• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Communication to userspace based on kernel/printk.c
10  */
11 
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 
24 #include <asm/uaccess.h>
25 #include <asm/io.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/nvram.h>
29 #include <asm/atomic.h>
30 #include <asm/machdep.h>
31 
32 
33 static DEFINE_SPINLOCK(rtasd_log_lock);
34 
35 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
36 
37 static char *rtas_log_buf;
38 static unsigned long rtas_log_start;
39 static unsigned long rtas_log_size;
40 
41 static int surveillance_timeout = -1;
42 static unsigned int rtas_error_log_max;
43 static unsigned int rtas_error_log_buffer_max;
44 
45 /* RTAS service tokens */
46 static unsigned int event_scan;
47 static unsigned int rtas_event_scan_rate;
48 
49 static int full_rtas_msgs = 0;
50 
51 /* Stop logging to nvram after first fatal error */
52 static int logging_enabled; /* Until we initialize everything,
53                              * make sure we don't try logging
54                              * anything */
55 static int error_log_cnt;
56 
57 /*
58  * Since we use 32 bit RTAS, the physical address of this must be below
59  * 4G or else bad things happen. Allocate this in the kernel data and
60  * make it big enough.
61  */
62 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
63 
64 static char *rtas_type[] = {
65 	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
66 	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
67 	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
68 };
69 
rtas_event_type(int type)70 static char *rtas_event_type(int type)
71 {
72 	if ((type > 0) && (type < 11))
73 		return rtas_type[type];
74 
75 	switch (type) {
76 		case RTAS_TYPE_EPOW:
77 			return "EPOW";
78 		case RTAS_TYPE_PLATFORM:
79 			return "Platform Error";
80 		case RTAS_TYPE_IO:
81 			return "I/O Event";
82 		case RTAS_TYPE_INFO:
83 			return "Platform Information Event";
84 		case RTAS_TYPE_DEALLOC:
85 			return "Resource Deallocation Event";
86 		case RTAS_TYPE_DUMP:
87 			return "Dump Notification Event";
88 	}
89 
90 	return rtas_type[0];
91 }
92 
93 /* To see this info, grep RTAS /var/log/messages and each entry
94  * will be collected together with obvious begin/end.
95  * There will be a unique identifier on the begin and end lines.
96  * This will persist across reboots.
97  *
98  * format of error logs returned from RTAS:
99  * bytes	(size)	: contents
100  * --------------------------------------------------------
101  * 0-7		(8)	: rtas_error_log
102  * 8-47		(40)	: extended info
103  * 48-51	(4)	: vendor id
104  * 52-1023 (vendor specific) : location code and debug data
105  */
printk_log_rtas(char * buf,int len)106 static void printk_log_rtas(char *buf, int len)
107 {
108 
109 	int i,j,n = 0;
110 	int perline = 16;
111 	char buffer[64];
112 	char * str = "RTAS event";
113 
114 	if (full_rtas_msgs) {
115 		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
116 		       error_log_cnt, str);
117 
118 		/*
119 		 * Print perline bytes on each line, each line will start
120 		 * with RTAS and a changing number, so syslogd will
121 		 * print lines that are otherwise the same.  Separate every
122 		 * 4 bytes with a space.
123 		 */
124 		for (i = 0; i < len; i++) {
125 			j = i % perline;
126 			if (j == 0) {
127 				memset(buffer, 0, sizeof(buffer));
128 				n = sprintf(buffer, "RTAS %d:", i/perline);
129 			}
130 
131 			if ((i % 4) == 0)
132 				n += sprintf(buffer+n, " ");
133 
134 			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
135 
136 			if (j == (perline-1))
137 				printk(KERN_DEBUG "%s\n", buffer);
138 		}
139 		if ((i % perline) != 0)
140 			printk(KERN_DEBUG "%s\n", buffer);
141 
142 		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
143 		       error_log_cnt, str);
144 	} else {
145 		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
146 
147 		printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
148 		       error_log_cnt, rtas_event_type(errlog->type),
149 		       errlog->severity);
150 	}
151 }
152 
log_rtas_len(char * buf)153 static int log_rtas_len(char * buf)
154 {
155 	int len;
156 	struct rtas_error_log *err;
157 
158 	/* rtas fixed header */
159 	len = 8;
160 	err = (struct rtas_error_log *)buf;
161 	if (err->extended_log_length) {
162 
163 		/* extended header */
164 		len += err->extended_log_length;
165 	}
166 
167 	if (rtas_error_log_max == 0)
168 		rtas_error_log_max = rtas_get_error_log_max();
169 
170 	if (len > rtas_error_log_max)
171 		len = rtas_error_log_max;
172 
173 	return len;
174 }
175 
176 /*
177  * First write to nvram, if fatal error, that is the only
178  * place we log the info.  The error will be picked up
179  * on the next reboot by rtasd.  If not fatal, run the
180  * method for the type of error.  Currently, only RTAS
181  * errors have methods implemented, but in the future
182  * there might be a need to store data in nvram before a
183  * call to panic().
184  *
185  * XXX We write to nvram periodically, to indicate error has
186  * been written and sync'd, but there is a possibility
187  * that if we don't shutdown correctly, a duplicate error
188  * record will be created on next reboot.
189  */
pSeries_log_error(char * buf,unsigned int err_type,int fatal)190 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
191 {
192 	unsigned long offset;
193 	unsigned long s;
194 	int len = 0;
195 
196 	pr_debug("rtasd: logging event\n");
197 	if (buf == NULL)
198 		return;
199 
200 	spin_lock_irqsave(&rtasd_log_lock, s);
201 
202 	/* get length and increase count */
203 	switch (err_type & ERR_TYPE_MASK) {
204 	case ERR_TYPE_RTAS_LOG:
205 		len = log_rtas_len(buf);
206 		if (!(err_type & ERR_FLAG_BOOT))
207 			error_log_cnt++;
208 		break;
209 	case ERR_TYPE_KERNEL_PANIC:
210 	default:
211 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
212 		spin_unlock_irqrestore(&rtasd_log_lock, s);
213 		return;
214 	}
215 
216 	/* Write error to NVRAM */
217 	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
218 		nvram_write_error_log(buf, len, err_type, error_log_cnt);
219 
220 	/*
221 	 * rtas errors can occur during boot, and we do want to capture
222 	 * those somewhere, even if nvram isn't ready (why not?), and even
223 	 * if rtasd isn't ready. Put them into the boot log, at least.
224 	 */
225 	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
226 		printk_log_rtas(buf, len);
227 
228 	/* Check to see if we need to or have stopped logging */
229 	if (fatal || !logging_enabled) {
230 		logging_enabled = 0;
231 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
232 		spin_unlock_irqrestore(&rtasd_log_lock, s);
233 		return;
234 	}
235 
236 	/* call type specific method for error */
237 	switch (err_type & ERR_TYPE_MASK) {
238 	case ERR_TYPE_RTAS_LOG:
239 		offset = rtas_error_log_buffer_max *
240 			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
241 
242 		/* First copy over sequence number */
243 		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
244 
245 		/* Second copy over error log data */
246 		offset += sizeof(int);
247 		memcpy(&rtas_log_buf[offset], buf, len);
248 
249 		if (rtas_log_size < LOG_NUMBER)
250 			rtas_log_size += 1;
251 		else
252 			rtas_log_start += 1;
253 
254 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
255 		spin_unlock_irqrestore(&rtasd_log_lock, s);
256 		wake_up_interruptible(&rtas_log_wait);
257 		break;
258 	case ERR_TYPE_KERNEL_PANIC:
259 	default:
260 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
261 		spin_unlock_irqrestore(&rtasd_log_lock, s);
262 		return;
263 	}
264 
265 }
266 
267 
rtas_log_open(struct inode * inode,struct file * file)268 static int rtas_log_open(struct inode * inode, struct file * file)
269 {
270 	return 0;
271 }
272 
rtas_log_release(struct inode * inode,struct file * file)273 static int rtas_log_release(struct inode * inode, struct file * file)
274 {
275 	return 0;
276 }
277 
278 /* This will check if all events are logged, if they are then, we
279  * know that we can safely clear the events in NVRAM.
280  * Next we'll sit and wait for something else to log.
281  */
rtas_log_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)282 static ssize_t rtas_log_read(struct file * file, char __user * buf,
283 			 size_t count, loff_t *ppos)
284 {
285 	int error;
286 	char *tmp;
287 	unsigned long s;
288 	unsigned long offset;
289 
290 	if (!buf || count < rtas_error_log_buffer_max)
291 		return -EINVAL;
292 
293 	count = rtas_error_log_buffer_max;
294 
295 	if (!access_ok(VERIFY_WRITE, buf, count))
296 		return -EFAULT;
297 
298 	tmp = kmalloc(count, GFP_KERNEL);
299 	if (!tmp)
300 		return -ENOMEM;
301 
302 	spin_lock_irqsave(&rtasd_log_lock, s);
303 	/* if it's 0, then we know we got the last one (the one in NVRAM) */
304 	while (rtas_log_size == 0) {
305 		if (file->f_flags & O_NONBLOCK) {
306 			spin_unlock_irqrestore(&rtasd_log_lock, s);
307 			error = -EAGAIN;
308 			goto out;
309 		}
310 
311 		if (!logging_enabled) {
312 			spin_unlock_irqrestore(&rtasd_log_lock, s);
313 			error = -ENODATA;
314 			goto out;
315 		}
316 		nvram_clear_error_log();
317 
318 		spin_unlock_irqrestore(&rtasd_log_lock, s);
319 		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
320 		if (error)
321 			goto out;
322 		spin_lock_irqsave(&rtasd_log_lock, s);
323 	}
324 
325 	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
326 	memcpy(tmp, &rtas_log_buf[offset], count);
327 
328 	rtas_log_start += 1;
329 	rtas_log_size -= 1;
330 	spin_unlock_irqrestore(&rtasd_log_lock, s);
331 
332 	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
333 out:
334 	kfree(tmp);
335 	return error;
336 }
337 
rtas_log_poll(struct file * file,poll_table * wait)338 static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
339 {
340 	poll_wait(file, &rtas_log_wait, wait);
341 	if (rtas_log_size)
342 		return POLLIN | POLLRDNORM;
343 	return 0;
344 }
345 
346 static const struct file_operations proc_rtas_log_operations = {
347 	.read =		rtas_log_read,
348 	.poll =		rtas_log_poll,
349 	.open =		rtas_log_open,
350 	.release =	rtas_log_release,
351 };
352 
enable_surveillance(int timeout)353 static int enable_surveillance(int timeout)
354 {
355 	int error;
356 
357 	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
358 
359 	if (error == 0)
360 		return 0;
361 
362 	if (error == -EINVAL) {
363 		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
364 		return 0;
365 	}
366 
367 	printk(KERN_ERR "rtasd: could not update surveillance\n");
368 	return -1;
369 }
370 
do_event_scan(void)371 static void do_event_scan(void)
372 {
373 	int error;
374 	do {
375 		memset(logdata, 0, rtas_error_log_max);
376 		error = rtas_call(event_scan, 4, 1, NULL,
377 				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
378 				  __pa(logdata), rtas_error_log_max);
379 		if (error == -1) {
380 			printk(KERN_ERR "event-scan failed\n");
381 			break;
382 		}
383 
384 		if (error == 0)
385 			pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
386 
387 	} while(error == 0);
388 }
389 
do_event_scan_all_cpus(long delay)390 static void do_event_scan_all_cpus(long delay)
391 {
392 	int cpu;
393 
394 	get_online_cpus();
395 	cpu = first_cpu(cpu_online_map);
396 	for (;;) {
397 		set_cpus_allowed(current, cpumask_of_cpu(cpu));
398 		do_event_scan();
399 		set_cpus_allowed(current, CPU_MASK_ALL);
400 
401 		/* Drop hotplug lock, and sleep for the specified delay */
402 		put_online_cpus();
403 		msleep_interruptible(delay);
404 		get_online_cpus();
405 
406 		cpu = next_cpu(cpu, cpu_online_map);
407 		if (cpu == NR_CPUS)
408 			break;
409 	}
410 	put_online_cpus();
411 }
412 
rtasd(void * unused)413 static int rtasd(void *unused)
414 {
415 	unsigned int err_type;
416 	int rc;
417 
418 	daemonize("rtasd");
419 
420 	printk(KERN_DEBUG "RTAS daemon started\n");
421 	pr_debug("rtasd: will sleep for %d milliseconds\n",
422 		 (30000 / rtas_event_scan_rate));
423 
424 	/* See if we have any error stored in NVRAM */
425 	memset(logdata, 0, rtas_error_log_max);
426 	rc = nvram_read_error_log(logdata, rtas_error_log_max,
427 	                          &err_type, &error_log_cnt);
428 	/* We can use rtas_log_buf now */
429 	logging_enabled = 1;
430 
431 	if (!rc) {
432 		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
433 			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
434 		}
435 	}
436 
437 	/* First pass. */
438 	do_event_scan_all_cpus(1000);
439 
440 	if (surveillance_timeout != -1) {
441 		pr_debug("rtasd: enabling surveillance\n");
442 		enable_surveillance(surveillance_timeout);
443 		pr_debug("rtasd: surveillance enabled\n");
444 	}
445 
446 	/* Delay should be at least one second since some
447 	 * machines have problems if we call event-scan too
448 	 * quickly. */
449 	for (;;)
450 		do_event_scan_all_cpus(30000/rtas_event_scan_rate);
451 
452 	return -EINVAL;
453 }
454 
rtas_init(void)455 static int __init rtas_init(void)
456 {
457 	struct proc_dir_entry *entry;
458 
459 	if (!machine_is(pseries))
460 		return 0;
461 
462 	/* No RTAS */
463 	event_scan = rtas_token("event-scan");
464 	if (event_scan == RTAS_UNKNOWN_SERVICE) {
465 		printk(KERN_DEBUG "rtasd: no event-scan on system\n");
466 		return -ENODEV;
467 	}
468 
469 	rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
470 	if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
471 		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
472 		return -ENODEV;
473 	}
474 
475 	/* Make room for the sequence number */
476 	rtas_error_log_max = rtas_get_error_log_max();
477 	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
478 
479 	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
480 	if (!rtas_log_buf) {
481 		printk(KERN_ERR "rtasd: no memory\n");
482 		return -ENOMEM;
483 	}
484 
485 	entry = proc_create("ppc64/rtas/error_log", S_IRUSR, NULL,
486 			    &proc_rtas_log_operations);
487 	if (!entry)
488 		printk(KERN_ERR "Failed to create error_log proc entry\n");
489 
490 	if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)
491 		printk(KERN_ERR "Failed to start RTAS daemon\n");
492 
493 	return 0;
494 }
495 
surveillance_setup(char * str)496 static int __init surveillance_setup(char *str)
497 {
498 	int i;
499 
500 	if (get_option(&str,&i)) {
501 		if (i >= 0 && i <= 255)
502 			surveillance_timeout = i;
503 	}
504 
505 	return 1;
506 }
507 
rtasmsgs_setup(char * str)508 static int __init rtasmsgs_setup(char *str)
509 {
510 	if (strcmp(str, "on") == 0)
511 		full_rtas_msgs = 1;
512 	else if (strcmp(str, "off") == 0)
513 		full_rtas_msgs = 0;
514 
515 	return 1;
516 }
517 __initcall(rtas_init);
518 __setup("surveillance=", surveillance_setup);
519 __setup("rtasmsgs=", rtasmsgs_setup);
520