mbox_read = spu_backing_mbox_read,
387 .mbox_stat_read = spu_backing_mbox_stat_read,
388 .mbox_stat_poll = spu_backing_mbox_stat_poll,
389 .ibox_read = spu_backing_ibox_read,
390 .wbox_write = spu_backing_wbox_write,
391 .signal1_read = spu_backing_signal1_read,
392 .signal1_write = spu_backing_signal1_write,
393 .signal2_read = spu_backing_signal2_read,
394 .signal2_write = spu_backing_signal2_write,
395 .signal1_type_set = spu_backing_signal1_type_set,
396 .signal1_type_get = spu_backing_signal1_type_get,
397 .signal2_type_set = spu_backing_signal2_type_set,
398 .signal2_type_get = spu_backing_signal2_type_get,
399 .npc_read = spu_backing_npc_read,
400 .npc_write = spu_backing_npc_write,
401 .status_read = spu_backing_status_read,
402 .get_ls = spu_backing_get_ls,
403 .privcntl_write = spu_backing_privcntl_write,
404 .runcntl_read = spu_backing_runcntl_read,
405 .runcntl_write = spu_backing_runcntl_write,
406 .runcntl_stop = spu_backing_runcntl_stop,
407 .master_start = spu_backing_master_start,
408 .master_stop = spu_backing_master_stop,
409 .set_mfc_query = spu_backing_set_mfc_query,
410 .read_mfc_tagstatus = spu_backing_read_mfc_tagstatus,
411 .get_mfc_free_elements = spu_backing_get_mfc_free_elements,
412 .send_mfc_command = spu_backing_send_mfc_command,
413 .restart_dma = spu_backing_restart_dma,
414 };
415