• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/sh/kernel/time_64.c
3  *
4  * Copyright (C) 2000, 2001  Paolo Alberelli
5  * Copyright (C) 2003 - 2007  Paul Mundt
6  * Copyright (C) 2003  Richard Curnow
7  *
8  *    Original TMU/RTC code taken from sh version.
9  *    Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
10  *      Some code taken from i386 version.
11  *      Copyright (C) 1991, 1992, 1995  Linus Torvalds
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/errno.h>
18 #include <linux/rwsem.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/profile.h>
29 #include <linux/smp.h>
30 #include <linux/module.h>
31 #include <linux/bcd.h>
32 #include <linux/timex.h>
33 #include <linux/irq.h>
34 #include <linux/io.h>
35 #include <linux/platform_device.h>
36 #include <cpu/registers.h>	 /* required by inline __asm__ stmt. */
37 #include <cpu/irq.h>
38 #include <asm/addrspace.h>
39 #include <asm/processor.h>
40 #include <asm/uaccess.h>
41 #include <asm/delay.h>
42 #include <asm/clock.h>
43 
44 #define TMU_TOCR_INIT	0x00
45 #define TMU0_TCR_INIT	0x0020
46 #define TMU_TSTR_INIT	1
47 #define TMU_TSTR_OFF	0
48 
49 /* Real Time Clock */
50 #define	RTC_BLOCK_OFF	0x01040000
51 #define RTC_BASE	PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
52 #define RTC_RCR1_CIE	0x10	/* Carry Interrupt Enable */
53 #define RTC_RCR1	(rtc_base + 0x38)
54 
55 /* Time Management Unit */
56 #define	TMU_BLOCK_OFF	0x01020000
57 #define TMU_BASE	PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
58 #define TMU0_BASE	tmu_base + 0x8 + (0xc * 0x0)
59 #define TMU1_BASE	tmu_base + 0x8 + (0xc * 0x1)
60 #define TMU2_BASE	tmu_base + 0x8 + (0xc * 0x2)
61 
62 #define TMU_TOCR	tmu_base+0x0	/* Byte access */
63 #define TMU_TSTR	tmu_base+0x4	/* Byte access */
64 
65 #define TMU0_TCOR	TMU0_BASE+0x0	/* Long access */
66 #define TMU0_TCNT	TMU0_BASE+0x4	/* Long access */
67 #define TMU0_TCR	TMU0_BASE+0x8	/* Word access */
68 
69 #define TICK_SIZE (tick_nsec / 1000)
70 
71 static unsigned long tmu_base, rtc_base;
72 unsigned long cprc_base;
73 
74 /* Variables to allow interpolation of time of day to resolution better than a
75  * jiffy. */
76 
77 /* This is effectively protected by xtime_lock */
78 static unsigned long ctc_last_interrupt;
79 static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
80 
81 #define CTC_JIFFY_SCALE_SHIFT 40
82 
83 /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
84 static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
85 
86 /* Estimate number of microseconds that have elapsed since the last timer tick,
87    by scaling the delta that has occurred in the CTC register.
88 
89    WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
90    the CPU clock rate.  If the CPU sleeps, the CTC stops counting.  Bear this
91    in mind if enabling SLEEP_WORKS in process.c.  In that case, this algorithm
92    probably needs to use TMU.TCNT0 instead.  This will work even if the CPU is
93    sleeping, though will be coarser.
94 
95    FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
96    is running or if the freq or tick arguments of adjtimex are modified after
97    we have calibrated the scaling factor?  This will result in either a jump at
98    the end of a tick period, or a wrap backwards at the start of the next one,
99    if the application is reading the time of day often enough.  I think we
100    ought to do better than this.  For this reason, usecs_per_jiffy is left
101    separated out in the calculation below.  This allows some future hook into
102    the adjtime-related stuff in kernel/timer.c to remove this hazard.
103 
104 */
105 
usecs_since_tick(void)106 static unsigned long usecs_since_tick(void)
107 {
108 	unsigned long long current_ctc;
109 	long ctc_ticks_since_interrupt;
110 	unsigned long long ull_ctc_ticks_since_interrupt;
111 	unsigned long result;
112 
113 	unsigned long long mul1_out;
114 	unsigned long long mul1_out_high;
115 	unsigned long long mul2_out_low, mul2_out_high;
116 
117 	/* Read CTC register */
118 	asm ("getcon cr62, %0" : "=r" (current_ctc));
119 	/* Note, the CTC counts down on each CPU clock, not up.
120 	   Note(2), use long type to get correct wraparound arithmetic when
121 	   the counter crosses zero. */
122 	ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
123 	ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
124 
125 	/* Inline assembly to do 32x32x32->64 multiplier */
126 	asm volatile ("mulu.l %1, %2, %0" :
127 	     "=r" (mul1_out) :
128 	     "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
129 
130 	mul1_out_high = mul1_out >> 32;
131 
132 	asm volatile ("mulu.l %1, %2, %0" :
133 	     "=r" (mul2_out_low) :
134 	     "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
135 
136 #if 1
137 	asm volatile ("mulu.l %1, %2, %0" :
138 	     "=r" (mul2_out_high) :
139 	     "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
140 #endif
141 
142 	result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
143 
144 	return result;
145 }
146 
do_gettimeofday(struct timeval * tv)147 void do_gettimeofday(struct timeval *tv)
148 {
149 	unsigned long flags;
150 	unsigned long seq;
151 	unsigned long usec, sec;
152 
153 	do {
154 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
155 		usec = usecs_since_tick();
156 		sec = xtime.tv_sec;
157 		usec += xtime.tv_nsec / 1000;
158 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
159 
160 	while (usec >= 1000000) {
161 		usec -= 1000000;
162 		sec++;
163 	}
164 
165 	tv->tv_sec = sec;
166 	tv->tv_usec = usec;
167 }
168 EXPORT_SYMBOL(do_gettimeofday);
169 
do_settimeofday(struct timespec * tv)170 int do_settimeofday(struct timespec *tv)
171 {
172 	time_t wtm_sec, sec = tv->tv_sec;
173 	long wtm_nsec, nsec = tv->tv_nsec;
174 
175 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
176 		return -EINVAL;
177 
178 	write_seqlock_irq(&xtime_lock);
179 	/*
180 	 * This is revolting. We need to set "xtime" correctly. However, the
181 	 * value in this location is the value at the most recent update of
182 	 * wall time.  Discover what correction gettimeofday() would have
183 	 * made, and then undo it!
184 	 */
185 	nsec -= 1000 * usecs_since_tick();
186 
187 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
188 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
189 
190 	set_normalized_timespec(&xtime, sec, nsec);
191 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
192 
193 	ntp_clear();
194 	write_sequnlock_irq(&xtime_lock);
195 	clock_was_set();
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL(do_settimeofday);
200 
201 /* Dummy RTC ops */
null_rtc_get_time(struct timespec * tv)202 static void null_rtc_get_time(struct timespec *tv)
203 {
204 	tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0);
205 	tv->tv_nsec = 0;
206 }
207 
null_rtc_set_time(const time_t secs)208 static int null_rtc_set_time(const time_t secs)
209 {
210 	return 0;
211 }
212 
213 void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time;
214 int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time;
215 
216 /* last time the RTC clock got updated */
217 static long last_rtc_update;
218 
219 /*
220  * timer_interrupt() needs to keep up the real-time clock,
221  * as well as call the "do_timer()" routine every clocktick
222  */
do_timer_interrupt(void)223 static inline void do_timer_interrupt(void)
224 {
225 	unsigned long long current_ctc;
226 
227 	if (current->pid)
228 		profile_tick(CPU_PROFILING);
229 
230 	/*
231 	 * Here we are in the timer irq handler. We just have irqs locally
232 	 * disabled but we don't know if the timer_bh is running on the other
233 	 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
234 	 * the irq version of write_lock because as just said we have irq
235 	 * locally disabled. -arca
236 	 */
237 	write_seqlock(&xtime_lock);
238 	asm ("getcon cr62, %0" : "=r" (current_ctc));
239 	ctc_last_interrupt = (unsigned long) current_ctc;
240 
241 	do_timer(1);
242 
243 	/*
244 	 * If we have an externally synchronized Linux clock, then update
245 	 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
246 	 * called as close as possible to 500 ms before the new second starts.
247 	 */
248 	if (ntp_synced() &&
249 	    xtime.tv_sec > last_rtc_update + 660 &&
250 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
251 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
252 		if (rtc_sh_set_time(xtime.tv_sec) == 0)
253 			last_rtc_update = xtime.tv_sec;
254 		else
255 			/* do it again in 60 s */
256 			last_rtc_update = xtime.tv_sec - 600;
257 	}
258 	write_sequnlock(&xtime_lock);
259 
260 #ifndef CONFIG_SMP
261 	update_process_times(user_mode(get_irq_regs()));
262 #endif
263 }
264 
265 /*
266  * This is the same as the above, except we _also_ save the current
267  * Time Stamp Counter value at the time of the timer interrupt, so that
268  * we later on can estimate the time of day more exactly.
269  */
timer_interrupt(int irq,void * dev_id)270 static irqreturn_t timer_interrupt(int irq, void *dev_id)
271 {
272 	unsigned long timer_status;
273 
274 	/* Clear UNF bit */
275 	timer_status = ctrl_inw(TMU0_TCR);
276 	timer_status &= ~0x100;
277 	ctrl_outw(timer_status, TMU0_TCR);
278 
279 	do_timer_interrupt();
280 
281 	return IRQ_HANDLED;
282 }
283 
284 static struct irqaction irq0  = {
285 	.handler = timer_interrupt,
286 	.flags = IRQF_DISABLED,
287 	.mask = CPU_MASK_NONE,
288 	.name = "timer",
289 };
290 
time_init(void)291 void __init time_init(void)
292 {
293 	unsigned long interval;
294 	struct clk *clk;
295 
296 	tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
297 	if (!tmu_base) {
298 		panic("Unable to remap TMU\n");
299 	}
300 
301 	rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
302 	if (!rtc_base) {
303 		panic("Unable to remap RTC\n");
304 	}
305 
306 	clk = clk_get(NULL, "cpu_clk");
307 	scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) /
308 			(unsigned long long)(clk_get_rate(clk) / HZ));
309 
310 	rtc_sh_get_time(&xtime);
311 
312 	setup_irq(TIMER_IRQ, &irq0);
313 
314 	clk = clk_get(NULL, "module_clk");
315 	interval = (clk_get_rate(clk)/(HZ*4));
316 
317 	printk("Interval = %ld\n", interval);
318 
319 	/* Start TMU0 */
320 	ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
321 	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
322 	ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
323 	ctrl_outl(interval, TMU0_TCOR);
324 	ctrl_outl(interval, TMU0_TCNT);
325 	ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
326 }
327 
328 static struct resource rtc_resources[] = {
329 	[0] = {
330 		/* RTC base, filled in by rtc_init */
331 		.flags	= IORESOURCE_IO,
332 	},
333 	[1] = {
334 		/* Period IRQ */
335 		.start	= IRQ_PRI,
336 		.flags	= IORESOURCE_IRQ,
337 	},
338 	[2] = {
339 		/* Carry IRQ */
340 		.start	= IRQ_CUI,
341 		.flags	= IORESOURCE_IRQ,
342 	},
343 	[3] = {
344 		/* Alarm IRQ */
345 		.start	= IRQ_ATI,
346 		.flags	= IORESOURCE_IRQ,
347 	},
348 };
349 
350 static struct platform_device rtc_device = {
351 	.name		= "sh-rtc",
352 	.id		= -1,
353 	.num_resources	= ARRAY_SIZE(rtc_resources),
354 	.resource	= rtc_resources,
355 };
356 
rtc_init(void)357 static int __init rtc_init(void)
358 {
359 	rtc_resources[0].start	= rtc_base;
360 	rtc_resources[0].end	= rtc_resources[0].start + 0x58 - 1;
361 
362 	return platform_device_register(&rtc_device);
363 }
364 device_initcall(rtc_init);
365