• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
13 #include <asm/i387.h>
14 #include <asm/msr.h>
15 #include <asm/io.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
18 #include <asm/mtrr.h>
19 #include <asm/mce.h>
20 #include <asm/pat.h>
21 #include <asm/asm.h>
22 #include <asm/numa.h>
23 #include <asm/smp.h>
24 #ifdef CONFIG_X86_LOCAL_APIC
25 #include <asm/mpspec.h>
26 #include <asm/apic.h>
27 #include <mach_apic.h>
28 #include <asm/genapic.h>
29 #endif
30 
31 #include <asm/pda.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
34 #include <asm/desc.h>
35 #include <asm/atomic.h>
36 #include <asm/proto.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/hypervisor.h>
40 
41 #include "cpu.h"
42 
43 #ifdef CONFIG_X86_64
44 
45 /* all of these masks are initialized in setup_cpu_local_masks() */
46 cpumask_var_t cpu_callin_mask;
47 cpumask_var_t cpu_callout_mask;
48 cpumask_var_t cpu_initialized_mask;
49 
50 /* representing cpus for which sibling maps can be computed */
51 cpumask_var_t cpu_sibling_setup_mask;
52 
53 #else /* CONFIG_X86_32 */
54 
55 cpumask_t cpu_callin_map;
56 cpumask_t cpu_callout_map;
57 cpumask_t cpu_initialized;
58 cpumask_t cpu_sibling_setup_map;
59 
60 #endif /* CONFIG_X86_32 */
61 
62 
63 static struct cpu_dev *this_cpu __cpuinitdata;
64 
65 #ifdef CONFIG_X86_64
66 /* We need valid kernel segments for data and code in long mode too
67  * IRET will check the segment types  kkeil 2000/10/28
68  * Also sysret mandates a special GDT layout
69  */
70 /* The TLS descriptors are currently at a different place compared to i386.
71    Hopefully nobody expects them at a fixed place (Wine?) */
72 DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
73 	[GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
74 	[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
75 	[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
76 	[GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
77 	[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
78 	[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
79 } };
80 #else
81 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
82 	[GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
83 	[GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
84 	[GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
85 	[GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
86 	/*
87 	 * Segments used for calling PnP BIOS have byte granularity.
88 	 * They code segments and data segments have fixed 64k limits,
89 	 * the transfer segment sizes are set at run time.
90 	 */
91 	/* 32-bit code */
92 	[GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
93 	/* 16-bit code */
94 	[GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
95 	/* 16-bit data */
96 	[GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
97 	/* 16-bit data */
98 	[GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
99 	/* 16-bit data */
100 	[GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
101 	/*
102 	 * The APM segments have byte granularity and their bases
103 	 * are set at run time.  All have 64k limits.
104 	 */
105 	/* 32-bit code */
106 	[GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
107 	/* 16-bit code */
108 	[GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
109 	/* data */
110 	[GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
111 
112 	[GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
113 	[GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
114 } };
115 #endif
116 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
117 
118 #ifdef CONFIG_X86_32
119 static int cachesize_override __cpuinitdata = -1;
120 static int disable_x86_serial_nr __cpuinitdata = 1;
121 
cachesize_setup(char * str)122 static int __init cachesize_setup(char *str)
123 {
124 	get_option(&str, &cachesize_override);
125 	return 1;
126 }
127 __setup("cachesize=", cachesize_setup);
128 
x86_fxsr_setup(char * s)129 static int __init x86_fxsr_setup(char *s)
130 {
131 	setup_clear_cpu_cap(X86_FEATURE_FXSR);
132 	setup_clear_cpu_cap(X86_FEATURE_XMM);
133 	return 1;
134 }
135 __setup("nofxsr", x86_fxsr_setup);
136 
x86_sep_setup(char * s)137 static int __init x86_sep_setup(char *s)
138 {
139 	setup_clear_cpu_cap(X86_FEATURE_SEP);
140 	return 1;
141 }
142 __setup("nosep", x86_sep_setup);
143 
144 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)145 static inline int flag_is_changeable_p(u32 flag)
146 {
147 	u32 f1, f2;
148 
149 	/*
150 	 * Cyrix and IDT cpus allow disabling of CPUID
151 	 * so the code below may return different results
152 	 * when it is executed before and after enabling
153 	 * the CPUID. Add "volatile" to not allow gcc to
154 	 * optimize the subsequent calls to this function.
155 	 */
156 	asm volatile ("pushfl\n\t"
157 		      "pushfl\n\t"
158 		      "popl %0\n\t"
159 		      "movl %0,%1\n\t"
160 		      "xorl %2,%0\n\t"
161 		      "pushl %0\n\t"
162 		      "popfl\n\t"
163 		      "pushfl\n\t"
164 		      "popl %0\n\t"
165 		      "popfl\n\t"
166 		      : "=&r" (f1), "=&r" (f2)
167 		      : "ir" (flag));
168 
169 	return ((f1^f2) & flag) != 0;
170 }
171 
172 /* Probe for the CPUID instruction */
have_cpuid_p(void)173 static int __cpuinit have_cpuid_p(void)
174 {
175 	return flag_is_changeable_p(X86_EFLAGS_ID);
176 }
177 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)178 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
179 {
180 	if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
181 		/* Disable processor serial number */
182 		unsigned long lo, hi;
183 		rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
184 		lo |= 0x200000;
185 		wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
186 		printk(KERN_NOTICE "CPU serial number disabled.\n");
187 		clear_cpu_cap(c, X86_FEATURE_PN);
188 
189 		/* Disabling the serial number may affect the cpuid level */
190 		c->cpuid_level = cpuid_eax(0);
191 	}
192 }
193 
x86_serial_nr_setup(char * s)194 static int __init x86_serial_nr_setup(char *s)
195 {
196 	disable_x86_serial_nr = 0;
197 	return 1;
198 }
199 __setup("serialnumber", x86_serial_nr_setup);
200 #else
flag_is_changeable_p(u32 flag)201 static inline int flag_is_changeable_p(u32 flag)
202 {
203 	return 1;
204 }
205 /* Probe for the CPUID instruction */
have_cpuid_p(void)206 static inline int have_cpuid_p(void)
207 {
208 	return 1;
209 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)210 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
211 {
212 }
213 #endif
214 
215 /*
216  * Naming convention should be: <Name> [(<Codename>)]
217  * This table only is used unless init_<vendor>() below doesn't set it;
218  * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
219  *
220  */
221 
222 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)223 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
224 {
225 	struct cpu_model_info *info;
226 
227 	if (c->x86_model >= 16)
228 		return NULL;	/* Range check */
229 
230 	if (!this_cpu)
231 		return NULL;
232 
233 	info = this_cpu->c_models;
234 
235 	while (info && info->family) {
236 		if (info->family == c->x86)
237 			return info->model_names[c->x86_model];
238 		info++;
239 	}
240 	return NULL;		/* Not found */
241 }
242 
243 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
244 
245 /* Current gdt points %fs at the "master" per-cpu area: after this,
246  * it's on the real one. */
switch_to_new_gdt(void)247 void switch_to_new_gdt(void)
248 {
249 	struct desc_ptr gdt_descr;
250 
251 	gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
252 	gdt_descr.size = GDT_SIZE - 1;
253 	load_gdt(&gdt_descr);
254 #ifdef CONFIG_X86_32
255 	asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
256 #endif
257 }
258 
259 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
260 
default_init(struct cpuinfo_x86 * c)261 static void __cpuinit default_init(struct cpuinfo_x86 *c)
262 {
263 #ifdef CONFIG_X86_64
264 	display_cacheinfo(c);
265 #else
266 	/* Not much we can do here... */
267 	/* Check if at least it has cpuid */
268 	if (c->cpuid_level == -1) {
269 		/* No cpuid. It must be an ancient CPU */
270 		if (c->x86 == 4)
271 			strcpy(c->x86_model_id, "486");
272 		else if (c->x86 == 3)
273 			strcpy(c->x86_model_id, "386");
274 	}
275 #endif
276 }
277 
278 static struct cpu_dev __cpuinitdata default_cpu = {
279 	.c_init	= default_init,
280 	.c_vendor = "Unknown",
281 	.c_x86_vendor = X86_VENDOR_UNKNOWN,
282 };
283 
get_model_name(struct cpuinfo_x86 * c)284 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
285 {
286 	unsigned int *v;
287 	char *p, *q;
288 
289 	if (c->extended_cpuid_level < 0x80000004)
290 		return;
291 
292 	v = (unsigned int *) c->x86_model_id;
293 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
294 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
295 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
296 	c->x86_model_id[48] = 0;
297 
298 	/* Intel chips right-justify this string for some dumb reason;
299 	   undo that brain damage */
300 	p = q = &c->x86_model_id[0];
301 	while (*p == ' ')
302 	     p++;
303 	if (p != q) {
304 	     while (*p)
305 		  *q++ = *p++;
306 	     while (q <= &c->x86_model_id[48])
307 		  *q++ = '\0';	/* Zero-pad the rest */
308 	}
309 }
310 
display_cacheinfo(struct cpuinfo_x86 * c)311 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
312 {
313 	unsigned int n, dummy, ebx, ecx, edx, l2size;
314 
315 	n = c->extended_cpuid_level;
316 
317 	if (n >= 0x80000005) {
318 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
319 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
320 				edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
321 		c->x86_cache_size = (ecx>>24) + (edx>>24);
322 #ifdef CONFIG_X86_64
323 		/* On K8 L1 TLB is inclusive, so don't count it */
324 		c->x86_tlbsize = 0;
325 #endif
326 	}
327 
328 	if (n < 0x80000006)	/* Some chips just has a large L1. */
329 		return;
330 
331 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
332 	l2size = ecx >> 16;
333 
334 #ifdef CONFIG_X86_64
335 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
336 #else
337 	/* do processor-specific cache resizing */
338 	if (this_cpu->c_size_cache)
339 		l2size = this_cpu->c_size_cache(c, l2size);
340 
341 	/* Allow user to override all this if necessary. */
342 	if (cachesize_override != -1)
343 		l2size = cachesize_override;
344 
345 	if (l2size == 0)
346 		return;		/* Again, no L2 cache is possible */
347 #endif
348 
349 	c->x86_cache_size = l2size;
350 
351 	printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
352 			l2size, ecx & 0xFF);
353 }
354 
detect_ht(struct cpuinfo_x86 * c)355 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
356 {
357 #ifdef CONFIG_X86_HT
358 	u32 eax, ebx, ecx, edx;
359 	int index_msb, core_bits;
360 
361 	if (!cpu_has(c, X86_FEATURE_HT))
362 		return;
363 
364 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
365 		goto out;
366 
367 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
368 		return;
369 
370 	cpuid(1, &eax, &ebx, &ecx, &edx);
371 
372 	smp_num_siblings = (ebx & 0xff0000) >> 16;
373 
374 	if (smp_num_siblings == 1) {
375 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
376 	} else if (smp_num_siblings > 1) {
377 
378 		if (smp_num_siblings > nr_cpu_ids) {
379 			printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
380 					smp_num_siblings);
381 			smp_num_siblings = 1;
382 			return;
383 		}
384 
385 		index_msb = get_count_order(smp_num_siblings);
386 #ifdef CONFIG_X86_64
387 		c->phys_proc_id = phys_pkg_id(index_msb);
388 #else
389 		c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
390 #endif
391 
392 		smp_num_siblings = smp_num_siblings / c->x86_max_cores;
393 
394 		index_msb = get_count_order(smp_num_siblings);
395 
396 		core_bits = get_count_order(c->x86_max_cores);
397 
398 #ifdef CONFIG_X86_64
399 		c->cpu_core_id = phys_pkg_id(index_msb) &
400 					       ((1 << core_bits) - 1);
401 #else
402 		c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
403 					       ((1 << core_bits) - 1);
404 #endif
405 	}
406 
407 out:
408 	if ((c->x86_max_cores * smp_num_siblings) > 1) {
409 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
410 		       c->phys_proc_id);
411 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
412 		       c->cpu_core_id);
413 	}
414 #endif
415 }
416 
get_cpu_vendor(struct cpuinfo_x86 * c)417 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
418 {
419 	char *v = c->x86_vendor_id;
420 	int i;
421 	static int printed;
422 
423 	for (i = 0; i < X86_VENDOR_NUM; i++) {
424 		if (!cpu_devs[i])
425 			break;
426 
427 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
428 		    (cpu_devs[i]->c_ident[1] &&
429 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
430 			this_cpu = cpu_devs[i];
431 			c->x86_vendor = this_cpu->c_x86_vendor;
432 			return;
433 		}
434 	}
435 
436 	if (!printed) {
437 		printed++;
438 		printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
439 		printk(KERN_ERR "CPU: Your system may be unstable.\n");
440 	}
441 
442 	c->x86_vendor = X86_VENDOR_UNKNOWN;
443 	this_cpu = &default_cpu;
444 }
445 
cpu_detect(struct cpuinfo_x86 * c)446 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
447 {
448 	/* Get vendor name */
449 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
450 	      (unsigned int *)&c->x86_vendor_id[0],
451 	      (unsigned int *)&c->x86_vendor_id[8],
452 	      (unsigned int *)&c->x86_vendor_id[4]);
453 
454 	c->x86 = 4;
455 	/* Intel-defined flags: level 0x00000001 */
456 	if (c->cpuid_level >= 0x00000001) {
457 		u32 junk, tfms, cap0, misc;
458 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
459 		c->x86 = (tfms >> 8) & 0xf;
460 		c->x86_model = (tfms >> 4) & 0xf;
461 		c->x86_mask = tfms & 0xf;
462 		if (c->x86 == 0xf)
463 			c->x86 += (tfms >> 20) & 0xff;
464 		if (c->x86 >= 0x6)
465 			c->x86_model += ((tfms >> 16) & 0xf) << 4;
466 		if (cap0 & (1<<19)) {
467 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
468 			c->x86_cache_alignment = c->x86_clflush_size;
469 		}
470 	}
471 }
472 
get_cpu_cap(struct cpuinfo_x86 * c)473 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
474 {
475 	u32 tfms, xlvl;
476 	u32 ebx;
477 
478 	/* Intel-defined flags: level 0x00000001 */
479 	if (c->cpuid_level >= 0x00000001) {
480 		u32 capability, excap;
481 		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
482 		c->x86_capability[0] = capability;
483 		c->x86_capability[4] = excap;
484 	}
485 
486 	/* AMD-defined flags: level 0x80000001 */
487 	xlvl = cpuid_eax(0x80000000);
488 	c->extended_cpuid_level = xlvl;
489 	if ((xlvl & 0xffff0000) == 0x80000000) {
490 		if (xlvl >= 0x80000001) {
491 			c->x86_capability[1] = cpuid_edx(0x80000001);
492 			c->x86_capability[6] = cpuid_ecx(0x80000001);
493 		}
494 	}
495 
496 #ifdef CONFIG_X86_64
497 	if (c->extended_cpuid_level >= 0x80000008) {
498 		u32 eax = cpuid_eax(0x80000008);
499 
500 		c->x86_virt_bits = (eax >> 8) & 0xff;
501 		c->x86_phys_bits = eax & 0xff;
502 	}
503 #endif
504 
505 	if (c->extended_cpuid_level >= 0x80000007)
506 		c->x86_power = cpuid_edx(0x80000007);
507 
508 }
509 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)510 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
511 {
512 #ifdef CONFIG_X86_32
513 	int i;
514 
515 	/*
516 	 * First of all, decide if this is a 486 or higher
517 	 * It's a 486 if we can modify the AC flag
518 	 */
519 	if (flag_is_changeable_p(X86_EFLAGS_AC))
520 		c->x86 = 4;
521 	else
522 		c->x86 = 3;
523 
524 	for (i = 0; i < X86_VENDOR_NUM; i++)
525 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
526 			c->x86_vendor_id[0] = 0;
527 			cpu_devs[i]->c_identify(c);
528 			if (c->x86_vendor_id[0]) {
529 				get_cpu_vendor(c);
530 				break;
531 			}
532 		}
533 #endif
534 }
535 
536 /*
537  * Do minimum CPU detection early.
538  * Fields really needed: vendor, cpuid_level, family, model, mask,
539  * cache alignment.
540  * The others are not touched to avoid unwanted side effects.
541  *
542  * WARNING: this function is only called on the BP.  Don't add code here
543  * that is supposed to run on all CPUs.
544  */
early_identify_cpu(struct cpuinfo_x86 * c)545 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
546 {
547 #ifdef CONFIG_X86_64
548 	c->x86_clflush_size = 64;
549 #else
550 	c->x86_clflush_size = 32;
551 #endif
552 	c->x86_cache_alignment = c->x86_clflush_size;
553 
554 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
555 	c->extended_cpuid_level = 0;
556 
557 	if (!have_cpuid_p())
558 		identify_cpu_without_cpuid(c);
559 
560 	/* cyrix could have cpuid enabled via c_identify()*/
561 	if (!have_cpuid_p())
562 		return;
563 
564 	cpu_detect(c);
565 
566 	get_cpu_vendor(c);
567 
568 	get_cpu_cap(c);
569 
570 	if (this_cpu->c_early_init)
571 		this_cpu->c_early_init(c);
572 
573 	validate_pat_support(c);
574 
575 #ifdef CONFIG_SMP
576 	c->cpu_index = boot_cpu_id;
577 #endif
578 }
579 
early_cpu_init(void)580 void __init early_cpu_init(void)
581 {
582 	struct cpu_dev **cdev;
583 	int count = 0;
584 
585 	printk("KERNEL supported cpus:\n");
586 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
587 		struct cpu_dev *cpudev = *cdev;
588 		unsigned int j;
589 
590 		if (count >= X86_VENDOR_NUM)
591 			break;
592 		cpu_devs[count] = cpudev;
593 		count++;
594 
595 		for (j = 0; j < 2; j++) {
596 			if (!cpudev->c_ident[j])
597 				continue;
598 			printk("  %s %s\n", cpudev->c_vendor,
599 				cpudev->c_ident[j]);
600 		}
601 	}
602 
603 	early_identify_cpu(&boot_cpu_data);
604 }
605 
606 /*
607  * The NOPL instruction is supposed to exist on all CPUs with
608  * family >= 6; unfortunately, that's not true in practice because
609  * of early VIA chips and (more importantly) broken virtualizers that
610  * are not easy to detect.  In the latter case it doesn't even *fail*
611  * reliably, so probing for it doesn't even work.  Disable it completely
612  * unless we can find a reliable way to detect all the broken cases.
613  */
detect_nopl(struct cpuinfo_x86 * c)614 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
615 {
616 	clear_cpu_cap(c, X86_FEATURE_NOPL);
617 }
618 
generic_identify(struct cpuinfo_x86 * c)619 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
620 {
621 	c->extended_cpuid_level = 0;
622 
623 	if (!have_cpuid_p())
624 		identify_cpu_without_cpuid(c);
625 
626 	/* cyrix could have cpuid enabled via c_identify()*/
627 	if (!have_cpuid_p())
628 		return;
629 
630 	cpu_detect(c);
631 
632 	get_cpu_vendor(c);
633 
634 	get_cpu_cap(c);
635 
636 	if (c->cpuid_level >= 0x00000001) {
637 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
638 #ifdef CONFIG_X86_32
639 # ifdef CONFIG_X86_HT
640 		c->apicid = phys_pkg_id(c->initial_apicid, 0);
641 # else
642 		c->apicid = c->initial_apicid;
643 # endif
644 #endif
645 
646 #ifdef CONFIG_X86_HT
647 		c->phys_proc_id = c->initial_apicid;
648 #endif
649 	}
650 
651 	get_model_name(c); /* Default name */
652 
653 	init_scattered_cpuid_features(c);
654 	detect_nopl(c);
655 }
656 
657 /*
658  * This does the hard work of actually picking apart the CPU stuff...
659  */
identify_cpu(struct cpuinfo_x86 * c)660 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
661 {
662 	int i;
663 
664 	c->loops_per_jiffy = loops_per_jiffy;
665 	c->x86_cache_size = -1;
666 	c->x86_vendor = X86_VENDOR_UNKNOWN;
667 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
668 	c->x86_vendor_id[0] = '\0'; /* Unset */
669 	c->x86_model_id[0] = '\0';  /* Unset */
670 	c->x86_max_cores = 1;
671 	c->x86_coreid_bits = 0;
672 #ifdef CONFIG_X86_64
673 	c->x86_clflush_size = 64;
674 #else
675 	c->cpuid_level = -1;	/* CPUID not detected */
676 	c->x86_clflush_size = 32;
677 #endif
678 	c->x86_cache_alignment = c->x86_clflush_size;
679 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
680 
681 	generic_identify(c);
682 
683 	if (this_cpu->c_identify)
684 		this_cpu->c_identify(c);
685 
686 #ifdef CONFIG_X86_64
687 	c->apicid = phys_pkg_id(0);
688 #endif
689 
690 	/*
691 	 * Vendor-specific initialization.  In this section we
692 	 * canonicalize the feature flags, meaning if there are
693 	 * features a certain CPU supports which CPUID doesn't
694 	 * tell us, CPUID claiming incorrect flags, or other bugs,
695 	 * we handle them here.
696 	 *
697 	 * At the end of this section, c->x86_capability better
698 	 * indicate the features this CPU genuinely supports!
699 	 */
700 	if (this_cpu->c_init)
701 		this_cpu->c_init(c);
702 
703 	/* Disable the PN if appropriate */
704 	squash_the_stupid_serial_number(c);
705 
706 	/*
707 	 * The vendor-specific functions might have changed features.  Now
708 	 * we do "generic changes."
709 	 */
710 
711 	/* If the model name is still unset, do table lookup. */
712 	if (!c->x86_model_id[0]) {
713 		char *p;
714 		p = table_lookup_model(c);
715 		if (p)
716 			strcpy(c->x86_model_id, p);
717 		else
718 			/* Last resort... */
719 			sprintf(c->x86_model_id, "%02x/%02x",
720 				c->x86, c->x86_model);
721 	}
722 
723 #ifdef CONFIG_X86_64
724 	detect_ht(c);
725 #endif
726 
727 	init_hypervisor(c);
728 	/*
729 	 * On SMP, boot_cpu_data holds the common feature set between
730 	 * all CPUs; so make sure that we indicate which features are
731 	 * common between the CPUs.  The first time this routine gets
732 	 * executed, c == &boot_cpu_data.
733 	 */
734 	if (c != &boot_cpu_data) {
735 		/* AND the already accumulated flags with these */
736 		for (i = 0; i < NCAPINTS; i++)
737 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
738 	}
739 
740 	/* Clear all flags overriden by options */
741 	for (i = 0; i < NCAPINTS; i++)
742 		c->x86_capability[i] &= ~cleared_cpu_caps[i];
743 
744 #ifdef CONFIG_X86_MCE
745 	/* Init Machine Check Exception if available. */
746 	mcheck_init(c);
747 #endif
748 
749 	select_idle_routine(c);
750 
751 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
752 	numa_add_cpu(smp_processor_id());
753 #endif
754 }
755 
756 #ifdef CONFIG_X86_64
vgetcpu_set_mode(void)757 static void vgetcpu_set_mode(void)
758 {
759 	if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
760 		vgetcpu_mode = VGETCPU_RDTSCP;
761 	else
762 		vgetcpu_mode = VGETCPU_LSL;
763 }
764 #endif
765 
identify_boot_cpu(void)766 void __init identify_boot_cpu(void)
767 {
768 	identify_cpu(&boot_cpu_data);
769 #ifdef CONFIG_X86_32
770 	sysenter_setup();
771 	enable_sep_cpu();
772 #else
773 	vgetcpu_set_mode();
774 #endif
775 }
776 
identify_secondary_cpu(struct cpuinfo_x86 * c)777 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
778 {
779 	BUG_ON(c == &boot_cpu_data);
780 	identify_cpu(c);
781 #ifdef CONFIG_X86_32
782 	enable_sep_cpu();
783 #endif
784 	mtrr_ap_init();
785 }
786 
787 struct msr_range {
788 	unsigned min;
789 	unsigned max;
790 };
791 
792 static struct msr_range msr_range_array[] __cpuinitdata = {
793 	{ 0x00000000, 0x00000418},
794 	{ 0xc0000000, 0xc000040b},
795 	{ 0xc0010000, 0xc0010142},
796 	{ 0xc0011000, 0xc001103b},
797 };
798 
print_cpu_msr(void)799 static void __cpuinit print_cpu_msr(void)
800 {
801 	unsigned index;
802 	u64 val;
803 	int i;
804 	unsigned index_min, index_max;
805 
806 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
807 		index_min = msr_range_array[i].min;
808 		index_max = msr_range_array[i].max;
809 		for (index = index_min; index < index_max; index++) {
810 			if (rdmsrl_amd_safe(index, &val))
811 				continue;
812 			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
813 		}
814 	}
815 }
816 
817 static int show_msr __cpuinitdata;
setup_show_msr(char * arg)818 static __init int setup_show_msr(char *arg)
819 {
820 	int num;
821 
822 	get_option(&arg, &num);
823 
824 	if (num > 0)
825 		show_msr = num;
826 	return 1;
827 }
828 __setup("show_msr=", setup_show_msr);
829 
setup_noclflush(char * arg)830 static __init int setup_noclflush(char *arg)
831 {
832 	setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
833 	return 1;
834 }
835 __setup("noclflush", setup_noclflush);
836 
print_cpu_info(struct cpuinfo_x86 * c)837 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
838 {
839 	char *vendor = NULL;
840 
841 	if (c->x86_vendor < X86_VENDOR_NUM)
842 		vendor = this_cpu->c_vendor;
843 	else if (c->cpuid_level >= 0)
844 		vendor = c->x86_vendor_id;
845 
846 	if (vendor && !strstr(c->x86_model_id, vendor))
847 		printk(KERN_CONT "%s ", vendor);
848 
849 	if (c->x86_model_id[0])
850 		printk(KERN_CONT "%s", c->x86_model_id);
851 	else
852 		printk(KERN_CONT "%d86", c->x86);
853 
854 	if (c->x86_mask || c->cpuid_level >= 0)
855 		printk(KERN_CONT " stepping %02x\n", c->x86_mask);
856 	else
857 		printk(KERN_CONT "\n");
858 
859 #ifdef CONFIG_SMP
860 	if (c->cpu_index < show_msr)
861 		print_cpu_msr();
862 #else
863 	if (show_msr)
864 		print_cpu_msr();
865 #endif
866 }
867 
setup_disablecpuid(char * arg)868 static __init int setup_disablecpuid(char *arg)
869 {
870 	int bit;
871 	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
872 		setup_clear_cpu_cap(bit);
873 	else
874 		return 0;
875 	return 1;
876 }
877 __setup("clearcpuid=", setup_disablecpuid);
878 
879 #ifdef CONFIG_X86_64
880 struct x8664_pda **_cpu_pda __read_mostly;
881 EXPORT_SYMBOL(_cpu_pda);
882 
883 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
884 
885 static char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
886 
pda_init(int cpu)887 void __cpuinit pda_init(int cpu)
888 {
889 	struct x8664_pda *pda = cpu_pda(cpu);
890 
891 	/* Setup up data that may be needed in __get_free_pages early */
892 	loadsegment(fs, 0);
893 	loadsegment(gs, 0);
894 	/* Memory clobbers used to order PDA accessed */
895 	mb();
896 	wrmsrl(MSR_GS_BASE, pda);
897 	mb();
898 
899 	pda->cpunumber = cpu;
900 	pda->irqcount = -1;
901 	pda->kernelstack = (unsigned long)stack_thread_info() -
902 				 PDA_STACKOFFSET + THREAD_SIZE;
903 	pda->active_mm = &init_mm;
904 	pda->mmu_state = 0;
905 
906 	if (cpu == 0) {
907 		/* others are initialized in smpboot.c */
908 		pda->pcurrent = &init_task;
909 		pda->irqstackptr = boot_cpu_stack;
910 		pda->irqstackptr += IRQSTACKSIZE - 64;
911 	} else {
912 		if (!pda->irqstackptr) {
913 			pda->irqstackptr = (char *)
914 				__get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
915 			if (!pda->irqstackptr)
916 				panic("cannot allocate irqstack for cpu %d",
917 				      cpu);
918 			pda->irqstackptr += IRQSTACKSIZE - 64;
919 		}
920 
921 		if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
922 			pda->nodenumber = cpu_to_node(cpu);
923 	}
924 }
925 
926 static char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
927 				  DEBUG_STKSZ] __page_aligned_bss;
928 
929 extern asmlinkage void ignore_sysret(void);
930 
931 /* May not be marked __init: used by software suspend */
syscall_init(void)932 void syscall_init(void)
933 {
934 	/*
935 	 * LSTAR and STAR live in a bit strange symbiosis.
936 	 * They both write to the same internal register. STAR allows to
937 	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
938 	 */
939 	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
940 	wrmsrl(MSR_LSTAR, system_call);
941 	wrmsrl(MSR_CSTAR, ignore_sysret);
942 
943 #ifdef CONFIG_IA32_EMULATION
944 	syscall32_cpu_init();
945 #endif
946 
947 	/* Flags to clear on syscall */
948 	wrmsrl(MSR_SYSCALL_MASK,
949 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
950 }
951 
952 unsigned long kernel_eflags;
953 
954 /*
955  * Copies of the original ist values from the tss are only accessed during
956  * debugging, no special alignment required.
957  */
958 DEFINE_PER_CPU(struct orig_ist, orig_ist);
959 
960 #else
961 
962 /* Make sure %fs is initialized properly in idle threads */
idle_regs(struct pt_regs * regs)963 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
964 {
965 	memset(regs, 0, sizeof(struct pt_regs));
966 	regs->fs = __KERNEL_PERCPU;
967 	return regs;
968 }
969 #endif
970 
971 /*
972  * cpu_init() initializes state that is per-CPU. Some data is already
973  * initialized (naturally) in the bootstrap process, such as the GDT
974  * and IDT. We reload them nevertheless, this function acts as a
975  * 'CPU state barrier', nothing should get across.
976  * A lot of state is already set up in PDA init for 64 bit
977  */
978 #ifdef CONFIG_X86_64
cpu_init(void)979 void __cpuinit cpu_init(void)
980 {
981 	int cpu = stack_smp_processor_id();
982 	struct tss_struct *t = &per_cpu(init_tss, cpu);
983 	struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
984 	unsigned long v;
985 	char *estacks = NULL;
986 	struct task_struct *me;
987 	int i;
988 
989 	/* CPU 0 is initialised in head64.c */
990 	if (cpu != 0)
991 		pda_init(cpu);
992 	else
993 		estacks = boot_exception_stacks;
994 
995 	me = current;
996 
997 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
998 		panic("CPU#%d already initialized!\n", cpu);
999 
1000 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1001 
1002 	clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1003 
1004 	/*
1005 	 * Initialize the per-CPU GDT with the boot GDT,
1006 	 * and set up the GDT descriptor:
1007 	 */
1008 
1009 	switch_to_new_gdt();
1010 	load_idt((const struct desc_ptr *)&idt_descr);
1011 
1012 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1013 	syscall_init();
1014 
1015 	wrmsrl(MSR_FS_BASE, 0);
1016 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1017 	barrier();
1018 
1019 	check_efer();
1020 	if (cpu != 0 && x2apic)
1021 		enable_x2apic();
1022 
1023 	/*
1024 	 * set up and load the per-CPU TSS
1025 	 */
1026 	if (!orig_ist->ist[0]) {
1027 		static const unsigned int order[N_EXCEPTION_STACKS] = {
1028 		  [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
1029 		  [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
1030 		};
1031 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1032 			if (cpu) {
1033 				estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
1034 				if (!estacks)
1035 					panic("Cannot allocate exception "
1036 					      "stack %ld %d\n", v, cpu);
1037 			}
1038 			estacks += PAGE_SIZE << order[v];
1039 			orig_ist->ist[v] = t->x86_tss.ist[v] =
1040 					(unsigned long)estacks;
1041 		}
1042 	}
1043 
1044 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1045 	/*
1046 	 * <= is required because the CPU will access up to
1047 	 * 8 bits beyond the end of the IO permission bitmap.
1048 	 */
1049 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1050 		t->io_bitmap[i] = ~0UL;
1051 
1052 	atomic_inc(&init_mm.mm_count);
1053 	me->active_mm = &init_mm;
1054 	if (me->mm)
1055 		BUG();
1056 	enter_lazy_tlb(&init_mm, me);
1057 
1058 	load_sp0(t, &current->thread);
1059 	set_tss_desc(cpu, t);
1060 	load_TR_desc();
1061 	load_LDT(&init_mm.context);
1062 
1063 #ifdef CONFIG_KGDB
1064 	/*
1065 	 * If the kgdb is connected no debug regs should be altered.  This
1066 	 * is only applicable when KGDB and a KGDB I/O module are built
1067 	 * into the kernel and you are using early debugging with
1068 	 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1069 	 */
1070 	if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1071 		arch_kgdb_ops.correct_hw_break();
1072 	else {
1073 #endif
1074 	/*
1075 	 * Clear all 6 debug registers:
1076 	 */
1077 
1078 	set_debugreg(0UL, 0);
1079 	set_debugreg(0UL, 1);
1080 	set_debugreg(0UL, 2);
1081 	set_debugreg(0UL, 3);
1082 	set_debugreg(0UL, 6);
1083 	set_debugreg(0UL, 7);
1084 #ifdef CONFIG_KGDB
1085 	/* If the kgdb is connected no debug regs should be altered. */
1086 	}
1087 #endif
1088 
1089 	fpu_init();
1090 
1091 	raw_local_save_flags(kernel_eflags);
1092 
1093 	if (is_uv_system())
1094 		uv_cpu_init();
1095 }
1096 
1097 #else
1098 
cpu_init(void)1099 void __cpuinit cpu_init(void)
1100 {
1101 	int cpu = smp_processor_id();
1102 	struct task_struct *curr = current;
1103 	struct tss_struct *t = &per_cpu(init_tss, cpu);
1104 	struct thread_struct *thread = &curr->thread;
1105 
1106 	if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1107 		printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1108 		for (;;) local_irq_enable();
1109 	}
1110 
1111 	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1112 
1113 	if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1114 		clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1115 
1116 	load_idt(&idt_descr);
1117 	switch_to_new_gdt();
1118 
1119 	/*
1120 	 * Set up and load the per-CPU TSS and LDT
1121 	 */
1122 	atomic_inc(&init_mm.mm_count);
1123 	curr->active_mm = &init_mm;
1124 	if (curr->mm)
1125 		BUG();
1126 	enter_lazy_tlb(&init_mm, curr);
1127 
1128 	load_sp0(t, thread);
1129 	set_tss_desc(cpu, t);
1130 	load_TR_desc();
1131 	load_LDT(&init_mm.context);
1132 
1133 #ifdef CONFIG_DOUBLEFAULT
1134 	/* Set up doublefault TSS pointer in the GDT */
1135 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1136 #endif
1137 
1138 	/* Clear %gs. */
1139 	asm volatile ("mov %0, %%gs" : : "r" (0));
1140 
1141 	/* Clear all 6 debug registers: */
1142 	set_debugreg(0, 0);
1143 	set_debugreg(0, 1);
1144 	set_debugreg(0, 2);
1145 	set_debugreg(0, 3);
1146 	set_debugreg(0, 6);
1147 	set_debugreg(0, 7);
1148 
1149 	/*
1150 	 * Force FPU initialization:
1151 	 */
1152 	if (cpu_has_xsave)
1153 		current_thread_info()->status = TS_XSAVE;
1154 	else
1155 		current_thread_info()->status = 0;
1156 	clear_used_math();
1157 	mxcsr_feature_mask_init();
1158 
1159 	/*
1160 	 * Boot processor to setup the FP and extended state context info.
1161 	 */
1162 	if (smp_processor_id() == boot_cpu_id)
1163 		init_thread_xstate();
1164 
1165 	xsave_init();
1166 }
1167 
1168 
1169 #endif
1170